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A boundedly rational model for
category learning

Troy M. Houser1,2*

1Department of Psychology, University of Oregon, Eugene, OR, United States, 2Institute of

Neuroscience, University of Oregon, Eugene, OR, United States

The computational modeling of category learning is typically evaluated in terms

of themodel’s accuracy. For amodel to accurately infer categorymembership of

stimuli, it has to have su�cient representational precision. Thus, many category

learning models infer category representations that guide decision-making and

the model’s fitness is evaluated by its ability to accurately choose. Substantial

decision-making research, however, indicates that noise plays an important

role. Specifically, noisy representations are assumed to introduce an element

of stochasticity to decision-making. Noise can be minimized at the cost of

cognitive resource expenditure. Thus, a more biologically plausible model of

category learning should balance representational precision with costs. Here, we

tested an autoencoder model that learns categories (the six category structures

introduced by Roger Shepard and colleagues) by balancing the minimization of

error with minimization of resource usage. By incorporating the goal of reducing

category complexity, the currently proposed model biases category decisions

toward previously learned central tendencies. We show that this model is still

able to account for category learning performance in a traditional category

learning benchmark. The currently proposed model additionally makes some

novel predictions about category learning that future studies can test empirically.

The goal of this paper is tomake progress toward development of an ecologically

and neurobiologically plausible model of category learning that can guide future

studies and theoretical frameworks.

KEYWORDS

category learning, autoencoder (AE) neural networks, concept learning, generalization

(psychology), RULEX, rate distortion theory, e�cient coding theory

Introduction

Conceptual knowledge is a defining characteristic of human intelligence. A powerful

way that conceptual knowledge is used is by generalizing it to novel situations, enabling

efficient and adaptive behavior (Shepard, 1957, 1987, 1994). For example, when we go to

a new grocery store, we can generalize previously acquired knowledge about grocery store

layouts to infer that the cheese will be close to themilk. A concept is amental representation

of a category (Goldstone et al., 2018). Thus, the concept of a snake refers to the mental

representation of a subjectively constructed category labeled snake. Given that categories

are constructed by individuals to organize their personal experiences, there are numerous

possibilities for how onemight categorize. Despite considerable advancements in the field,

there remains a lack of consensus among researchers regarding the psychological nature of

categories. In what follows, we introduce a boundedly rational theoretical framework and

novel extension of a previously posited process-level computational model that can capture

key aspects of human category learning and memory. The guiding notion is that concepts

are boundedly rational representations of categories.
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Bounded rationality when acquiring
category knowledge

Humans make decisions based on internal representations of

external variables (Gershman and Daw, 2017; Niv, 2019), but how

such variables are encoded and subsequently decoded to make a

decision remains an open question. In real-world decision making,

biological systems often have to infer latent states (e.g., categories).

Many cognitivemodels of categorization decisions assume veridical

internal representations of categories (Nosofsky, 1986; Nosofsky

et al., 1994a,b). Substantial work in reinforcement learning and

magnitude discrimination suggests that some amount of noise is

inevitable in internal representations (Azeredo da Silveira et al.,

2021; Barretto-García et al., 2023; Li et al., 2017; Prat-Carrabin

and Woodford, 2022, 2024; Spitzer et al., 2017). This is to say that

it is likely infeasible for biological systems to encode and decode

information without error. According to the principle of efficient

coding (Barlow, 2013), biological systems should seek to maximize

representational precision while minimizing resource consumption.

The category learning model proposed by Kurtz (2007),

called the DIVergent Autoencoding (DIVA), has made important

advances in making the modeling of category judgements more

biologically realistic. DIVA is a neural network model that utilizes

an autoencoder architecture. Autoencoders traditionally learn

stimulus mappings in an unsupervised fashion. They have three

main components: (1) an encoder, (2) a bottleneck, and (3) a

decoder. The encoder takes input data and transforms it to a low

dimensional space (the bottleneck). The bottleneck is a form of

data compression, or dimensionality reduction, often employed in

statistical methods like principal component analysis (PCA) or t-

distributed stochastic neighbor embedding (t-SNE). It forces the

model to extract out statistical regularities in the data, effectively

shedding the irrelevant information, and therefore minimizing

resource expenditure. Then these compressed representations

are decompressed by the decoder, which transforms them back

into their original dimensions, so as to reconstruct the input.

