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Introduction: A promising approach to optimizing recovery in youth football 
has been the use of machine learning (ML) models to predict recovery states 
and prevent mental fatigue. This research investigates the application of ML 
models in classifying male young football players aged under (U)15, U17, and U19 
according to their recovery state. Weekly training load data were systematically 
monitored across three age groups throughout the initial month of the 2019–
2020 competitive season, covering 18 training sessions and 120 observation 
instances. Outfield players were tracked using portable 18-Hz global positioning 
system (GPS) devices, while heart rate (HR) was measured using 1 Hz telemetry 
HR bands. The rating of perceived exertion (RPE 6–20) and total quality recovery 
(TQR 6–20) scores were employed to evaluate perceived exertion, internal 
training load, and recovery state, respectively. Data preprocessing involved 
handling missing values, normalization, and feature selection using correlation 
coefficients and a random forest (RF) classifier. Five ML algorithms [K-nearest 
neighbors (KNN), extreme gradient boosting (XGBoost), support vector machine 
(SVM), RF, and decision tree (DT)] were assessed for classification performance. 
The K-fold method was employed to cross-validate the ML outputs.

Results: A high accuracy for this ML classification model (73–100%) was verified. 
The feature selection highlighted critical variables, and we implemented the ML 
algorithms considering a panel of 9 variables (U15, U19, body mass, accelerations, 
decelerations, training weeks, sprint distance, and RPE). These features were 
included according to their percentage of importance (3–18%). The results were 
cross-validated with good accuracy across 5-fold (79%).

Conclusion: The five ML models, in combination with weekly data, demonstrated 
the efficacy of wearable device-collected features as an efficient combination in 
predicting football players’ recovery states.
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1 Introduction

Classifying recovery states in young football players who are still 
developing physically and mentally is crucial to ensure a high 
performance, reduce the injury risk, and enhance a better fatigue 
management (Rico-González et al., 2022b; Kellmann et al., 2018). 
Recovery management for under (U)15, U17, and U19 male football 
players must consider various physiological, psychological, and 
external factors that influence the effectiveness of rest and recuperation 
periods (Teixeira et  al., 2022a; Teixeira et  al., 2022b). Proper 
assessment and monitoring of recovery states can yield vital 
information about players’ readiness and overall health, thereby 
guiding coaches in tailoring training loads and recovery protocols 
more effectively (Teixeira et  al., 2023; Helwig et  al., 2023). The 
increasing demands on young football players, including frequent 
training sessions and competitive matches, place substantial strain on 
their bodies (Parr et al., 2021; Towlson et al., 2021).

Effective recovery strategies are essential to mitigate this strain 
and support the physiological adaptations that underpin performance 
improvements (Lee et al., 2023; Silva et al., 2022), which can help 
manage the physical and psychological stresses associated with 
intensive training and competition schedules (Teixeira et al., 2023; 
Howle et al., 2020). Optimizing recovery is crucial for youth players, 
whose bodies are still growing and developing, to support healthy 
development and avoid long-term health issues (Nobari et al., 2021; 
Clemente et al., 2021). Inadequate recovery and training intensity 
management during the microcycle can lead to overtraining 
syndrome, characterized by persistent fatigue, performance decline, 
and a heightened risk of injury (Ramos-Cano et al., 2022). Wearable 
technology has revolutionized the sports science field, providing 
insights into recovery states (Nobari et  al., 2021; Clemente et  al., 
2021). Devices that monitor heart rate (HR)—a key indicator of 
autonomic nervous system function and recovery status—are now 
commonplace in youth sports settings (Teixeira et al., 2022a; Santos 
et  al., 2021). Furthermore, wearable devices can track movement 
patterns and physical exertion using accelerometers and global 
positioning system (GPS) technology (Gómez-Carmona et al., 2021; 
Oliva-Lozano et  al., 2020), providing detailed information on 
distances covered, speeds attained, and the intensity of movements 
during training and competition. Such comprehensive data collection 
offers a holistic view of an athlete’s workload and recovery needs 
(Oliva-Lozano et al., 2020).

