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Introduction: Missing data in psychometric research presents a substantial 
challenge, impacting the reliability and validity of study outcomes. Various 
factors contribute to this issue, including participant non-response, dropout, or 
technical errors during data collection. Traditional methods like mean imputation 
or regression, commonly used to handle missing data, rely upon assumptions 
that may not hold on psychological data and can lead to distorted results.

Methods: This study aims to evaluate the effectiveness of transformer-based 
deep learning for missing data imputation, comparing ReMasker, a masking 
autoencoding transformer model, with conventional imputation techniques 
(mean and median imputation, Expectation–Maximization algorithm) and 
machine learning approaches (K-nearest neighbors, MissForest, and an Artificial 
Neural Network). A psychometric dataset from the COVID distress repository 
was used, with imputation performance assessed through the Root Mean 
Squared Error (RMSE) between the original and imputed data matrices.

Results: Results indicate that machine learning techniques, particularly 
ReMasker, achieve superior performance in terms of reconstruction error 
compared to conventional imputation techniques across all tested scenarios.

Discussion: This finding underscores the potential of transformer-based models 
to provide robust imputation in psychometric research, enhancing data integrity 
and generalizability.
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1 Introduction

Dealing with missing data represents a significant challenge in psychological research and 
other scientific fields. Missing data can arise for various reasons, including human error, data 
processing issues, participant non-response, or unobserved variables.

The presence of missing data complicates data analysis significantly, both in an explanatory 
context, where the goal is to estimate unbiased model parameters and draw inferences, and in 
a predictive context, where the aim is to develop algorithms capable of recognizing hidden 
patterns and providing accurate predictions for output values based on new input data 
(Breiman, 2001; Shmueli, 2011; Yarkoni and Westfall, 2017).
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In the context of psychological research, missing data introduces 
unique challenges that affect both explanatory and predictive 
analyses. From an explanatory point of view, the challenges 
introduced by missing data are twofold: they reduce statistical power 
and lead to biased parameter estimates (Roth, 1994). In particular, 
reduced statistical power weakens the sensitivity of statistical tests to 
detect relationships within the data, typically requiring larger sample 
sizes to compensate for the loss (Schmidt et al., 1976). Even minor 
data loss can significantly impact power: for instance, a small 
percentage of randomly missing data handled via listwise deletion can 
reduce effective sample sizes by a substantial margin (Kim and Curry, 
1977), compounding the power limitations inherent in psychological 
studies that often face practical constraints on sample size (Kenny 
et al., 2002).

Moreover, missing data poses a substantial risk to the accuracy of 
parameter estimates, potentially leading to biased conclusions that 
misrepresent underlying relationships in the data. This bias is 
especially problematic in applied psychology, where real-world factors 
can lead to selective data loss. For example, missing data from high or 
low ends of a distribution can distort measures of central tendency 
and variability, skewing results that rely on accurate estimates of 
population parameters (Little and Rubin, 2019). Such issues are not 
trivial: biased estimates can misinform theoretical interpretations and 
compromise the practical utility of models used in applied settings.

The presence of missing data is challenging also from a predictive 
perspective. Indeed, incorrect imputation of an influential predictor 
can significantly reduce prediction performance. Moreover, improper 
imputation can distort the relationships among inputs, introducing 
noise and deteriorating the performance of the prediction algorithm. 
Therefore, it is crucial to have a validated and robust approach for 
handling such instances (Fletcher Mercaldo and Blume, 2020).

A cornerstone concept in missing data literature is the 
classification of missing data techniques, which relates the likelihood 
of data being missing to the characteristics of subjects or variables 
(Nakagawa, 2015). The most famous framework for missing 
mechanisms (Rubin, 1976; Little and Rubin, 2019), delineates three 
types of missing data: Missing Completely at Random (MCAR), 
Missing at Random (MAR), and Missing Not at Random (MNAR). 
While MCAR assumes no relationship between missingness and 
observed or unobserved variables, making it a simplistic starting point 
for imputation, it is rarely applicable in practical settings. In contrast, 
MAR, which considers missingness dependent on observed variables, 
is a more realistic assumption for most psychological studies. When 
neither MCAR nor MAR assumptions hold, missing data is classified 
as MNAR, where missingness depends on unobserved values.

