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We evaluated a digital cognitive assessment platform, Philips IntelliSpace

Cognition, in a case-control study of patients diagnosed with mild cognitive

impairment (MCI) and cognitively normal (CN) older adults. Performance on

individual neuropsychological tests, cognitive z-scores, and Alzheimer’s disease

(AD)-specific composite scores was compared between the CN and MCI

groups. These groups were matched for age, sex, and education. Performance

on all but two neuropsychological tests was worse in the MCI group. After

ranking the cognitive scores by e�ect size, we found that the memory score

was the most impaired, followed by executive functioning. The Early AD/MCI

Alzheimer’s Cognitive Composite (EMACC) and Preclinical Alzheimer’s Cognitive

Composite (PACC) scores were constructed from the digital tests on Philips

IntelliSpace Cognition. Both AD-specific composite scores showed greater

sensitivity and specificity than the Mini-Mental State Examination or individual

cognitive z-scores. Together, these results demonstrate the diagnostic value of

Philips IntelliSpace Cognition in patients with MCI.

KEYWORDS

digital health, Alzheimer’s disease, neuropsychology, factor scores, cognitive

composites

1 Introduction

Digital cognitive assessments are increasingly used in patients with mild cognitive

impairment (MCI) and Alzheimer’s disease (AD) (Gold et al., 2018). The transition from

traditional paper-and-pencil tests toward digital assessments is driven by a shortage of

qualified neuropsychological staff and an increased demand from an aging population.

Digital assessments also provide new opportunities to increase efficiency through

automatic analysis, reduce human scoring errors, and quantify behavior in novel ways

(Öhman et al., 2021). Akin to established paper-and-pencil tests, here we validate digitized

cognitive tests in a clinical setting.

We evaluated a digital assessment platform, Philips IntelliSpace Cognition (ISC), in

a case-control study of MCI patients. First, we assessed the performance of individual

neuropsychological metrics from our digital cognitive battery and compared results with
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a group of cognitively normal older adults (CN) used in previous

studies (Vermeent et al., 2022; Klaming et al., 2024). These

studies demonstrated that the majority of these digitally assessed

metrics are equivalent to their paper-and-pencil counterparts

(Vermeent et al., 2022) and have moderate to excellent test-

retest reliability (Klaming et al., 2024). Second, we evaluated a

set of cognitive z-scores derived from a disease-agnostic factor

model. This model was established in a larger healthy cohort (see

Supplementary Table S1). So far, the digitized cognitive battery

and the cognitive z-scores have not yet been validated in MCI

patients. We expected to replicate findings of studies utilizing

non-digital tools that found greater impairments in memory and

executive functioning, while other cognitive domains, like visual

spatial processing, are likely less impaired (Petersen et al., 1999;

Cohen et al., 2022). Third, we identified two composite scores

specific to Alzheimer’s disease that can be constructed from a

combination of outcomemeasures provided by the digital cognitive

battery (Schneider and Goldberg, 2020; Jaeger et al., 2021). Disease-

specific composites are used in clinical trials and often estimated

by paper-and-pencil based tests. We have constructed the Early

AD/MCI Alzheimer’s Cognitive Composite (EMACC) (Jaeger et al.,

2014) and the Preclinical Alzheimer’s Cognitive Composite (PACC)

(Donohue et al., 2014, 2017), from the digitally administered tests.

Fourth, we compared the sensitivity and specificity of individual

neuropsychological tests, the cognitive z-scores, and AD-specific

composites. At the end, we provide a short comparison of our

digital cognitive battery with other popular digital tools, in terms

of diagnostic performance, required testing time, and available

neuropsychological tests.

2 Materials and methods

2.1 Participants

This study was approved by the WCG Institutional Review

Board Copernicus Group and the Internal Committee for

Biomedical Experiments of Philips. The study is registered at

clinicaltrials.gov (NCT04243642). Patients with a clinical diagnosis

of mild cognitive impairment (MCI) were recruited from an

outpatient neurology center (the Dent Neurologic Institute,

Amherst, NY, USA). Eighty-one patients were included in the

final analysis. All study participants signed an informed consent.

The study inclusion criteria were based on Alzheimer’s Disease

Neuroimaging Initiative criteria (Petersen et al., 2010). Potentially

eligible patients were identified through chart review from a pool of

patients aged 50–90 years, with clinical diagnosis MCI or amnestic

MCI, and confirmation of the diagnosis within the last 12 months.

Patients who had anMiniMental Status Exam (MMSE) score of not

lower than 18 were included. The outcome of digital cognitive tests

were not used to establish, exclude or reassign patients to the CN or

MCI group, as the goal of our study was to evaluate the validity

of the digital cognitive tests, and therefore, these should remain

independent.