The integration and analysis of this multifaceted data pose 
significant challenges, necessitating advanced analytical methods 
(Hessels et  al., 2020). Machine learning (ML) has emerged as an 
artificial intelligence (AI) approach in this context, capable of analyzing 
vast and complex datasets to identify patterns and make predictions 
that traditional statistical methods might miss (Majumdar et al., 2022; 
Sarker, 2021). ML algorithms can process diverse data inputs, such as 
physiological demands and performance metrics, to classify and predict 
recovery outcomes (King et al., 2022; Filipas et al., 2020; Bourdon et al., 
2017). This capability allows for a more sophisticated understanding of 
how different factors interact to influence recovery states, which is 
particularly significant in young athletes (King et al., 2022; Filipas et al., 

2020; Bourdon et al., 2017). Recent studies highlight the effectiveness 
of ML models in predicting training load, recovery, and injury risks in 
football players (Vallance et al., 2023; Pillitteri et al., 2023; Rossi et al., 
2022; Vallance et al., 2020). Vallance et al. (2023) demonstrated that 
tree-based models significantly improved perceived exertion 
predictions by 60%, with past RPE values being the strongest predictors. 
Pillitteri et al. (2023) demonstrated significant negative correlations 
between training load, recovery states, and model availability according 
to the training day. Rossi et al. (2022) emphasized the utility of the ML 
approach in predicting players’ wellness by integrating workload 
history, while Vallance et al. (2020) found that combining internal and 
external load features enhanced long-term injury risk prediction. All 
studies highlight the potential of ML for personalized training planning 
and injury prevention in football contexts (Vallance et al., 2023; Pillitteri 
et al., 2023; Rossi et al., 2022; Vallance et al., 2020).

However, ML is still being researched to manage recovery status 
in young sub-elite football players. Most studies focus on elite football 
players (Vallance et al., 2023; Oliver et al., 2020), leaving a critical need 
to investigate how training load and recovery variables manifest in 
different age groups and competitive levels (Teixeira et al., 2021a; 
Teixeira et al., 2022e). In addition, the application of ML models to 
classify recovery states in young footballers is still underexplored 
despite its potential to improve injury understanding and fatigue 
prediction (Teixeira et al., 2022e; Oliveira, 2023). This research has 
sought to address this gap by using training data to develop predictive 
models that optimize performance and wellbeing in sub-elite youth 
football players (Díaz-García et al., 2022; Coutinho et al., 2018). More 
specifically, this research aims to investigate the use of ML models in 
the classification of recovery states in sub-elite male football players 
in the U15, U17, and U19 age groups.

2 Methodology

2.1 Participants

A total of 20 U15 players (age: 13.2 ± 0.5 years; height: 
1.69 ± 0.78 m; weight: 55.7 ± 9.4 kg), 20 U17 players (age: 15.4 ± 0.5 ± 1.2 
y; height: 1.8 ± 0.5 m; weight: 64.38 ± 6.6 kg), and 20 U19 players (age: 
17.39 ± 0.55 ± 1.8 ± 0.7 y; height: 1.82 ± 0.01 m; weight: 68.9 ± 8.4 kg) 
were observed for 2 weeks in a sub-elite Portuguese football academy. 
In the 2019–2020 competition season, the three age groups’ daily 
training loads were regularly observed. All participants were fully 
informed about the study’s purpose and potential risks in line with 
ethical standards. Informed consent was obtained from each 
participant or their guardian in the case of minors. The study protocol 
was approved by the local Ethics Committee at the University of Trás-
os-Montes e Alto Douro (3379-5002PA67807).

2.2 Study design

The weekly training load was consistently monitored across three 
age groups during the first month of the 2019–2020 competitive 
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season. The training data spanned a 6-week period, covering 18 
training sessions and 324 observations (U15 = 41, U17 = 20, and 
U19 = 26 observations, respectively). Individual datasets were 
considered eligible if the player adhered to a one-game-per-week 
schedule and fully participated in the training sessions. The training 
cycle consisted of three weekly sessions, each lasting approximately 
90 min, with match data excluded from the analysis. Training days 
were classified using the “match day minus format” (MD): MD-3 
(Tuesday), MD-2 (Wednesday), and MD-1 (Friday). On average, each 
session involved 18 players. Each tier had week 1 (Week_1) and week 
2 (Week_2) coded.