Decoding is not trivial, as it is decoding from the bottleneck. In

other words, the decoder attempts to reconstruct the input after

getting rid of some of its original signal, consistent with the

notion from efficient coding theory that biological systems have

to balance representational precision with resource expenditure.

Low reconstruction error indicates that the bottleneck extracted

regularities well. Given that an autoencoder’s function is to

reconstruct the original input, it is typically not an architecture

used tomodel supervised learning, which attempts tomake discrete

decisions. However, DIVA makes use of a divergent output layer

that enables it to make categorical decisions. We discuss this

feature below.

However, the traditional autoencoder can have trouble with

generalizing because it can overfit to the data (Monshizadeh et al.,

2021), by simply reconstructing learned exemplars rather than a

category’s central tendency (Bozkurt et al., 2021). Reconstructing a

category’s central tendency should facilitate broader generalization

abilities. To circumvent this issue, we use a variational autoencoder

(VAE; Kingma and Welling, 2019).

Rather than deterministically mapping inputs to the bottleneck

component, VAEs map inputs to probability distributions,

thereby adding a stochastic element and enabling generation of

diverse outputs. Moreover, rather than sampling directly from

these learned distributions [z ∼ N (µ, σ 2)], which would be

computationally intractable, VAEs use the “reparameterization

trick” (Kingma et al., 2015). The reparameterization trick expresses

the latent probability distributions as deterministic functions of

their first two moments: z = µ + σ · ε, where ε is noise (which

is a random sample from a 0 mean Gaussian with unit variance,

see Kingma et al., 2015; Kingma and Welling, 2019). This trick

makes the sampling procedure differentiable, which in turn allows

the model parameters (µ and σ ) to be updated through gradient

descent optimization. The loss function that gets optimized is

also unique for VAEs. It is a sum of two forms of loss, which is

the key theoretical contribution that making DIVA variational

makes. The loss function for VAEs is the sum of reconstruction

error and the discrepancy between prior and posterior

distributions for a sampled latent variable z. Reconstruction

error is equivalent to distortion in rate distortion theory. It is a

measure proportional to the mean squared error between the input

and the reconstruction of the input produced by the decoder.

The discrepancy between prior and posterior distributions is

known as the Kullback-Leibler divergence (Cover and Thomas,

1991) and it functions as a regularizer, constraining decoded

representations to be biased toward their prior distribution.

This is a desirable property as it entails that, for example, a

category representation acquired across numerous experiences

cannot be substantially altered from a single outlier exemplar.

In other words, the Kullback-Leibler divergence minimizes

resources spent on encoding specific exemplars by penalizing

higher discrepancies between the input and the central tendency of

previous inputs.

It is known that allocated cognitive resources differs between

people and can even fluctuate frommoment to moment. Therefore,

we made use of the β-VAE, which incorporates a non-negative

parameter (β) that scales the Kullback-Leibler divergence (Higgins

et al., 2017). By scaling the Kullback-Leibler divergence, the

bias toward the central tendency of experience can be made

more or less prominent. It is conceptually related to cognitive

capacity (Bates and Jacobs, 2020), given that less reliance on

priors means one can efficiently encode more specific information.

Specifically, autoencoders by their very nature try to reconstruct

an input, which may make them susceptible to overfitting to the

identity of a stimulus (Steck, 2020). In the extreme case that

an autoencoder learns to memorize every training stimulus, it

would resemble the famous exemplar model (Nosofsky, 1986,

1987) of categorization. However, in the case of categories with

many exemplars, this becomes computationally infeasible and thus

a tradeoff must be maintained between precision of memories

and resource expenditure. Because the Kullback-Leibler divergence

functions as a regularizer, constraining representations to resemble

prior representations, the VAE additionally minimizes the resource

expenditure. Thus, by scaling the Kullback-Leibler divergence, β

induces more or less reliance on the prior, effectively tilting the

balance of precision and complexity toward one or the other.