Patients were excluded if they had co-morbid neurological or

psychiatric disorders known to affect cognition, vision impairment,

hearing loss not corrected to normal, were currently admitted to

a hospital, assisted living facility, nursing home, or psychiatric

facility, had undergone a neuropsychological assessment in the

past month, or had any of the following in their medical history:

unconsciousness for more than 20 min related to traumatic brain

injury or a head injury that resulted in an overnight hospital

stay, any medical event requiring resuscitation in which they

were unresponsive for more than 15 min, stroke, chemotherapy

treatment within the past two months, current diagnosis or

history of substance use or dependence, long-term alcohol abuse

or daily alcohol consumption of more than four units, medical

marijuana use or recreational marijuana use at least once per

week, medications that may affect cognitive test performance (e.g.,

anticonvulsants, antipsychotics, benzodiazepines, opioids, tricyclic

antidepressants, oxybutynin), or moderate to severe sleep apnea,

defined as an apnea-hypopnea index equal to or >15. Patient

eligibility was confirmed through existing medical records and the

most recent clinical notes within 12 months of recruitment, and

again during the study visit. Patients were also excluded if they

had not had a Magnetic Resonance Imaging (MRI) exam of the

brain in the preceding five years. MRI studies were reviewed by a

neuroradiologist (NP). Patients were excluded if they had an MRI

within the last 5 years that showed major structural abnormalities

(including but not limited to brain tumor, encephalomalacia,

lacunar infarct, hemorrhage, frontotemporal lobar degeneration,

acute stroke, or cerebral amyloid angiopathy). Patients with a

Fazekas score of 3 were excluded from the study.

The original chart review included 5,055 patient records, of

which 4,589 were removed based on the above criteria. The

remaining 466 patients were contacted for phone screening. Of the

466, 210 declined participation, 67 were not available via phone,

48 failed screening, 25 were scheduled for study visit but canceled,

and four withdrew consent. Results of 29 MCI patients are not

included due to an revision of the study protocol and software,

as detailed later. Supplementary Table S2 shows a breakdown of

screening and reasons for exclusion from patient population. In

total, 81 MCI patients conducted the study according to final

protocol. In the MCI patient group for 30.1% race/ethnicity was

unknown or declined to answer, 64.2% self-identified as white,

3.7% as black/African-American, 1.2% as Asian and 2.4% as Latino-

Hispanic. When we assume similar numbers for the patients

with missing responses, 92.9% would self-identify as white, 5.3%

as black/African-American, 1.2% as Asian and 2.4% as Latino-

Hispanic. The other demographics are in Table 1.

The control group consisted of 81 cognitively normal adults
selected from a larger U.S. reference population. See statistical

methods for details on selection procedure. The total U.S. reference
cohort consists of 687 healthy participants, representative of the
U.S. census with regard to age, sex, education, and race/ethnicity.

These data were collected in two separate studies between 2019 and
2021 (NCT0380138/NCT04729257) in four states across the U.S.,
including New York, Pennsylvania, Florida, and California. We

ensured that the control group only included cognitively normal
(CN) older adults, applying the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) criteria for healthy controls (Petersen et al.,

2010). After selection, the control group was matched to the MCI

cohort. These matched CN older adults self-identified for 87.7%

as white, 7.4% as black/African-American, 2% as Asian and 4% as

Latino-Hispanic (see Supplementary Table S1). After selection, the

control group was no longer representative for the U.S. population,
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but matched the demographics of MCI patients at Dent Neurologic

Institute in terms of age, sex and education.

2.2 Cognitive battery

The cognitive battery was administered in-person on an iPad

Pro tablet (screen size of 12.9 inches and a 2,732 × 2,048

resolution), using the Philips IntelliSpace Cognition application,

which is approved by the US Food and Drug Administration as

a Class II medical device (GUDID 00884838108554). Instructions

and guidance were provided to the participants in both written and

verbal form. The participants used verbal responses, touch of the

keypad and drawing with a digital pencil or finger to perform the

tests.

The research personnel were individually trained on the

use of Philips IntelliSpace Cognition. Research personnel was

always present during administration of the cognitive tests to

ensure that the patients understood and followed instructions

and to administer questionnaires and paper-and-pencil screeners.

Research personal was instructed to provide minimal assistance

with the cognitive tests. Most of the patients performed the tests

independently, requiring very little supervision from the research

personnel. The most frequently used guidance was prompting the

patient to replay the test instructions. Each participant completed

the assessment.