All age groups trained on outdoor pitches of official dimensions 
(FIFA standard; 100 × 70 m) with synthetic turf, held between 
10:00 AM and 8:00 PM under similar environmental conditions 
(14–20°C; relative humidity 52–66%).

2.3 Procedures

Outfield players were tracked using portable GPS devices 
(STATSports Apex®, Northern Ireland) throughout each training 
session. The GPS units, sampling at 18 Hz, provided raw data on 
position, velocity, and distance and included an accelerometer 
(100 Hz), magnetometer (10 Hz), and gyroscope (100 Hz). Each player 
wore the micro-technology in a mini pocket of a custom-made vest 
provided by the manufacturer, positioned on the upper back between 
the scapulae. All devices were activated 30 min before data collection 
to ensure a clear satellite signal reception (Teixeira et al., 2021b; Beato 
et  al., 2018). A 1-Hz short-range telemetry system was used to 
measure the heart rate (Garmin International, Inc., Olathe, KS, USA). 
The Rating of Perceived Exertion (RPE) scale was used to evaluate 
perceived exertion (Cabral et al., 2020). The total quality recovery 
(TQR) score proposed by Kenttä and Hassmén (1998) was applied to 
measure athletes’ recovery perception. The TQR was used before the 
start of the training session, while the RPE was applied after the end 
of the training session. The application steps were previously explained 
to the players, and a Microsoft Excel® spreadsheet was used to gather 
perceived exertion and recovery (Microsoft Corporation, USA) 
(Haddad et al., 2017).

2.4 Variables

The ML algorithms were built integrating age categories, 
anthropometric measures, GPS-based parameters, HR-based 
variables, and perceived exertion scales. Table 1 shows each included 
variable as well as the type of variable, the encoding label, and the 
average values.

2.4.1 Physical parameters
External training load was measured using time-motion data, 

including total distance (TD) covered (m), average speed (AvS), 
maximal running speed (MRS) (m/s), relative high-speed running 
(rHSR) distance (m), high metabolic load distance (HMLD) (m), 
sprinting (SPD) distance (m), dynamic stress load (DSL), number 
of accelerations (ACC), and number of decelerations (DEC). The 
GPS software provided data on locomotor categories above 
19.8 km/h: rHSR (19.8–25.1 km/h) and SPD (>25.1 km/h). Sprints 

were tracked by number and average sprint distance (m). HMLD, a 
metabolic variable, represents the distance covered by a player 
when the metabolic power exceeds 25.5 W/kg. HMLD encompasses 
all high-speed running and accelerations and decelerations above 
3 m/s2. Both acceleration variables (ACC/DEC) accounted for 
movements in the maximum intensity zone (>3 m/s2 and < 3 m/s2, 
respectively). DSL was assessed using a 100 Hz triaxial 
accelerometer integrated into the GPS devices, measuring the sum 
of accelerations across the three orthogonal axes of movement (X, 
Y, and Z planes), expressed as G force (Teixeira et al., 2021b; Beato 
et al., 2018).

2.4.2 Heart rate
The HR and perceived exertion were applied to measure the 

recovery state. The maximum heart rate (HRmax), average heart rate 
(AvHR), and percentage of HRmax (%HRmax) were HR-based variables. 
HRmax was obtained by Yo–Yo Intermittent Recovery Test Level 1 
(YYIR1) (Aquino et  al., 2020). Training impulse (TRIMP) was 
obtained using the procedures suggested by Akubat et al. (2012). The 
TRIMP was calculated by multiplying training duration (min) 
intensity (ΔHR = AvHR – HRrest/HRmax – HRrest), which was weighted 
according to the fractional elevation in heart rate and blood lactate 
concentration (Akubat et al., 2012):

TABLE 1 The variables included in the ML algorithm build.