Historically, a wide array of strategies has been developed in 
several research fields to address the issue of missing data, with 
techniques ranging from explanatory statistical methods to predictive 
machine learning algorithms, and more recently, sophisticated deep 
learning approaches (Sun et al., 2023).

Conventional methods used in psychometric research are based 
prevalently on an explanatory perspective (e.g., mean/median 
imputation, expectation–maximization). However, these techniques 
often rely on assumptions that may not hold true in psychological 
contexts, such as the linearity of relationships or the normality of data 
distributions. In particular, as discussed by Sun et al. (2023), although 
conventional imputation techniques such as mean/median imputation 
are computationally efficient and easy to implement, they present 

several disadvantages. Mean/median imputation often underestimates 
variability, leading to overly simplistic imputations, while regression 
imputation may struggle to capture complex or nonlinear relationships 
within the data. While Expectation–Maximization (EM) provides a 
more refined solution, it can be  computationally demanding and 
prone to slow convergence, particularly when applied to large datasets.

On the other hand, predictive techniques, such as machine 
learning and deep learning methods, have increasingly been 
recognized as valuable for missing data imputation across various 
scientific fields (e.g., Pantanowitz and Marwala, 2009; Hallaji et al., 
2021; Qiu et al., 2020). Machine learning approaches offer a more 
dynamic and adaptable framework for managing missing data since 
they require mild assumptions.

Random forests and K-nearest neighbors (KNN) algorithms have 
been particularly notable among the machine learning approaches. 
Random forests address missing data by using an ensemble of decision 
trees which work together to estimate missing values based on the 
similarities within the data (Stekhoven and Bühlmann, 2012). This 
method is robust against overfitting and can handle large datasets with 
complex structures. KNN, on the other hand, estimates missing values 
based on the proximity to the nearest neighbors in the dataset, 
assuming that similar data points (or neighbors) are likely to have 
similar values (Batista and Monard, 2002).

Among the most recently advanced machine learning techniques, 
deep learning models, which are multi-layered artificial neural 
networks, have emerged as promising tools for missing data 
imputation. In general, and as discussed by the review of Sun et al. 
(2023), deep learning models are powerful tools which can capture 
complex, nonlinear relationships without needing predefined rules or 
strict distributional assumptions. This flexibility allows deep learning 
models to work effectively with high-dimensional datasets and diverse 
types of data. Moreover, their ability to learn from latent structures in 
the data gives them a significant advantage in capturing hidden 
patterns that conventional methods might miss.

Recent research in deep learning has introduced sophisticated 
neural network architectures equipped with attention mechanisms. 
One notable example is the ReMasker architecture, introduced by Du 
et al. (2023). The ReMasker method addresses naturally missing values 
in datasets and randomly selects and “re-masks” additional values. The 
autoencoder is optimized to reconstruct this re-masked set, and the 
trained autoencoder is then used to predict the missing values.

Compared to prior methods, ReMasker offers several advantages. 
It utilizes the Transformer architecture (Vaswani et al., 2017) as its 
backbone, employing the self-attention mechanism to capture 
intricate inter-feature correlations (Huang et al., 2020). While the 
Transformer model is the standard architecture for building large 
language models and has led to the development of pre-trained 
systems such as generative pre-trained transformers (GPTs) (Radford 
et al., 2018, 2019; Brown et al., 2020; OpenAI et al., 2023) and BERT 
(Bidirectional Encoder Representations from Transformers) (Devlin 
et al., 2018), it also has applications in computer vision, audio, and 
multi-modal processing (e.g., Wu et al., 2020; Radford et al., 2022; Xu 
et al., 2023).