The predefined cognitive battery included Rey’s Auditory

Verbal Learning Test (RAVLT), Trail-Making Test (TMT) A and

B, Star Cancellation Test, Rey-Osterrieth Complex Figure Test

(ROCFT), Letter Fluency also known as the Controlled Word

Association Test (COWAT), Digit Span Forward and Backward,

and four additional cognitive tests: Clock Test Drawing and Copy,

Category Fluency and the Symbol NumberMatching Test (SNMT),

also known as, or equivalent to, the Symbol Digit Modalities

Test or Digit Symbol Substitution Test (Strauss et al., 2006).

Digital versions of the Mini-Mental State Exam version 2, (MMSE)

(Folstein et al., 1975), the Patient Health Questionnaire (PHQ-9)

and General Anxiety Disorder-7 (GAD-7) were also administered.

Only the MMSE, but not the two questionnaires are included in

the analyses. The verbal responses were automatically transcribed

by voice recognition software and the drawing tests were analyzed

by proprietary computer vision algorithms. These automated

annotation algorithms have been validated against human expert

raters (Vermeent et al., 2022, 2021). For participants who were

unable to reach the last target on TMT (either A or B), and thus

did not complete the test, the normed score was imputed based

on the lowest norm percentile. This is in line with the TMT

manual and preventsmisrepresentation of a shorter duration due to

participants not finishing the TMT. In theMCI group, this occurred

three times for TMT-A and 12 times for TMT-B. In the CN group,

this occurred twice for TMT-B.

2.3 Cognitive z-scores

The predefined cognitive battery was used to estimate

the cognitive z-score (see Table 1). The z-scores could not

be defined on a certain predefined and additional cognitive

tests (Clock Test, Category Fluency and SNMT) because these

additional tests were not available in the US cohort study, and

could therefore not be corrected for age, sex and education.

First, we used a confirmatory factor model to estimate a

disease-agnostic profile in six cognitive domains: memory,

executive functioning, processing speed, verbal processing, visual

spatial processing and working memory. The factor loading’s

for these domains were derived from a structural equation

model that was similar (but not identical) to models we have

used in previous work on the healthy individuals (Vermeent

et al., 2022, 2020). The Supplemental material include the

predefined structure of the confirmatory factor model. Processing

speed and Verbal Processing are defined by a single cognitive

test. Supplementary Figure S1 shows the demographics of the

U.S. cohort that was used to establish these factor weights.

Supplementary Table S1 shows the factor weights for each cognitive

z-score. Note that consistent with the predefined structure,

processing speed and verbal processing only load upon a

single neuropsychological test. Next, before the factor weights

were applied, each neuropsychological test was transformed to

a z-score and corrected for age, sex and education. Finally,

the established factor weights were applied to derive the

cognitive z-scores. Because the factor weights sum to one,

the results are also standard scores, but adjusted for age, sex,

and education.

2.4 Disease-specific composites

We evaluated two disease-specific composite scores: the Early

AD/MCI Alzheimer’s Cognitive Composite (EMACC) and the

Preclinical Alzheimer’s Cognitive Composite (PACC). EMACCwas

specifically designed as a cognitive endpoint for clinical trials

of early AD (Jaeger et al., 2014). It includes neuropsychological

tests from the domains of memory, executive functioning,

and processing speed. The exact neuropsychological tests, or

versions of them, used to construct the EMACC vary slightly

between studies (Jaeger et al., 2014, 2021). In this study,

EMACC was defined similar to the Mayo Clinic Study of

Aging, using the RAVLT learning total score, category fluency-

animals and category fluency fruit and Furniture, TMT-A, TMT-B,

and SNMT.

The PACC is designed for the detection of subtle cognitive

changes in the early stages of the disease continuum (Donohue

et al., 2014, 2017), and includes neuropsychological tests from

the domains of memory and executive functioning, as well as a

measure of general cognition. In this study, the PACC was defined

similar to the extended definition using a measure of semantic

processing (Papp et al., 2017). As in the EMACC, the exact tests

used to construct the composite score vary slightly between various

studies and clinical trials (Donohue et al., 2014; Petersen et al., 2010;

Fowler et al., 2021; Dagley et al., 2017; Papp et al., 2017; Jessen

et al., 2022). Instead of the free and cued selective reminding test

(FCSRT), we used the RAVLT delayed recall, akin to the PACC

definitions that use the California Verbal Learning Test delayed

recall (Donohue et al., 2014; Fowler et al., 2021). Table 1 lists the
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TABLE 1 Descriptive statistics.