The relationship between β-VAEs and rate distortion theory has

previously been made mathematically concrete (Alemi et al.,

2017a,b).
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Finally, we make the β-VAE divergent, as in DIVA and for

reasons which we expound upon next. Traditional autoencoders

utilize a single decoder to decode n-categories, or use multiple

autoencoders for each category (Oja, 1989). Such approaches to

category learning do not capture differences in category learning

driven by learning conditions, such as the nature and number of

contrasting categories. In the former case, it is difficult to apply

to supervised learning and in the latter case, this is because each

category is modeled independently (Kurtz, 2007). To solve this

issue, Kurtz (2007) proposed a single (shared) hidden layer of units

and n decoders, or category channels, in DIVA in order to obtain

reconstruction errors for each category. Comparing reconstruction

errors then allows one to test the following assumption, namely

that using the model’s low-dimensional representation of one

category to reconstruct the current stimulus is better than using

the model’s representation of another category to reconstruct the

current stimulus. Moreover, by maintaining a shared hidden layer,

DIVA and the extension proposed here are plausible models of

multitask learning (Ben-David and Schuller, 2003; Caruana, 1996,

1997, 1994), which has recently been revealed to naturally facilitate

generalization and abstraction (Driscoll et al., 2024; Garner and

Dux, 2023; Sanh et al., 2022; Wards et al., 2023) and may be related

to mixed selectivity in the brain (Jeffrey et al., 2020; Kaufman

et al., 2022; Rigotti et al., 2013), including the hippocampus

(Bernardi et al., 2020; Kira et al., 2023) and the prefrontal cortex

(Dang et al., 2021; Parthasarathy et al., 2017), both of which

are involved in concept learning. Given the shared layer, the

current model claims that the bottleneck component constitutes

a space of multiple psychological spaces superimposed upon each

other, which is distinct from predictions made by autoencoder

models with a single decoder. This means that the current

model will yield different reconstructions under different learning

conditions (i.e., it utilizes interdependent encoding techniques). By

allocating a unique output channel for each category, divergent

autoencoder architectures can model supervised learning by

obtaining reconstruction errors for each category. For a schematic

and relevant terms of the model proposed here see Figure 1.

To test the viability of the currently proposed model, which

we call BR-DIVA (for Boundedly-Rational-DIVA, see below), we

compare its ability to capture a classic benchmark of category

learning to the original DIVA model and consider unique

predictions by making DIVA variational. The aim of the current

paper is to guide future research by positing a few category learning

predictions that follow logically from computational principles.

Model features

The VAE model proposed here is a neural network model

with three layers composed of three, two, and six neuron-like

units, respectively. The number of units per layer were selected

based on the stimulus set used in the current study. Because the

stimuli are three-dimensional, the input layer is composed of three

units and the output layer is composed to 3 x n-categories units.

To be comparable to DIVA, which used two hidden layer units,

we fixed the number of units in the hidden layer, or bottleneck

to two. More details on the stimulus set are provided below.

Input and output layers are fully connected with the hidden layer

(i.e., the bottleneck). These connections denote the associations

between input stimuli, internal cognitive representations, and

reconstructions and are learned by iterative updating of weights

that scale each connection strength. Unit weights are learned via

standard backpropagation (Rumelhart et al., 1986) and activations

are passed through a sigmoid function. Weights are updated in

proportion to the learning rate. Unit weights are initialized with

random values between default values of±0.5, which is convention

for neural network research (Kolen and Pollack, 1990) and used in

the paper introducing DIVA (Kurtz, 2007).

Activations spread from input to hidden layer units. The hidden

layer is comprised of two neuron-like units, which is what gives it

its status as a bottleneck. That is, by projecting three-dimensional

inputs (see below) onto a two-dimensional space, the encoder is

forced to reduce the input’s dimensionality. Then the hidden layer

projects to the output layer, which has dimensionality equal to the

dimensionality of the input stimulus for each channel, which is why

the output layer has 6 units (3 units for each category; see below for

explanation of the stimuli).

To optimize model fit, a loss function gets minimized. The loss

function is the sum of two terms: (1) reconstruction error, and

(2) weighted Kullback-Leibler divergence. To obtain the measure

of reconstruction error, squared differences between each category

channel’s output node activations and the input are calculated

and scaled with a sensitivity parameter that controls the amount

of attention paid to each feature. Summing these differences

within each category channel yields a reconstruction error for each

category. These measures are then added to the Kullback-Leibler

divergence that itself gets scaled by the regularization parameter β .

For additional details on how parameter settings relate to category

learning, see (Kurtz, 2007, 2015). Here, we fix the sensitivity and

learning rate parameters to 1 for brevity [as was done in the original

DIVA simulations (Kurtz, 2007)]; and to elucidate the differences

between DIVA and BR-DIVA models. DIVA also makes use of an

attention breadth parameter that specifies how much attention is

allocated to specific dimensions vs. all dimensions; however, to

facilitate ease of comparison, this parameter was also fixed to 1 for

both models.