Variable Type of variable (Encoding 
or mean  ±  SD)

Age category (U-17, U-15 or U-19) Binary numeric (positive = 1, 

negative = 0)

Height (meters) Continuous numeric (1.73 ± 0.07)

Body weight (kg) Continuous numeric (63 ± 10)

BMI (kg/m2) Continuous numeric (20.6 ± 2.13)

Week (Week 1 or 2) Binary numeric (positive = 1, 

negative = 0)

Position (CD, CM, FW, FB, WM) Binary multiclass (combination of 0,1 

sequences)

Total distance (meters) Continuous numeric (5,317 ± 1,628)

rHSR (meters) Continuous numeric (87 ± 78)

HMLD (meters) Continuous numeric (560 ± 289)

AvS (repetitions) Continuous numeric (51 ± 24)

SPR (repetitions) Continuous numeric (7 ± 2)

DSL (repetitions) Continuous numeric (252 ± 134)

ACC (repetitions) Continuous numeric (46 ± 22)

DEC (repetitions) Continuous numeric (42 ± 24)

Cal (kcal) Continuous numeric (1,046 ± 354)

RPE (index) Continuous numeric (13 ± 2)

TQR (index) Continuous numeric (16 ± 2)

TQR_Class (recovery status) Binary numeric (bad recovery = 1, good 

recovery = 0)

ACC, accelerations; AvS, average speed; Cal, Calories; CD: Central defenders; CM, central 
midfielders; DEC, decelerations; DSL, Dynamic stress load; FB, fullbacks; FW, forwards; 
HMLD, high metabolic load distance; rHSR, relative high-speed running; RPE, rating of 
perceived exertion; SPR, sprinting; TQR, total quality recovery; U, Under; WM, wide 
midfielders.
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2.4.3 Perceived exertion
The RPE and TQR were obtained using a scale from 6 to 20 to 

assess players’ perceived effort and recovery states, respectively (Brink 
et al., 2010). A 2-week familiarization with both scales was conducted 
before the study. Data were collected individually by the same 
researcher during GPS device removal to prevent peer influence on 
recovery and effort perception (Kenttä and Hassmén, 1998; Haddad 
et al., 2017). A Microsoft Excel® spreadsheet (Microsoft Corporation, 
USA) was used to gather perceived data.

2.4.4 Body composition
The height (m), weight (kg), chronological age (years), sitting 

height (cm), and level of experience (years) of the layers were recorded 
at each measurement point. Body mass index (BMI) was calculated by 
dividing weight by the square of height (kg/m2) (Teixeira et al., 2022a).

2.4.5 Data preprocessing and normalization
We utilized the computational programming language PythonTM 

(Python, 2023), where the libraries “seaborn,” “matplotlib.pyplot,” 
“numpy,” and “pandas” were enabled to import, visualize, and conduct 
the necessary data transformations (Unpingco, 2016). The recovery 
state collected by the TQR score was targeted as a binary level 
(0 = well-recovered; 1 = insufficient recovery). Following the cutoffs 
suggested by Kenttä and Hassmén (1998), the positive label was 
considered with values <13 points in the TQR scale. To ensure that the 
classes would be well-defined and facilitate the decision boundaries 
characterization by the ML algorithms, we defined the negative value 
only for that player with scores equal to 19–20 in the TQR scale, or 
else, making that the points for insufficiently recovered and the well-
recovered were far away from each other (More and Ingman, 2008). 
After applying this cutoff from the initial dataset (60 football players 
× 2 weeks = 120 observations), only 36 football players were included 
in the underlined criteria for positivity (n = 18 participants with TQR 
scores <13 points) or negativity (n = 18 participants with TQR scores 
approximately 19–20 points). To make possible the consideration of 
all features in calculating the importance, those features with a 
categoric nature were converted into numeric binary arrays using the 
one-hot encoding (Hancock and Khoshgoftaar, 2020). Next, the 
feature selection was performed using two different steps: the first step 
was performed where a correlation matrix was applied to identify the 
most correlated features and reduce dimensionality problems within 
the dataset, and in the second step, the random forest (RF) classifier 
was used to identify non-linear relationships between the most 
correlated features and thus build a more comprehensive panel of 
predictors of the football players’ recovery states. In the second step of 
the feature selection process, the “train_test_split” function was 
activated from the “sklearn” library, considering 70% of the dataset for 
training (n = 25) and 30% for testing (n = 11).