CN MCI p-value E�ect Used in Used in Used in

(N = 81) (N = 81) bonferroni size CZS EMACC PACC

Age (years) 73.3± 6.75 74.1± 7.65 1.000 −0.12

Sex (n) Female 38 (47%) 40 (49%) 1.000 0.05

Male 43 (53%) 41 (51%)

Education (years) 17.6± 2.92 17.8± 3.08 1.000 −0.11

RAVLT (total score) Learning trials 40.9± 7.52 30.0± 9.91 <0.001 1.25 × × –

Immediate
recall

7.40± 2.98 3.85± 3.21 <0.001 1.15 × – -

Delayed recall 7.70± 3.08 4.47± 3.41 <0.001 1.00 × – ×

Trail making
(duration)

Test A 44.0± 12.4 52.8± 28.4 0.221 −0.40 × × –

Test B 113± 46.3 176± 131 0.002 −0.65 × × –

Clock test (total
score)

Drawing 18.6± 2.45 18.0± 3.83 1.000 0.20 – – –

Copy 19.5± 1.84 18.6± 3.93 1.000 0.28 – – –

Star Cancellation
(duration*)

0.92± 0.25 1.16± 0.50 0.004 −0.60 × – –

ROCFT (total
score)

Copy 30.0± 5.47 28.5± 7.28 1.000 0.23 × – –

Immediate
recall

9.58± 5.78 6.09± 5.51 0.002 0.62 × – –

Digit span (total
score)

Forward 7.84± 2.11 6.35± 2.21 <0.001 0.70 × - –

Backward 6.51± 2.66 5.35± 2.33 0.065 0.47 × - –

Letter fluency (total
score)

39.7± 12.2 36.0± 11.3 0.810 0.32 × – –

Category Fluency
(total score)

Trial animals 20.7± 5.58 15.4± 5.13 <0.001 1.00 – × ×

Trial
vegetables

12.4± 2.99 10.1± 4.00 0.004 0.63 – – –

Trial fruit and
furniture

12.6± 2.99 9.06± 3.19 <0.001 1.19 – × ×

SNMT (total score) 37.4± 3.99 34.2± 8.56 0.396 0.46 – × ×

MMSE (total score) 27.9± 1.42 26.4± 2.68 0.001 0.68 – – ×

Memory z-score 0.10± 0.85 −1.07± 1.04 <0.001 1.24

Executive
functioning

z-score 0.00± 0.80 −0.87± 0.95 <0.001 1.00

Working memory z-score 0.04± 0.80 −0.63± 0.72 <0.001 0.88

Visual spatial
processing

z-score 0.20± 0.68 −0.50± 0.95 <0.001 0.84

Processing speed z-score −0.07± 0.91 −0.71± 1.18 0.001 0.61

Verbal processing z-score −0.09± 1.07 −0.46± 1.05 0.168 0.35

CN, cognitively normal; MCI, mild cognitive impairment; Effect Size is quantified by Cohen’s d, the p-values reflect a two-sample t-test, or chi-square test, corrected for multiple comparisons;

RAVLT, Rey’s Auditory Verbal Learning Test; duration*, duration per correct cancellation in seconds; ROCFT, Rey-Osterrieth Complex Figure Test; SNMT, Symbol Number Matching

Test; MMSE, Mini Mental State Examination version 2; The SNMT has a smaller number of observations for CN (n = 22). In the three columns on the right, the X marks indicate what

neuropsychological tests/metrics are used for the Cognitive Z-scores (CZS), Early/Mild Alzheimer’s Cognitive Composite (EMACC) and Pre-clinical Alzheimer’s Disease Cognitive Composite

(PACC).

neuropsychological tests/scores used for the EMACC and PACC.

Both EMACC and PACC use z-scoring to normalize the test scores

in order to combine them into a single composite score. We

estimate the z-scores using the same normative cohort used for the

confirmatory factor analysis. Note that the z-transform does not

correct the disease-specific composites for age, sex, or education.
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2.5 Statistics

We planned comparisons betweenMCI patients and a matched

healthy control group using independent samples t-tests, chi-

squares tests and logistic regression models. Additionally, we

aimed to assess the accuracy, sensitivity, and specificity of the

highest-ranking cognitive z-scores and disease-specific composite

scores. Statistical analyses were performed using R v4.1.1 and

the base R stats package (R Core Team, 2021). Figures and

tables were generated with ggplot2 v3.3.3 (Wickham, 2016)

and the table1 package v1.4.2 (Rich, 2023). Receiver operating

characteristic (ROC) curves were calculated using the pROC

package v1.18.0 (Robin et al., 2011) and statistically compared

using bootstrap tests for two correlated ROC curves (n = 2,000).