In particular, the self-attention mechanisms enable the network 
to dynamically weigh the importance of different variables, which is 
crucial when dealing with incomplete datasets. Unlike traditional 
methods, these models do not rely on predefined assumptions about 
the nature of missingness, making them highly adaptable and effective 
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across various types of data and missing data scenarios. Consequently, 
these approaches are not only more accurate but also more flexible, 
adapting to the specific characteristics and requirements of the dataset 
at hand.

Despite the increasing presence and recognition of machine 
learning and deep learning techniques in psychological research as 
valuable alternatives to traditional psychometric methods (e.g., 
Gonzalez, 2021; Urban and Bauer, 2021; Casella et al., 2024; Dolce 
et al., 2020; Luongo et al., 2024), including in addressing missing data 
imputation challenges (e.g., Collier et al., 2024; Yoon et al., 2018), 
comprehensive comparisons remain scarce, particularly in 
psychometric contexts where the use of predictive algorithms for 
missing data imputation is still limited.

In this study, we  evaluate the REMASKER transformer 
architecture, introduced by Du et al. (2023), by comparing it with 
traditional imputation methods (mean/median imputation), machine 
learning approaches (K-nearest neighbors and MissForest) and an 
Artificial Neural Network model named autoencoder. Our 
comparisons are conducted on simulated missing data within a real 
psychological dataset under the Missing Completely at Random 
(MCAR) and Missing at Random (MAR) assumptions, using 
numerical experiments that vary sample sizes and missing data ratios. 
For this work, we do not consider Missing Not at Random (MNAR) 
assumptions, as they require specific considerations and methods that 
are beyond the scope of this study.

2 Methods

In this section, we provide a concise overview of the imputation 
methods being examined and introduce the REMASKER model. 
We  then detail the dataset utilized in our study and describe the 
process employed to simulate missing data.

2.1 Statistical methods for missing 
imputation

One of the most commonly used imputation techniques is mean 
and median imputation. These foundational methods are employed to 
handle missing data in statistical analysis. They operate under the 
assumption that the missing values can be approximated using the 
central tendency of the observed data. Specifically, for continuous 
variables, the mean (arithmetic average) or median (middle value in 
the dataset) of observed values is calculated and used to fill in missing 
entries. For categorical variables, the mode (most frequently occurring 
value) is used. These methods are straightforward but can introduce 
bias, particularly if the missing data are not Missing Completely at 
Random (MCAR). This bias occurs because these imputation methods 
do not account for the variability in the data, potentially leading to 
underestimated variances and covariances in the imputed dataset 
(Schafer and Graham, 2002).

Another statistical method for missing data imputation is based 
on the Expectation–Maximization algorithm, which was proposed by 
Dempster et al. (1977) to handle missing data based on the maximum 
likelihood estimation of parameters. The EM method is an iterative 
process (Little and Rubin, 2002). Each iteration of EM consists of an 
expectation (E) step and a maximization (M) step. In the E step, the 

conditional expectation of the complete data log-likelihood is derived 
in the presence of the observed data and the current estimates for 
parameters. In the M step, the conditional expectation of the complete 
data log-likelihood is maximized in order to yield a new set of 
parameter estimates. The E and M steps iterate until the difference in 
the observed log-likelihood from two consecutive iterations meets a 
prespecified convergence criterion. When the EM algorithm 
converges, a final set of estimates for parameters (e.g., means, 
variances/covariances) are obtained. From these estimates, expected 
values for the missing data can be derived from the EM algorithm. EM 
is easy to implement and stable (Couvreur, 1997), and has been shown 
to yield unbiased estimates of parameters when its assumptions (i.e., 
multivariate normality and MAR) are met (Barnard et  al., 2000; 
Schafer, 1997). The flexibility of EM in model specification and its 
ability to handle the uncertainty of parameter estimates in incomplete 
data scenarios make it a powerful tool for complex datasets 
(McLachlan and Peel, 2000).