Furthermore, we  employed the package “from sklearn.
preprocessing import StandardScaler” to normalize the data after 
observing significant differences between the feature’s numerical 
scales and turned on the “StandardScaler” function (Unpingco, 2016; 
Biamonte et al., 2017). The characteristics were scaled within a range 

of −1,1 to facilitate easier interpretation of the sigmoid function as 

part of the normalizing process ( ) 1
1 xx

e
σ −=

+
 [with binary data 

(0,1)], where “e” is the numerical basis of the classification algorithm 
and “x” is the independent variable (2.71828) (Narayan, 1997).

2.4.6 Classifying algorithms
To perform the football players’ recovery state classification, 

we applied the rerun of the “train_test_split” function, also considering 
the same splitting setup [70% for training (n = 25); 30% for testing 
(n = 11)] (Unpingco, 2016; Cai et  al., 2018). To guarantee 
reproducibility between various runs of the same code, we employed 
a random seed of 0 for all algorithms. Next, five ML classifiers were 
implemented using the libraries “sklearn.neighbors import 
KNeighborsClassifier” [(Rico-González et al., 2022b) for K-nearest 
neighbors classifier (KNN)], “from sklearn.ensemble import 
GradientBoostingClassifier” [(Kellmann et  al., 2018) for Gradient 
Boosting Classifier (XGbosst)], “from sklearn.svm import SVC” 
[(Teixeira et al., 2022a) for support vector machine (SVM)], “from 
sklearn.ensemble import RandomForestClassifier” [(Teixeira et al., 
2022b) for RF], and “from sklearn.tree import DecisionTreeClassifier” 
[(Teixeira et al., 2023) for DT Classifier] were activated to apply the 
algorithms and perform the recovery state classification (Python, 
2023; Unpingco, 2016; Haslwanter, 2016; Pedregosa et al., 2011). Since 
all ML classifiers have limitations and strengths, the five ML classifiers 
were chosen in the present study aiming to verify the stability among 
different models to ensure that there were no overfitting and 
underfitting, thus testing their robustness to generalize to unseen 
datasets (Pedregosa et al., 2012; Kursa and Rudnicki, 2011).

The functions for accuracy, precision, recall, and F1-score were 
activated by activating the library “from sklearn.metrics import 
accuracy_score, confusion_matrix, classification_report” to assess the 
models (Hicks et al., 2022; Jierula et al., 2021). The following is a complete 
description of the algorithms and the corresponding assumptions:

2.4.7 K-nearest neighbors classifier
A data point is classified by the KNN classifier in the feature space 

based on the majority class among its KNN (Uddin et al., 2022). The 
equation exemplifies KNN:

 ( )neighborsmodey y=

where

 • y is the predicted class label;
 • yneighbors is the class labels of the k-nearest neighbors; and
 • mode is the most frequently occurring class label among 

the neighbors.

2.4.8 Gradient boosting classifier
The XGBoost classifier is the algorithm that builds a sequence of 

trees in which the new tree corrects the errors of the previous trees by 
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minimizing a loss function (Natekin and Knoll, 2013). This is the 
XGBoost equation expressed as follows:

 ( ) ( ) ( )1m m m mF x F x h xγ= − +

where

 • Fm(x) is the prediction of the mth model;
 • Fm − 1(x) is the prediction of the (m − 1)th model;
 • γm is the learning rate, which scales the contribution of each 

tree; and
 • hm is the mth weak learner (usually a DT).

2.4.9 Support vector machine
SVM classifier locates the hyperplane in the feature space that 

most effectively divides the classes with the greatest margin (Cervantes 
et al., 2020). The SVM was expressed by

 
( )21 || subject to . 1

2
 || + ≥ 
 

iminimize w yi w x b

where

 • w is the weight vector that defines the hyperplane;
 • b is the bias term;
 • yi is the class label of the ith training sample;
 • xi is the feature vector of the ith training sample; and
 • w·xi + b is the decision function that calculates the distance from 

the hyperplane.

2.4.10 Random forest classifier
The RF classifier builds several DTs and outputs the mode of the 

classes for classification (Breiman, 2001). The equation can 
be expressed by

 ( ){ }( )model 1T
t ry h x= =

where

 • y is the predicted class label;
 • ht is the prediction from the tth DT;
 • T is the total number of trees in the forest; and
 • mode is the most frequently occurring class label among the trees’ 

predictions.