To demonstrate the plausibility of the current model’s ability

to capture human category learning, we test its ability to simulate

category learning on the seminal “Six Problems” introduced by

Shepard et al. (1961).

The Six Problems

Shepard et al. (1961) tested the difficulty of categorization

judgments depending on how the same 8 stimuli were grouped.

Specifically, participants were shown three-dimensional stimuli,

where each dimension denotes a binary feature (e.g., color, size,

and shape). These eight stimuli can be grouped into two groups

in 70 different ways, but only six of these are structurally distinct.

By “structurally distinct,” we mean that a grouping is not different

simply by swapping out features. For example, a Type 1 grouping

assigns all four stimuli with one color value (say, black) to

Category A and all four stimuli with the other color value (say,

white) to Category B. Grouping the stimuli using the same kind
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FIGURE 1

BR-DIVA model architecture. From the far left side, the model begins by taking in an input vector and projecting it onto a hidden layer (bottleneck).

Then decoders for each category samples from the hidden layer space to reconstruct the input. Relevant terms reveals the loss function that gets

optimized, which is a sum of reconstruction error and capacity-weighted bias. Capacity is simply a freely estimated parameter and bias is the

Kullback Leibler divergence between prior and posterior distributions at the hidden layer. Reconstruction error is the squared absolute di�erence

between input and reconstructed representations.

FIGURE 2

Six Problems. Every category structure implemented in the seminal paper by Shepard et al. (1961). Within each panel, each stimulus on the left

belongs to one category and all the stimuli on the right belong to another category. Below the top panels is a 3-dimensional representation of the

each category structure.

of unidimensional rule, simply for a different dimension (i.e.,

grouping all small stimuli into A and all large stimuli into B) is a

technically unique grouping but not structurally distinct.

The six types of groupings differ in the number of dimensions

one must attend to in order to achieve optimal performance

(Type 1: one dimension, Type 2: two dimensions, and Types 3–6:

three dimensions). Type 1 adheres to a unidimensional rule-based

structure, such that all stimuli with one value on a dimension (e.g.,

color in Figure 2) belong to Category A while all stimuli with the

other value on the same dimension belong to Category B. Type

2 is an exclusive-OR (XOR) problem, where two dimensions are

relevant. In Figure 2, Category A stimuli can be white and square

or orange and triangle. Types 3, 4, and 5 can all be characterized

as rule-plus-exception structures, where a single dimension defines
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category assignments for three of the category’s four stimuli and

thus the fourth stimulus for each category must be memorized.

Type 6 is the most difficult because it lacks any within-category

similarity structure, meaning one must memorize each of the

eight stimulus-response associations to perform optimally. Figure 2

shows an example for each of the six types.

The main findings (i.e., that performance follows difficulty

level; Type 1 > Type 2 > Types 3–5 > Type 6) from the Six

Problems introduced in Shepard et al. (1961) have been replicated

many times, with larger sample sizes, diverse stimulus sets, and

across species (Kurtz et al., 2013; Nosofsky et al., 1994a; Smith et al.,

2004).

Method

We simulated n = 100 participants that performed each of

the Six Problems. The model was constructed as a stateful list

processor (see Wills et al., 2017) and used the slpDIVA function

(DIVA model) from the R package catlearn (Wills et al., 2017)

as a starting point. The current model begins each simulation

with randomly initiated weights. A binary three-dimensional input,

representing one of the eight stimuli from the Six Problems (i.e.,

a trial), serves as the first layer and is mapped to 2 probability

distributions (i.e., the bottleneck) via matrix multiplication with

a set of input weights. These distributions are reparameterized via

the reparameterization trick (Kingma et al., 2015). Reparameterized

means of these distributions are the hidden unit activation levels

which are then projected to two three-dimensional output layers

via a set of output weights for each category. The output weights

represent input reconstructions. A category judgment, which gets a

1 or 0 for accuracy, is whichever category has less reconstruction

error. One simulation is 20 blocks of category learning, where a

single block is one iteration through all eight stimuli, presented

to the model in random order. We tested both the BR-DIVA and

original DIVA model in order to test for any additional benefit of

making DIVA variational.

We ran the above procedure for each of 50 different β values,

from 0.01 to 100 in evenly spaced increments on a logarithmic scale.

By fixing the parameters common to both the original DIVAmodel

and the currently proposed BR-DIVA model, we can succinctly

evaluate the contribution that bounded rationality makes to the

divergent autoencoding architecture of category learning.