2.2 Machine learning methods for missing 
imputation

Over the years, many Machine Learning methods have been 
proposed for missing data imputation. Among them, K-Nearest 
Neighbors and Random Forests are the most used and widely known 
in several scientific fields.

In particular, the K-Nearest Neighbors (KNN) algorithm is 
utilized for imputation by identifying the k-nearest neighbors for each 
data point with a missing value, using a specific distance metric, often 
the Euclidean distance (Batista and Monard, 2002). This method 
involves computing the proximity between data points and selecting 
the nearest neighbors based on the chosen metric. The missing values 
are then imputed using either the mean (for continuous variables) or 
mode (for categorical variables) of the neighbors’ values.

The success of KNN imputation largely depends on the choice of 
two crucial parameters: the number of neighbors (k) and the distance 
metric used. The selection of k is critical; a small k may lead to high 
sensitivity to noise, potentially causing the imputation to reflect 
outliers rather than the true distribution of data. On the other hand, 
a large k may decrease the algorithm’s sensitivity to specific data 
patterns and increase computational demands, as more neighbors are 
considered in the imputation process. One significant drawback of the 
KNN algorithm is its computational expense. The algorithm requires 
calculating the distance between each pair of points in the dataset, 
which can become computationally intensive as the size of the dataset 
increases. This process involves repeatedly measuring distances and 
sorting or ranking these distances to determine the closest neighbors, 
which can be  particularly demanding in terms of both time and 
computational resources. Moreover, the effectiveness of the KNN 
algorithm is also affected by the structure of the data. The algorithm 
is particularly suitable for datasets with a limited number of variables 
that exhibit strong correlations. Under these conditions, KNN can 
more accurately identify the genuine similarities between 
observations, reflecting these in the imputed values.

The MissForest imputation methods (Stekhoven and 
Bühlmann, 2012) utilize an ensemble of decision trees (specifically, 
random forests) to predict missing values, iteratively imputing each 
feature based on the others. This non-parametric approach handles 
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mixed-type data effectively, adapting to the intrinsic structure of 
the data. Unlike simpler imputation methods, MissForest 
incorporates randomness and ensemble learning to capture 
complex interactions and non-linearities in the data. Each iteration 
of MissForest refines the imputation, using out-of-bag (OOB) error 
as a convergence criterion. This method has been shown to 
be  robust across various scenarios, including those with high 
dimensions and substantial interaction between features (Stekhoven 
and Bühlmann, 2012).

The missForest algorithm starts by initializing missing values in a 
variable, replacing them with the mean for continuous variables or the 
most frequent class for categorical variables. The imputation process 
then proceeds sequentially through the dataset, ordered by the 
number of missing observations in each variable. The variable being 
imputed serves as the response for constructing the random forest 
model. The dataset is split into two groups: one with observed values 
used as the training set, and another with missing values used as the 
prediction set. Then, the random forest models predict and replace the 
missing values for the variable under imputation. After all variables 
with missing data have been imputed, one iteration is complete. This 
iterative process continues until the relative sum of squared differences 
(or the proportion of falsely classified entries for categorical variables) 
between the current and previous imputation results increases. At this 
point, the missForest algorithm outputs the prior imputation as the 
final result.

2.3 Artificial neural networks for missing 
data imputation: the autoencoder and the 
ReMasker model

Among the artificial neural networks proposed over the years to 
handle missing data imputation, this contribution focuses on the 
autoencoder and the ReMasker model, two prominent approaches 
that rely on neural network architectures to address the challenges of 
missing data.

An autoencoder is a multi-layer perceptron with the same number 
of input and output units but fewer hidden units (Bourlard and Kamp, 
1988). During training, the output units aim to match the input values, 
allowing the network to learn representations in a self-supervised 
manner. The encoder maps an input to a representation, and the 
decoder reconstructs the original input, with the central hidden layer 
encoding the most relevant information for this reconstruction (see 
Figure 1).