2.4.11 Decision tree classifier
To maximize the separation of classes at each node, the DT 

classifier essentially operates by dividing the data into subgroups 
based on the most relevant feature (Song and Lu, 2015). DT is 
characterized by the following equation:

 
( ) 2

1
split criterion : Gini 1

n
i

i
t p

=
= −∑

where

 • Gini(t) is the Gini impurity for a node t;
 • n is the number of classes; and
 • pi is the probability of a randomly chosen element being classified 

as class i at node t.

2.4.12 Model evaluation
To assess the model’s performance, we used the metrics accuracy, 

precision, recall, and F1-score, as explained in the following (Hicks 
et al., 2022):

 (1) Accuracy score: Accuracy measures the proportion of correctly 
classified instances among all instances. It is calculated as the 
ratio of correctly predicted instances (true positives and 
negatives) to the total number of instances (Hicks et al., 2022).

 
Accuracy TP TN

TP TN FP FN
+

=
+ + +

where TP = true positives; TN = true negatives; FP = false positives; 
and FN = false negatives.

 (2) Precision: Precision measures the proportion of predicted 
positive instances that are correctly classified. It is calculated as 
the ratio of true positives to the sum of true positives and false 
positives (Hicks et al., 2022).

 
Precision TP

TP FP
=

+

 (3) Recall: Sensitivity, also known as recall or true positive rate, 
measures the proportion of actual positive instances that the 
model correctly predicts. It is calculated as the ratio of true 
positives to the sum of true positives and false negatives (Hicks 
et al., 2022).

 
Recall TP

TP FN
=

+

 (4) F1-score: The F1-score is the harmonic mean of precision and 
recall, providing a single metric that balances both measures. 
It is calculated using the precision and recall values, combining 
them into a single value (Hicks et al., 2022).

 
PPV RecallF1 score 2
PPV Recall

×
− = ×

+

To evaluate the models’ stability in the classification task, 
we employed K-fold cross-validation. This method divides the original 
dataset into K distinct subsets, where each subset is alternately used as 
a validation set while the remaining subsets are used for training. This 
approach assesses how consistently the models perform across 
different segments of the dataset, ensuring the robustness of the results 
(Wong, 2015). For this evaluation, we tested 5-fold of the original X 
array used in the training and testing processes of the five ML 
classifiers (Rodriguez et  al., 2010). This approach allowed us to 
evaluate the consistency of the classifications.
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3 Results

Figure  1 shows the correlation coefficient of each independent 
variable with the TQR classes. In this way, we consider a panel consisting 
of only variables that presented at least small correlation coefficients with 
the target variable, fitting the dataset with the variables U19, U15, BMI, 
ACC, DEC, Week_1, Week_2, SPD, and RPE. These features were filtered 
within a new dataset, where they were considered for the final feature 
selection process with an RF classifier.

Next, the RF algorithm presents a very good classification report 
(accuracy = 92%; recall = 91%; and F1-score = 91%), with a good validation 
report after passing the same array within the 5-fold cross-validation 
(accuracy range = 71–87%; standard deviation = 12%; and average 
accuracy = 83%). Table 1 shows the classification report for the second 
step of feature selection with an RF classifier.

Figure  2 shows the best ranking of features captured by RF, 
reporting that the best features were U19 (18%) and U15 (15%) age 
categories, and the RPE (3%) presented the weaker contribution.

After reducing the data dimensionality, we implemented the five 
ML algorithms considering the panel of best features hierarchically 
reported as follows: U19, U15, BMI, ACC, DEC, Week_1, Week_2, 
SPD, and RPE. Table 2 shows that the algorithm’s performance ranged 
from 73–100% (Table 2).

Table  3 compiled the cross-validation of the algorithm’s 
performance, which with an average performance of 79% validated 
and pointed to good generalization performance of the panel of 

features collected with wearable devices in predicting the football 
player’s recovery state (Table 4).