We conducted statistical analysis on the simulated

performances from both BR-DIVA and DIVA. All analyses

were done on accuracy (proportion correct), though plots show

error rate (proportion incorrect) to facilitate easy comparison with

previous studies studying the Six Problems. To test the extent to

which BR-DIVA’s category learning reflects the order of difficulty

observed in the Six Problems, we ran a simple linear regression,

predicting aggregated performance (overall mean accuracy) from

problem type and β parameter value. We ran the same tests

for performance from DIVA model (without the β parameter

predictor). We ran post-hoc paired samples t-tests when necessary.

To compare performance to empirical data, we obtained public

datasets deposited in the R package sixproblems. These datasets

are from Nosofsky et al. (1994a) and Lewandowsky (2011), and we

will refer to these datasets as nosofsky94 and lewandowsky11 for

simplicity. We briefly describe these datasets below.

After comparing overall performance, we evaluated differences

in performance over time (learning curves) between BR-DIVA and

DIVA. We conducted simple linear regression models predicting

accuracies from block and type for both models.

Nosofsky94 is comprised of 120 participants. Each participant

performed two problem types and each problem type was

administered an equal number of times. Thus, there were 40

participants assigned to each problem type. The order of problem

type assignment to each participant was counterbalanced. The first

two blocks comprised one showing of each of the eight stimuli and

all subsequent blocks comprised two showings of each of the eight

stimuli. Participants continued the task until reaching a criterion of

four consecutive sub-blocks of eight stimuli with perfect accuracy

or for a maximum of 25 blocks.

Lewandowsky11 is comprised of 113 participants, who each did

all six problem types in counterbalanced order. Each problem type

was studied for a maximum of 12 blocks, where each block featured

2 showings of each of the eight stimuli. Study was terminated if

accuracy was perfect for two consecutive blocks.

To compare learning curves predicted by BR-DIVA with

observed data, we ran a mixed effects linear regression model using

the lmer function from R’s lmerTest package. This model predicted

accuracy from problem type (3–5), block, and their interaction. We

also included subject IDs and which dataset the data came from

Nosofsky94 or Lewandowsky11 as random effects. For effects of

problem type, Type 5 was entered into the model as the reference

group. Thus, positive coefficients for Types 3 and 4 indicate higher

accuracy than Type 5, and vice versa.

Results

Order of di�culty

The relative ease of acquisition of category knowledge across

the Six Problems introduced in Shepard et al. (1961) was tested

in the boundedly rational model proposed here. We first ran a

simple linear regression, predicting average proportion of correct

responses (across simulated subjects and blocks) from type (1–6)

and β . Please note that all βs with associated p-values below are

referring to regression coefficients and not the model parameter.

This reveals significant main effects of all types (β1−2 = −0.09,

p < 0.001; β1−3 = −0.09, p < 0.001; β1−4 = −0.08, p < 0.001;

β1−5 = −0.1, p < 0.001; β1−6 = −0.4, p < 0.001). Moreover,

visual inspection of Figure 3A tells us that performance follows

the order of difficulty typically observed. Supplementary Figure 1

additionally shows that BR-DIVA, like the original DIVA, can

capture the revised ordering of the Six Problems, as elucidated

in Kurtz et al. (2013). Further, the BR-DIVA model performance

remains relatively stable across all tested β values, at least at the

aggregated level (Figure 3A). Paired-samples t-tests showed that

BR-DIVA predicts worse accuracy than DIVA on Type 2 [t(99) =

−3.17, p = 0.002] and, more prominently, Type 5 [t(99) = −5.76,

p < 0.001], and predicted significantly better accuracy than DIVA

on Type 4 [t(99) = 4.20, p < 0.001]. All other ps > 0.402. Overall

sums of squared differences between error probabilities as observed
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FIGURE 3

Overall model performance on the Six Problems. (A) X-axis denotes problem type and the y-axis denotes the overall mean performance. Colored

lines are BR-DIVA predictions assuming β values ranging from 0.01 (light blue) to 100 (orange). The dashed line are predictions made by DIVA. Xs are

empirically observed performances from Lewandowsky (2011) and +s are empirically observed performances from Nosofsky et al. (1994a). (B)

Overall mean accuracy predicted by both BR-DIVA (blue) and DIVA (pink) and observed performance from participants from both Lewandowsky

(2011) and Nosofsky et al. (1994a). Dots represent individual participants or simulated participants. Error bars are ±SEM. * <0.05. NS > 0.05.

in Nosofsky94/Lewandowsky11 and both BR-DIVA and DIVA are

reported in Supplementary Table 1.