Introducing nonlinear hidden layers allows the network to 
perform nonlinear dimensionality reduction (Kramer, 1991). 
Autoencoders have diverse applications, including facial recognition 
and customer segmentation (Siwek and Osowski, 2017; Alkhayrat 
et al., 2020). In the context of missing data imputation, an autoencoder 
learns the underlying data representation and relationships, allowing 
it to reconstruct missing values effectively. In particular, the 
autoencoder reconstructs missing data points based on their 
relationships with other observed features, making it particularly 
useful in scenarios where data exhibit nonlinearity and high-
dimensional complexity.

Building upon the foundation of autoencoders, the ReMasker 
model extends this approach and incorporates more sophisticated 
techniques for missing data imputation (Du et  al., 2023). The 

ReMasker model is based on a masked autoencoding framework and 
a Transformer architecture.

The core innovation of ReMasker is its re-masking strategy, which 
involves masking not only the naturally missing values but also a 
randomly selected set of observed values. The model learns to 
reconstruct these re-masked values during training, enabling it to 
predict the originally missing values with high fidelity.

ReMasker builds on the concept of masked autoencoders (MAE), 
initially developed for natural language processing (NLP) and later 
applied to computer vision (He et al., 2022). In NLP, Masked modeling 
in NLP involves masking a subset of input tokens and training the 
model to predict these masked tokens using the surrounding context. 
This approach enhances the model’s understanding of language 
patterns and dependencies. Similarly, the MAE partially masks input 
data during training, compelling the model to reconstruct the missing 
parts. This method helps the model learn more robust and generalized 
features, enhancing its performance in downstream tasks. Figure 1 
shows an example of masked modeling in the context of natural 
language processing.

Starting from this framework, the ReMasker model also uses a 
Transformer architecture, using the Transformer’s self-attention 
mechanism to capture complex inter-feature correlations (Vaswani 
et al., 2017). This design allows the model to handle various missing 
data scenarios effectively without specific assumptions about the 
missingness mechanisms (Figure 2).

An attentional mechanism in a neural network selectively 
focuses on parts of its input data that are more relevant for a specific 
task, similar to how humans pay attention to certain aspects of a 
visual scene or conversation. In neural networks dealing with 
sequences or complex data relationships (such as NLP or time-
series analysis), the attention mechanism dynamically weighs the 
importance of different input features, enabling the model to 
prioritize data processing.

The attention mechanism works by creating a set of scores (often 
through a small neural network) that determine the focus on each 
input component. These scores produce a weighted sum of the input 
features, where more important features get a higher weight, 
representing what the model pays the most attention to for further 
processing or making predictions.

In data imputation, using an attentional mechanism allows the 
model, such as ReMasker, to better understand and represent 
underlying data patterns. It can discern which features most indicate 
the nature of a missing value and use this information to predict 
missing values accurately. This is particularly beneficial in complex 
datasets where feature relationships are not straightforward and can 
vary significantly.

The ReMasker model’s Transformer architecture employs an 
advanced form of attention mechanism known as multi-head self-
attention, allowing the model to handle data with varying patterns of 
missingness effectively. Each “head” of attention can focus on different 
data relationships, providing a comprehensive understanding that aids 
in accurately imputing missing values.

During the training stage, for each input, some values are 
randomly selected and masked out, in addition to any existing missing 
values. The encoder processes the remaining values to create an 
embedding. This embedding is padded with mask tokens and then 
used by the decoder to reconstruct the masked values. Padding 
involves adding special elements (padding tokens) to sequences to 
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make them the same length, allowing efficient processing. Tokens are 
basic units of data, and mask tokens hide certain values in a sequence, 
which the model learns to predict. In the implementation stage, the 
optimized model predicts the missing values. Figure 2 from Du et al. 
(2023) summarizes the training process and the missing value 
imputation of the ReMasker model. For further details on the 
ReMasker’s functioning, refer to the work of Du et  al. (2023) 
(Figure 3).