Evaluation metrics for sensitivity, specificity, and area under

the curve (AUC) were calculated using the cutpointr package

v1.1.1 (Thiele and Hirschfeld, 2021), with the optimal point

on the ROC curve determined by the product of sensitivity

and specificity.

The control group of cognitively normal (CN) older adults

was selected with a non-parametric matching procedure (Ho

et al., 2007) from a normative cohort (see Supplemental Figure S1;

Vermeent et al., 2020, 2022). First, we removed all CNs with an

MMSE < 25 and RAVLT immediate recall score one standard

deviation below the norm, similar to ADNI criteria for healthy

controls (Petersen et al., 2010). Next, we employed nearest-

neighbor matching based on a propensity score, as implemented

in the MatchIt package v 4.3.2 (Ho et al., 2011). The propensity

score was estimated using a logistic regression model with age, sex,

and education level. Table 1 shows the descriptive statistics that

compare the CNs matched with the MCI patients. The p−values

are based on two-sample t-tests, or in the case of sex, a chi-square

test. The matching procedure ensures that comparisons of various

tests, cognitive z-scores, and disease-specific composites between

CN and MCI are not simply driven by demographic factors.

3 Results

3.1 Descriptive results

The group of MCI patients performed significantly worse on

all tests (see Table 1), with the exception of the ROCFT Copy and

the Clock Drawing Test, where the performance differences were

not significant. Based on the effect size, quantified by Cohen’s d, the

RAVLT Learning Trials showed the largest difference between CN

andMCI, and similar effects were observed with RAVLT Immediate

Recall, Delayed Recall, and Category Fluency. The effect size was

more modest for the other tests. Also, for most neuropsychological

tests, and the cognitive score, the standard deviation was larger in

the MCI group (see Table 1).

The cognitive z-scores were ranked by their relative effect

size in Table 1. The memory score showed the largest effect size

(Cohen’s d = 1.24), followed by executive functioning (Cohen’s d

= 1.00), working memory (Cohen’s d = 0.88), and visual spatial

processing (Cohen’s d = 0.84)—all greater than MMSE. Processing

speed (Cohen’s d = 0.61) and Verbal processing showed the smallest

effect sizes (Cohen’s d = 0.35). In Figure 1 we show the individuals

FIGURE 1

Cognitive z-scores in CN and MCI. Boxplots for each of the cognitive z-scores. Cognitively Normal (CN) in green. Mild Cognitive Impairment (MCI) in

orange. Dots show individual values.
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TABLE 2 Sensitivity, specificity, and AUC.

Predictor Sensitivity Specificity AUC CI 95%

PACC 0.84 0.79 0.87 0.81–0.93

EMACC 0.79 0.81 0.87 0.81–0.92

Memory *
Executive
functioning

0.86 0.70 0.84 0.77–0.91

Memory 0.88 0.64 0.81 0.74–0.87

Executive
functioning

0.79 0.60 0.75 0.68–0.82

Working memory 0.62 0.74 0.73 0.65–0.80

Visual spatial
processing

0.67 0.69 0.72 0.64–0.80

Processing speed 0.64 0.62 0.66 0.58-0.84

MMSE
(reference)

0.67 0.57 0.65

Verbal Processing 0.64 0.53 0.59 0.52–0.66

Age 0.74 0.38 0.54 0.45–0.63

Education 0.54 0.54 0.53 0.42–0.64

Sex 0.47 0.51 0.49 0.38–0.60

Table with sensitivity, specificity, Area Under the Curve (AUC) and Confidence Interval (CI)

for logistical regression models that classify CN vs. MCI. The model predictors are shown in

the first column.

PACC, preclinical Alzheimer’s cognitive composite; EMACC, early AD/MCI Alzheimer’s

cognitive composite; MMSE, Mini Mental State Examination; Memory * Executive

Functioning indicates a model with both cognitive z-scores and the interaction term.

z-scores for CN and MCI. These z-scores are corrected for age, sex

and education.

3.2 Sensitivity and specificity

We used logistic regression models to classify the diagnosis of

CN versus MCI based on demographic factors, MMSE, cognitive

z-scores, and disease-specific composites. We calculated sensitivity,

specificity, and area under the curve (AUC) as shown in Table 2.We

also visualized the ROC curves for a selection of models (Figure 2).

The prevalence estimate (and majority baseline) is 0.5 since the

CN and MCI groups are balanced. The AUC of models that use

age, sex, and education is at the chance level as a consequence

of the matching procedure. Consistent with the largest effect

size (Table 1), we found that z-scores for memory and executive

functioning were the strongest predictors of the diagnosis. We

also examined whether a combination of cognitive z-scores would

improve classification by running logistic regression models for

all possible combinations of two domain scores, including an

interaction term. The logistic regression model with memory *

executive functioning performed best and is included in Table 2.