To determine whether these unique predictions made by

BR-DIVA better reflect empirical performance than DIVA, we

compared performance to that reported in Nosofsky et al.

(1994a) and Lewandowsky (2011). We ran six two-samples t-

tests, comparing simulated performances by BR-DIVA and DIVA

on Types 2, 4, and 5 with subject averages from Nosofsky et al.

and Lewandowsky on the same problems. We collapsed across

both datasets, but running the analyses on each dataset separately

support the same conclusions. Both models predict significantly

better accuracy on Type 4 than is actually observed [BR-DIVA:

t(251) = 5.63, p < 0.001; DIVA: t(251) = 4.18, p < 0.001].

Intriguingly, however, while DIVA predicts significantly more

categorization accuracy than is actually observed for both Types

2 [t(251) = 2.49, p = 0.014) and 5 [t(251) = 2.80, p = 0.005], BR-

DIVA’s predictions statisticallymatch observed performances [Type

2: t(251) = 1.50, p = 0.135; Type 5: t(251) = −1.38, p = 0.170].

Thus, at the aggregate level, BR-DIVA makes many of the same

predictions as DIVA with respect to the Six Problems, as is to be

expected given that BR-DIVA is a variational version of DIVA.

However, BR-DIVA makes aggregate predictions for Types 2 and

5 that are statistically similar to what is empirically observed in

people whereas DIVA does not (assuming all shared parameters are

the same across models; Figure 3B).

Learning curves

To obtain a finer-grained perspective of category learning, we

next looked at the learning curves for BR-DIVA. We found that

BR-DIVA learns at a similar rate to DIVA for Types 1, 2, 3, and

4, and that learning is relatively stable across different values for β .

For Type 5, BR-DIVA and DIVA clearly make different predictions

(by the final block, BR-DIVA’s best performance, across βs, was 96%

accuracy, which DIVA surpasses on the 13th block; Figure 4A).

Moreover, DIVA’s learning curve for Type 6 appears to fluctuate

more erratically than BR-DIVA’s performance. To follow-up on

these observations, we ran two linear regression models, predicting

model accuracy on either Type 5 or Type 6 from block (1–20),

model (BR-DIVA, DIVA), and their interaction. Please note that

all βs with associated p-values below are referring to regression

coefficients and not the model parameter.

The regression model predicting Type 5 performance showed

only a main effect of block (β = 0.02, p < 0.001; all other ps

> 0.177), meaning both models successfully learned the category

Frontiers in Psychology 06 frontiersin.org

https://doi.org/10.3389/fpsyg.2024.1477514
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Houser 10.3389/fpsyg.2024.1477514

FIGURE 4

BR-DIVA and observed data suggest Type 5 is harder to learn than Types 3 and 4. (A) Learning curves predicted by BR-DIVA (colored lines) and DIVA

(dashed line). Colored lines are BR-DIVA predictions assuming β values ranging from 0.01 (light blue) to 100 (orange). (B) Coe�cients for predictors

denoted along the x-axis from linear regression model predicting accuracy across blocks for the BR-DIVA model. Both circled coe�cients are

significantly di�erent from 0 (to reiterate, the e�ects of problem type, Type 5 was entered into the model as the reference group). (C) Coe�cients for

predictors denoted along the x-axis from a mixed e�ects model predicting accuracy across blocks for data obtained from Lewandowsky (2011) and

Nosofsky et al. (1994a). Regression coe�cients for Type 3 and Type 4 are significantly di�erent from zero. Error bars are ±SEM. (D) Conceptual

schematic explaining why BR-DIVA predicts worse performance on Type 5 than Types 3 and 4 (which also explains its better Type 4 than Type 3

prediction). The black distribution on the left represents a prior distribution for a category representation represented in the bottleneck layer. This

distribution is assumed to be learned by rule acquisition, as Types 3–5 all adhere to a rule-plus-exception category structure. Given that this

distribution is a category representation, then learning the exception stimulus for each of these types will require this distribution to expand to

incorporate the exception. As such, learning the exception stimulus should be a function of its distance from the prior distribution (in the plot,

distance along the x-axis). Type 4′s exception is closest to its rule-followers, Type 3′s exception is second-closest to its rule-followers, and Type 5′s

exception is furthest from its rule-followers.

structure over time. Similarly, the regressionmodel predicting Type

6 performance showed a main effect of block (β = 0.02, p < 0.001),

but also a marginal effect of model [β(BRDIVA − DIVA) = 0.02, p

= 0.064]. Supplementary Figure 2 shows learning curve predictions

for BR-DIVA at all tested βs and DIVA.