2.4 Dataset and missing generation

In our research, we employed the COVIDiSTRESS diverse dataset 
(Blackburn and Vestergren, 2022), specifically focusing on the 

Perceived Stress Scale-10 (Cohen and Williamson, 1988) to measure 
psychological stress.

This dataset, available through the Open Science Framework, 
includes responses from 20,601 participants from 137 countries, 
with a final cleaned dataset of 15,740 individuals who met the 
inclusion criteria, such as being 18 years or older and passing 
attention checks.

The PSS-10 is a widely recognized scale that evaluates how much 
individuals perceive situations in their lives as stressful. It consists of 
10 items rated on a 5-point Likert scale.

We generate three different sample sizes for this study, drawing 
from the final cleaned dataset 200, 500 and 1,000 observations.

For the generation of missing data mechanisms (MCAR and 
MAR), we referred to the study of Muzellec et al. (2020).

FIGURE 1

Example of an autoencoder model structure.

FIGURE 2

An example of a masked modeling framework for natural language processing.
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In particular, for the MCAR scenario, each value is masked based on 
the outcome of a Bernoulli random variable with a set parameter. In the 
MAR scenario, for each experiment, we select a subset of variables that 
will not have missing values. The remaining variables have missing 
values generated according to a logistic model with random weights, 
taking the non-missing variables as inputs. A bias term is adjusted 
through a line search to achieve the desired percentage of missing values.

The literature does not specify a definitive cutoff for an acceptable 
percentage of missing data for valid statistical inferences. For 
instance, Schafer (1999) suggested that a missing rate of 5% or less is 
negligible, while Bennett (2001) stated that statistical analysis could 
be biased if more than 10% of data are missing. Moreover, the missing 
data problem is not solely judged by the amount of missing data. 
Tabachnick et al. (2013) argued that the mechanisms and patterns of 
missing data have a more substantial impact on research outcomes 
than the proportion of missing data. Our experiments included 
missing rates of 5, 10, and 15%.

For each dataset, all methods were assessed using 10 different sets 
of missing value masks.

All methods compared were used for continuous data imputation.
The imputation methods were assessed using the root mean square 

error (RMSE) metric. Specifically, we calculated the RMSE between the 
original complete matrix and the imputed matrix generated by each 
method. Before calculating the RMSE, the imputed values were 
rounded to the nearest integer to align them with the original ordinal 
scale, ranging from 1 to 5. The RMSE was calculated as follows:
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where ijx  is a generic observation of the original matrix for 
subject i and variable j , and ˆijx  is the imputed value of the same 
observation in the imputed matrix. Here, n represents the number of 
subjects, and p represents the number of inputs.

3 Algorithms implementation and 
results

The algorithms were implemented using R, with the exceptions of 
KNN, the autoencoder, and REMASKER, which were implemented 
in Python.

Mean and Median imputation of missing data was performed 
replacing missing values with the corresponding column mean 
or median.

The Expectation Maximization (EM) imputation algorithm is 
implemented using the R package missMethods. Initially, parameters 
are estimated and then employed in regression-like models to impute 
missing values. Residuals, drawn from a multivariate normal 
distribution, are added to the expected values. The algorithm is set to 
a maximum of 1,000 iterations or until the stopping criterion, defined 
as the maximum relative difference in parameter estimates falling 
below 0.0001, is met.

The MissForest algorithm is implemented using the MissForest 
package in R (Stekhoven, 2011). It runs for a maximum of 10 iterations 
unless the stopping criterion is satisfied earlier, and constructs 100 
trees in each forest.

The KNN imputation algorithm is implemented in Python using 
the scikit-learn library (Pedregosa et al., 2011). It is configured with 
three neighbors and calculates distances using the Euclidean metric. 
A uniform weight function is applied during prediction.