However, it onlymarginally improved AUC relative to amodel with

only memory (see also statistical comparisons below). The model

that used the PACC showed the highest AUC, closely followed by

the EMACC.

The results of pairwise statistical comparisons for a selection of

ROC curves can be seen in Figure 2. First, we compared the ROC

curves with the ROC curve for MMSE, Memory > MMSE (D =

3.36; p < 0.001), Memory * Executive Functioning > MMSE (D

= 4.32; p < 0.001), EMACC > MMSE (D = 4.95; p < 0.001) and

PACC > MMSE (D = 5.98; p < 0.001). In the comparisons with the

Memory z-score, we found smaller differences:Memory * Executive

Functioning > Memory (D = 1.86; p = 0.032), EMACC > Memory

(D = 1.89; p = 0.029), PACC>Memory (D = 2.21; p =0.014).When

comparing the disease-specific cognitive composites to Memory *

Executive Functioning, we found no statistical differences: EMACC

>Memory * Executive Functioning (D = 1.06; p = 0.145) and PACC

>Memory * Executive Functioning (D = 1.31; p = 0.096). Similarly,

we did not find any evidence for a difference between the PACC >

EMACC (D = 0.378; p = 0.353).

3.3 Comparison with other digital
cognitive tools

Here, we provide a short comparison of our digital

cognitive battery with other digital assessment tools, in terms

of diagnostic performance, required testing time, and available

neuropsychological tests. Together these metric provide an

indication of the potential impact on clinical workflow. Below, we

compared our tool with the Brain Health Assessment-Cognitive

Score (BHA-CS), the CogState Brief Battery, BrainCheck,

the Computer-Administered Neuropsychological Screen for

Mild Cognitive Impairment (CANS-MCI), and Cambridge

Neuropsychological Test Automated Battery Paired Associates

Learning (CANTAB-PAL).

The CogState Brief Battery generates two composite scores:

psychomotor/attention and learning/working memory. Sensitivity

and specificity were 41 and 85% for the former, and 80 and 86%

for the latter. The CogState Brief Battery uses four tests to measure

episodic memory, working memory, attention, and processing

speed, in a self-administered, 15-min-long battery (Maruff et al.,

2013). The Brain Health Assessment-Cognitive Score has shown

the same sensitivity as IntelliSpace Cognition (ISC) but higher,

85% specificity, in a study of 451 cognitively normal subjects,

289 patients with MCI and 110 patients with mild dementia.

This assessment is 20 min long and provides information on four

of the six cognitive domains measured by the ISC battery, plus

category fluency (animals) for language (Tsoy et al., 2020). The

memory domain is based on associative memory. The BrainCheck

computerized battery showed a sensitivity of 86% and a specificity

of 83% to classify betweenMCI patients and normal controls (AUC

= 0.84) in a recent study of 35 cognitively normal subjects, 22

MCI, and 42 dementia patients (Ye et al., 2022). This battery was

based on five tests, duration was not reported in the study, but on

the company website they report 20 min. The highest sensitivity

was found with the CANS-MCI screening tool, which had 89%

sensitivity while only 73 specificity (Ahmed et al., 2012); however,

this study had a small sample size, with 15 MCI cases and 20

controls. CANS-MCI is 30 min long and assesses two cognitive

domains (episodic memory and executive functioning) of the six

domains measured by the ISC battery. CANTAB-PAL, a standalone
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FIGURE 2

ROC curves. ROC curves for logistical regression models that classify Cognitively Normal (CN) vs. Mild Cognitive Impairment (MCI). In orange, a

model based on the Mini Mental State Exam (MMSE). In light green, based on the memory score. In dark green, memory by executive functioning. In

light blue, the Early/Mild Alzheimer’s Cognitive Composite (EMACC), and in dark blue the Pre-clinical Alzheimer’s Disease Cognitive Composite

(PACC).

TABLE 3 Category Fluency is not part of the model.

Episodic Executive Attention Visual spatial Processing Working Verbal Language
memory functioning processing speed memory processing

IntelliSpace
Cognition

X X X X X X X Category
fluency

Cogstate brief
battery

X – X – X X – –

Braincheck X X X Spatial awareness – – – –

Brain health
assessment

Associative X – X X – – Category
fluency

CANS-MCI X X – – – - - – Picture
naming

CANTABa X X X – X X – –

IntelliSpace Cognition (ISC) includes a confirmatory factor model, that provides cognitive z-scores in several domains. In the current factor model, Processing Speed and Verbal Processing are

based on a single normalized cognitive test. Category Fluency is not part of the model, but can be used as an individual test of Language. The other digital assessment tools do not include a

pre-specified factor model, but include cognitive tests from these cognitive domains. CANTABa also has tests in these domains, in the discussion we specifically discuss CANTAB-PAL.

test of episodic memory, showed similar sensitivity and better

specificity than ISC, in a study of 30 healthy elderly and 17 MCI

patients (Barnett et al., 2016).