Given the consistent differences between Type 5 performance

between BR-DIVA andDIVA (Figures 3B, 4A), we ran an additional

test to try and formulate a specific prediction that could guide

future empirical research. Given that many studies on the Six

Problems focus on Types 1, 2, 4, and 6 only (Kurtz et al., 2013;

Love, 2002; Love and Markman, 2003; Minda et al., 2008; Rabi

and Minda, 2016; Rehder and Hoffman, 2005a), likely because

Types 3, 4, and 5 tend to be lumped together due to similar

performance on these problems (Nosofsky et al., 1994a; Shepard

et al., 1961), it is perhaps notable that BR-DIVA predicted worse

performance on Type 5 than DIVA and that BR-DIVA captured

the empirical data for this category structure better. Therefore,

we ran an additional linear regression model, predicting BR-DIVA

accuracies from Types 3, 4, and 5 from block (1–20), Type (3–5),

βs, and all interactions. Indeed, this model showed that Type 5

accuracy was significantly lower than both Types 3 (β3−5 = 0.14,

p< 0.001) and 4 (β4−5 = 0.14, p< 0.001). This model also revealed

significant Type 3 x block (β3,block−5,block =−0.006, p < 0.001) and

Type 4 x block (β3,block−5,block = −0.003, p < 0.001) interactions,

such that learning curves were steeper for Type 5. See Figure 4B for

all model predictor effects.

To test the extent to which these unique predictions made by

BR-DIVA are reflected in the real world, we ran a linear mixed

effects model, predicting correct responses by participants from

two previously collected datasets (Lewandowsky, 2011; Nosofsky

et al., 1994a) from type (3–5), block, and their interaction. We

also included subject IDs and which dataset the data came from

as random effects. As was expected, there was a main effect of block

(βblock = 0.02, p < 0.001); however, consistent with the predictions
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made by BR-DIVA, there were also main effects of Type 3 (β3−5 =

0.04, p < 0.001) and Type 4 (β4−5 = 0.02, p = 0.034). Interactions

between block and Types 3 and 4 were not statistically significant

(both |βs| < 0.001, both ps > 0.604). See Figure 4C for all model

predictor effects. Figure 4D shows a schematic meant to visualize a

plausible explanation for these results, which is further expounded

upon in the discussion. Additionally, Supplementary Figure 3

shows the low-dimensional representations of each category for

BR-DIVA, as well as inter-item distances in the low-dimensional

space, which reveals that BR-DIVA represents Type 5 exception

stimuli as further from rule-following stimuli than for Types 3

and 4 exception stimuli. Supplementary Figure 4 provides further

evidence for this notion that Type 5 difficulty is a function of

its inter-item distances by visualizing error rates across blocks

split into rule-following and exception stimuli. Whereas, for

Types 3 and 4 exception stimuli are learned at a pace similar to

their rule-following stimuli, Type 5 shows that exception stimuli

error rates remain higher than rule-following error rates until

roughly the 15th block. Notably, however, this interpretation is

incomplete as Supplementary Figure 3 shows that low dimensional

representations of Type 4 exception stimuli are further from rule-

following stimuli than Type 3′s exception stimuli.

Discussion

In this brief report, we simulated performance on the canonical

Six Problems known to elucidate general category learning behavior

(Shepard et al., 1961) using an autoencoder model that applies

principles of efficient coding (Barlow, 2013) to encode information

in a boundedly rational manner. We showed that this model—

BR-DIVA—captures the classical order of difficulty observed on

the Six Problems (Nosofsky et al., 1994a; Shepard et al., 1961).

Beyond these findings, the boundedly rational model proposed here

predicted lower accuracy on Type 5 than what is predicted by the

autoencoding model it is based on. Importantly, we found that this

unique prediction is more aligned with empirical data than the base

model. We discuss and speculate on this finding next.