The autoencoder model was implemented in Python using the 
PyTorch library. The autoencoder architecture consisted of an encoder-
decoder structure. Specifically, the encoder included two fully 
connected layers: the first reduced the input dimension to 7 hidden 
units with a ReLU activation, and the second layer further reduced it 
to 5 units, with a ReLU activation. The central layer included 3 nodes 
with a linear activation function. The decoder mirrored this structure, 
reconstructing the data back to its original dimension. The model was 
trained to minimize reconstruction error using the mean squared error 
(MSE) loss function, with the Adam optimizer and a learning rate of 
0.001 for 100 epochs. The autoencoder was trained on masked datasets, 
where missing values were replaced with zeros during training.

FIGURE 3

Fitting and imputation of the ReMasker model from Du et al. (2023).
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The ReMasker model is implemented in Python and utilizes the 
architecture and parameters described in the work of Du et al. (2023).

We compared traditional statistical methods, machine learning 
techniques, an autoencoder and the ReMasker model across three 
different sample sizes: 200, 500, and 1,000 observations. Each method 
was assessed under varying conditions of missingness (5, 10, and 15% 
missing rates for MAR and MCAR mechanisms). Figures 4, 5 show 
the results of our analysis.

We started with basic imputation techniques such as mean and 
median imputation. These methods are advantageous due to their 
simplicity and ease of implementation. However, they often result in 
less accurate imputations because they ignore the inherent variability 
in the data. Also, the EM algorithm shows performances comparable 
to mean and median imputation. In all the tested scenarios, these 
traditional methods showed the least favorable performance.

The K-Nearest Neighbor (KNN) and MissForest techniques 
provided more sophisticated solutions.

MissForest showed comparable error rates to the ReMasker model 
in MAR scenario and better performance with respect to traditional 
methods in all scenarios.

KNN imputation, using a distance metric to find similar data 
points, showed better performance than basic statistical methods and 
comparable performance to the ReMasker in the MAR scenario with 
the 5% of missing ratio and the 200 and 500 sample sizes.

The autoencoder approach performed similarly to other machine 
learning techniques and the ReMasker model. Although its RMSE 
values were slightly higher than those of these methods, they were still 
lower than those of conventional imputation methods. For instance, 
in MAR settings, the autoencoder achieved RMSE values close to the 
top-performing methods.

The ReMasker model consistently provided the most accurate 
imputations across all tested scenarios. In particular, it achieves better 
performances, comparable to MissForest in MCAR scenarios and 
comparable to KNN in MAR settings.

FIGURE 4

RMSE values in the MCAR scenario for all the tested imputation techniques, under varying conditions of sample size and missing ratio.

FIGURE 5

RMSE values in the MAR scenario for all the tested imputation techniques, under varying conditions of sample size and missing ratio.
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4 Discussion

In this study, we evaluated the efficacy of traditional imputation 
methods, various machine learning strategies, an autoencoder model, 
and the ReMasker—a novel Transformer-based model specifically 
designed for missing data imputation—using a psychometric dataset. 
Our results show that ReMasker outperforms conventional imputation 
techniques and exhibits better or comparable performance to other 
machine learning imputation methods across different scenarios and 
sample sizes. This performance can be attributed to the Transformer 
architecture used in ReMasker, which enhances its effectiveness for 
tabular data imputation. The multi-head self-attention mechanism in 
Transformer models performs optimizable smoothing over the latent 
representations of different tokens, making the Transformer robust 
against severe occlusions or perturbations. This capability is beneficial 
for learning representations invariant to missing values, thereby 
improving the imputation process. Indeed, the robust performance of 
ReMasker across various scenarios suggests it can be used without the 
need to specifically hypothesize the missing mechanism. In particular, 
Transformer models excel in such environments because they can 
capture intricate, nonlinear patterns, thereby preserving essential data 
structures and minimizing biases in imputation. This adaptability offers 
a significant advantage for psychometric research, where accurately 
representing latent constructs is crucial. This flexibility not only 
improves the precision of imputations but also enhances the reliability 
of subsequent analyses, leading to more robust insights into 
psychological constructs and behaviors.