When comparing these assessments by the cognitive domains

or functions they measure (Table 3), the ISC battery provides

a relatively comprehensive assessment, which, in turn, leads

to a longer examination time. All listed tools assess episodic

memory, although the BHA-CS measures associative a memory,

a contributor component of episodic memories. The next most

commonly measured domain is executive functioning, which is

included in the BHA-CS, BrainCheck, and CANS-MCI, but is

absent from both the CANTAB-PAL and CogState Brief Battery.

This is followed by attention, which is included in CogState

Brief Battery and BrainCheck—it is not a separate domain in

the cognitive model of ISC but embedded in different domains.

Similarly, visual spatial processing is included only in BHA-CS,

and BrainCheck, although the latter specifies spatial awareness.

Processing speed is measured with BA-CS and CogState Brief

Battery, and working memory is measured with CogState Brief

Battery. Letter fluency is only found in ISC, and defines the

verbal processing z-score. The BHA and CANS-MCI also measure

language functions, with category fluency and picture naming tests.

The category fluency tests were also obtained in the current study

with ISC, but are not used by the factor model. In summary,

ISC compares favorably with these previously reported tools when

comparing sensitivity and specificity. Yet, ISC also stands out with

its test duration, which is 1.5–2.5 times longer. Below we provide

an interpretation of these results.
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4 Discussion

Our study demonstrates the clinical validity of a digital

cognitive platform, IntelliSpace Cognition, in patients with MCI.

We found that performance in MCI patients was significantly

worse compared to cognitively normal adults, on almost all

neuropsychological tests. Furthermore, performance on some

tests was impacted more than on others. Specifically, from the

six cognitive scores investigated, the memory score was most

abnormal. Finally, AD-specific composite scores showed greater

sensitivity and specificity than the cognitive z-scores, individual

neuropsychological tests, and the MMSE.

When comparing the performance of individual

neuropsychological tests between CN and MCI (see Table 1),

RAVLT, a test of learning and memory, was most affected in

MCI, consistent with diagnostic criteria (Petersen et al., 1999).

Category fluency showed the second largest effect size, while letter

fluency was much less impacted. This replicates previous findings

(Rinehardt et al., 2014; Mirandez et al., 2017; Balthazar et al.,

2007). In general, the cognitive z-score reflects these individual

test results: memory showed the greatest difference in the MCI

group, which follows from the factor model dependencies of

this domain on the RAVLT(Vermeent et al., 2022). Executive

functioning score showed the second most difference between CN

and MCI; a finding that also replicates previous work (Crowell

et al., 2002; Guarino et al., 2020; Schmitter-Edgecombe et al.,

2009). The cognitive z-score for verbal processing was only based

on letter fluency, not category fluency. This explains the small

difference between CN and MCI for verbal processing. A different

factor model, that would have included category fluency, would

likely have found a larger differences. The logistical regression

that included memory by executive functioning showed the

highest AUC except for the PACC and EMACC (see Table 2). This

model slightly outperformed a logistic classifier that used only the

memory z-score. This result is consistent with current perspectives

on the importance of measuring multiple cognitive domains for

the diagnosis of MCI or mild dementia (Schneider and Goldberg,

2020; Weintraub et al., 2018).

We constructed two digital cognitive composite scores: the
EMACC and PACC (Donohue et al., 2014; Jaeger et al., 2014). The

EMACC and PACC classified CN versusMCI patients with an AUC
of 0.87 and 0.88 respectively (Table 2). Both AD-specific composites
outperform the MMSE, individual neuropsychological tests, and

the cognitive z-scores. The logistic regression model that included
both memory, executive functioning was not statically different
from the EMACC and PACC. These findings are consistent with the

notion that MCI should not be defined by an impairment in a single
cognitive domain. It is worth noting that the PACC includes the
MMSE, as a measure of global cognition; in contrast, the EMACC

does not. Our findings do not elucidate if a measure of global
cognition improves detection, as the difference between PACC and
EMACC was also not significant. Both composites were originally

designed to quantify early cognitive impairment. Therefore, it is

no surprise that they are sensitive to differences between CN

and MCI patients. Importantly, these composites were originally

designed with conventional paper-and-pencil neuropsychological

tests. Here, we replicate this work, but using a digital cognitive

assessment platform.