Type 5 is more di�cult than Types 3 and 4

The classical Six Problems of category learning introduced in

Shepard et al. (1961) produced substantial excitement about Types

1, 2, 4, and sometimes 6. Many studies that use the Six Problems

only focus on this subset (Kurtz et al., 2013; Love, 2002; Minda

et al., 2008; Rabi and Minda, 2016; Rehder and Hoffman, 2005b).

Since the findings from Shepard and colleagues, there has been a

tendency to lump performance on Types 3–5 together, as if they

were the same category structures. Indeed, they do all adhere to

a rule-plus-exception design (Nosofsky et al., 1994b); however, it

is perhaps notable that the boundedly rational model put forth

in the current paper consistently predicted worse performance on

Type 5 than Types 3 and 4. This prediction did not reach statistical

significance in the model on which the boundedly rational model

is based on (i.e., DIVA). When comparing boundedly-rational-

DIVA and DIVA to empirically observed performance differences

between Type 5 and Types 3 and 4, we found that the data is more

consistent with the boundedly-rational-DIVA’s predictions.

One possible explanation for this discrepancy is in terms of

information gain, which expresses the amount of information

gained about a signal by observing another variable (Mathy, 2010).

For example, by learning the weather one is likely better able

to gauge what clothes a random person will be wearing. Thus,

knowing the weather reduces one’s uncertainty about what clothes

people will be wearing. In terms of the Six Problems, information

gain is relevant because it denotes the amount of information

a given stimulus supplies about the categories. This notion is

particularly important for rule-plus-exception category structures

because it is assumed that people will learn the unidimensional rule

first (Figure 4D, black distribution), in which case learning of the

exception stimulus (Figure 4D, colored distributions) is a function

of how distinct it is from the rule-following stimuli (Figure 4D,

distance between black and colored distributions). In other words,

learning a rule first to categorize stimuli will induce a bias toward

the rule-following stimuli. As such, the more distinct (i.e., the more

informative or the further from the bias) the exception stimulus is,

the harder it will be to learn it. Consistent with this interpretation,

the exception stimulus in Type 5 has a larger average distance

from Type 5′s rule-following stimuli than Types 3 or 4. This

within-category distance measure is proportional to a commonly

used metric known as structure ratios (Conaway and Kurtz, 2017).

This interpretation is also in line with Nosofsky et al. (1994b)’s

RULEXmodel, which suggests that people test simple rules first and

gradually hypothesize more complex rules if the simpler ones fail.

In Supplementary Figure 3, the hidden unit activations for each of

the eight stimuli in Type 5 from a representative simulation are

plotted and visualized based on both category and whether the

stimulus adhered to a unidimensional rule or not. Interestingly,

this figure shows that exception stimuli are represented as further

from rule-following stimuli within the same category (e.g., compare

inter-item distances between red triangles and red circle, and

between blue triangles and blue circle). Supplementary Figure 3

also shows that these distances are significantly greater than rule-

to-exception stimulus distances for Types 3 and 4. Thus, the low-

dimensional representations of stimuli are consistent with the

interpretation visualized in Figure 4D. Together, this highlights the

importance of priors during the process of learning categories and

that, at least some, category structures’ difficulty is a function of

balancing representational precision with complexity.

Limitations

The current work is not meant to encompass all categorization

phenomena. Indeed, the current work only tested one category

learning paradigm (i.e., classification), comprised of relatively

simple stimuli. The simplicity of the stimuli actually limits the

amount of dimensionality reduction that could be performed by

BR-DIVA in the current work, given that stimuli were three-

dimensional and the bottleneck layer was two-dimensional. This

could also be why there was no difference across simulations

with different βs. Future work will need to test for BR-DIVA’s

applicability to higher dimensional, naturalistic, and continuous
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stimuli, in addition to other paradigms, such as inference training

and function learning. The current work was meant to take

the first steps toward more broader applications, and thus,

we generated BR-DIVA predictions and compared them with

empirical data. Future studies will need to pit BR-DIVA against

leading computational models of categorization such as SUSTAIN

(Love et al., 2004), and prototype and exemplar models (Minda

and Smith, 2002; Nosofsky, 1986, 1987, 1992; Smith and Minda,

2000, 2002). Moreover, while we did observe differences between

Type 5 and Types 3 and 4 in empirical data, the analysis revealing

this difference was targeted by using a subset of the overall dataset

(only Types 3–5). As such, and in combination with many previous

studies showing minimal performance discrepancies between these

category structures, it is likely that this effect is quite subtle and

future studies will need to test this prediction explicitly before any

conclusive interpretations can be made.
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