The benefits of ReMasker and similar machine learning models 
are particularly notable in psychometric contexts, where data is often 
multidimensional and nuanced, including constructs that involve 
complex inter-variable relationships. Indeed, the unique value of ML 
models lies in their adaptability and scalability. These techniques can 
accommodate large, multidimensional datasets without the need for 
predefined statistical assumptions, which is especially relevant in 
psychological research, where data may come from diverse sources 
(e.g., surveys, behavioral assessments, sensor data) and exhibit 
multimodal characteristics.

Despite these promising findings, this study has limitations. One 
limitation is the focus on continuous data imputation, which may not 
fully represent psychometric datasets, as they often contain categorical 
data (e.g., Likert scales). This choice was made to maintain consistency 
across all methods, as not all are capable of handling categorical 
imputation. Future research should target the development and testing 
of methods specifically designed for categorical data.

Moreover, this study did not encompass all conventional and deep 
learning imputation techniques. Techniques such as Multiple Imputation 
by Rubin (1978) and refined in subsequent studies, which involve 
generating multiple datasets with different imputed values and 
combining results for comprehensive analysis, were excluded. These 
methods, especially Multivariate Imputation by Chained Equations 
(MICE), represent a robust approach but require specific model 
specifications that complicate direct comparison with single imputation 
methods. Also in the deep learning context, some multiple imputation 
methods have been recently proposed (e.g., Gondara and Wang, 2018; 
Lu et al., 2020; Vincent et al., 2008). Future research should explore these 
multiple imputation techniques in psychometric research, potentially 
integrating deep learning algorithms to enhance their effectiveness.

Additionally, this study did not address the Missing Not At 
Random (MNAR) mechanism, a scenario that many imputation 

techniques are not equipped to handle. Future work will aim to 
develop and test deep learning strategies tailored to the MNAR 
assumptions in a psychometric context.

Future research should focus on expanding this preliminary work 
by exploring how ML-based imputation techniques perform across 
different types of psychometric data and various research contexts, 
from exploratory analysis to predictive modeling. Conducting 
systematic simulations across diverse data types, including high-
dimensional datasets and those with varying levels of missingness, 
would clarify the strengths and limitations of specific ML models in 
psychological settings. Additionally, investigating how imputation 
methods affect the interpretation of psychometric models in predictive 
and explanatory frameworks could reveal the nuanced impact of data 
completeness on psychological insights.

Furthermore, it has to be noted that there are practical challenges 
associated with implementing ML and deep learning approaches in 
psychometric contexts. In particular, machine learning and deep 
learning techniques can require extensive technical knowledge to 
implement and may be computationally expensive. This issue could 
be  addressed by developing interfaces that make deep learning 
algorithms more accessible to non-technical users, as in the work of 
Collier et al. (2024).

5 Conclusion

Collectively, the results of this study underscore the critical role of 
methodological selection tailored to the unique attributes of the 
dataset and the specific nature of the missing data.

This study underscores the transformative potential of advanced 
ML models—especially deep learning techniques like the ReMasker 
model explored in this study—which are capable of learning complex, 
nonlinear patterns within data, enabling more accurate and flexible 
imputation approaches that align better with the complexities of 
psychological and psychometric research.

In conclusion, our evaluation of imputation methods 
demonstrates that deep learning techniques, in particular the 
ReMasker model, could improve the missing data imputation by 
requiring fewer assumptions on data characteristics and opening 
the possibility of handling complex and multimodal data. This 
progress is crucial not only for improving the reliability of 
statistical imputations in psychometric studies but also for 
enhancing the integrity and validity of research findings across 
various scientific fields.
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