We also compared our results with published reports from

other digital assessment tools. However, without a head-to-head

study, a direct comparison between tools remains challenging.

As each tool has been evaluated in a different cohort, with

various inclusion/exclusion criteria. Also, in many other studies,

patients are diagnosed, or (re)classified as CN, MCI or dementia,

after neuropsychological testing (Ellis et al., 2009; Bondi et al.,

2014). Although this is consistent with the clinical use of

neuropsychological tests, it results in an overestimation of the

accuracy, as compared to clinical practice. In our study, we did not

reclassify patients after neuropsychological tests. Thus, these results

probably underestimate the diagnostic performance of IntelliSpace

Cognition, relative to several of the other digital assessment tools.

In summary, with regard to sensitivity and specificity of

classifying MCI, Intellispace Cognition (ISC) compares favorably

with previously reported tools. Yet, ISC also stands out with a

considerately longer test duration. However, the longer testing

time yields proportionally more data points, as shown in (Table 3)

allowing ISC to provide an assessment that is closer to a standard

neuropsychological evaluation in breadth, while the other tools

have a narrower functionality. The implications of this will be

discussed below under Future Directions.

4.1 Limitations

This was a single-center study with a modest sample size

of 81 MCI patients. The clinical diagnosis was based on MMSE

scores and the clinical opinion of a small number of providers,

thus differences could occur if compared to other practices in a

multi center study. Secondly, the MCI patients recruited at our

memory clinic where relatively highly educated (17.8 ± 3.08),

with the majority holding a masters degree or equivalent. This

might be caused by a more general bias, as dementia is under

diagnosed in persons who have lower educational attainment

and in racial/ethnic minorities (Amjad et al., 2018). Although,

the differences between CN and MCI cannot be explained by

education, due to our matching-procedure, this limits the external

validity of our results. Third, traditional paper-and-pencil tests

were not administered in MCI patients, thus we lack a direct

comparison between an interpretation by a neuropsychologist and

the automated ISC score and cannot determine if the sensitivity or

specificity of our digital cognitive platform is smaller or greater than

traditionally administered tests with manual scoring. However, test

scores are similar to scores reported for traditional paper-and-

pencil tests in MCI, and the equivalence of IntelliSpace Cognition

to paper-and-pencil tests with human raters have previously been

demonstrated in CN adults (Vermeent et al., 2022). Thus, although

we cannot exclude minor differences, we can infer that the platform

performs on-par with traditional paper-and-pencil tests. Fourth,

no amyloid-β or tau biomarkers were obtained. Therefore, we

cannot characterize these patients in terms of AD research stages

(Sperling et al., 2011; Dubois et al., 2016). The inclusion criteria

were based on current clinical guidelines and included MRI.

The resulting MCI group was probably heterogeneous in terms

of pathological changes, consisting of patients with and without

amyloid, tau and some degree of vascular pathology. Nevertheless,
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recent biomarker-based studies reported similar results when using

the PACC composite score (Ding et al., 2022; Öhman et al., 2021).

4.2 Future directions

Future validation work should address the limitations of our

study, by including larger sample sizes, other composite scores

that include functional outcome metrics, as well as cohorts of

prospectively enrolled patients. Comparisons with blood or fluid

biomarkers and neuroimaging should also be conducted. The

role of ISC in clinical practice remains to be determined: a

shorter test may suffice as a screening tool, but for monitoring

clinical progression, a more detailed cognitive assessment is

valuable. Additionally, recent research suggests that cognitively

normal adults with positive amyloid and tau biomarker status are

likely to experience cognitive decline (Ossenkoppele et al., 2022).

However, many patients do not fit this profile, and the boundaries

between positive and negative biomarker statuses are often not

clear-cut. For instance, patients harboring only tau also exhibit

impairments in different cognitive domains (Quintas-Neves et al.,

2022). Therefore, cognitive measurements will likely continue to

enhance clinical forecasting. An accurate assessment of cognition,

along with the biological characterization of AD, is crucial in

making decisions about starting or stopping a treatment. Digital

tools have advantages over traditional paper-and-pencil methods

for operational reasons and are likely to play a key role in treatment

decisions andmonitoring treatment efficacy (Assunção et al., 2022).

In conclusion, the IntelliSpace Cognition platform is a

promising tool to characterize cognitive deficits in patients with

MCI. Compared to most other digital assessment tools, the

IntelliSpace Cognition battery is more comprehensive, but also

longer. Further research should focus on other on larger cohorts

for validation, as well as combining cognitive data with Alzheimer’s

disease biomarkers.
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