4 Discussion

The primary objective of this study was to investigate the use of 
ML models in the classification of male football players in the U15–17 
and U19 age groups for recovery states. The key parameters offer a 
detailed picture of the physical and mental demands placed on players 
during training sessions. After reducing the data dimensionality, 
we implemented the ML algorithms considering a panel of 9 variables 
(U19, U15, BMI, ACC, DEC, Week_1, Week_2, SPD, and RPE). The 
9 features were included according to their percentage of importance 
(3–18%). As the main results, we got good (73%) to very good (100%) 
in identifying football players’ recovery state based on the 10 feature 
panel football.

The correlation analysis revealed that several variables exhibited 
significant correlations with the target variable (TQR). These variables, 
including age categories, BMI, acceleration, deceleration, training 
weeks, speed, and both subjective and objective RPE, were selected for 
further analysis using the RF classifier. The RF algorithm demonstrated 
strong predictive performance, achieving an accuracy of 92% and an 
F1-score of 91%. Cross-validation further validated the model’s 
generalization ability, with an average accuracy of 83% across 5-fold. 
Feature importance analysis identified age categories as the most 

FIGURE 1

Correlation heatmap of features and TQR classes. ACC, accelerations; BMI, body mass index; DEC, decelerations; RPE, rating of perceived exertion; 
SPD, sprint distance; U_15, under 15; U_19, under 19; Week_1, first weekly training load; Week_2, second weekly training load.
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influential predictors, followed by RPE. Drawing from theoretical 
underpinnings and insights from existing studies in this area, the 
selected variables for the panel included SPR, HMLD, DSL, AvS, and 
ACC. These variables exhibited percentage importance ranging from 
3 to 18%, signifying their significant relevance in predicting players’ 
recovery states. Implementing ML algorithms using this panel of five 
variables yielded varied performances. Both RF and DT algorithms 
demonstrated exceptional performance, each with an accuracy of 
99%. This high performance can be attributed to the ability of these 
algorithms to effectively handle the complexity and non-linearity of 
the data, as well as their robustness to data variability. Furthermore, 
the insights from the existing literature focusing on applying ML in 
football contexts, training load monitoring, and related areas 
emphasize the importance of data-driven approaches and algorithm 
selection. Techniques such as RT and DT have been widely recognized 
for their effectiveness in sports analytics due to their ability to handle 

complex datasets and provide interpretable results. XGBoost, another 
algorithm utilized in this study, also exhibited high performance with 
an accuracy of 96%. This underscores its efficacy as a boosting 
technique that enhances predictive accuracy by combining multiple 
weak models into a robust model. In contrast, KNN and SVM 
algorithms demonstrated lower performances, with 51 and 40% 
accuracy, respectively. These findings suggest that KNN and SVM may 
not be as effective in dealing with the complexity of the training data 
collected via wearable devices. Recent advancements in sports science 
have significantly enhanced the analysis and monitoring of football 
players’ performance and wellbeing (Nobari et al., 2021; Clemente 
et al., 2021). Standard methods for analyzing player movement and 
fatigue, such as perceived exertion scales and heart rate monitors, have 
proven effective and accessible (Kenttä and Hassmén, 1998). These 
tools provide practical means for regularly assessing 
psychophysiological fatigue and performance changes during training 
and matches (Cabral et al., 2020).

The subsequent application of five ML algorithms to the selected 
features yielded consistent and promising results. All algorithms 
achieved accuracies ranging from 73 to 100%, with an average 
performance of 95%. The cross-validation confirmed the 
generalization performance of these models, demonstrating their 
ability to predict recovery states in football players based on the 
collected features. These findings suggest that a combination of 
age-related factors, physiological metrics, and subjective perceived 
assessments can effectively predict recovery states in young football 
players. This value reflects the weighted average accuracy of the 
different algorithms used in the study. While the individual top 
performances of RF and DT are noteworthy, the overall weighted 
average is influenced by the relatively lower performances of KNN and 

FIGURE 2

Best features to classify the soccer player’s recovery state. Data are displayed in percentage of importance. ACC,  accelerations; BMI, body mass index; 
DEC,  decelerations; RPE,  rating of perceived exertion; SPD,  sprint distance; U_15,  under 15; U_19,  under 19; Week_1, first weekly training load; 
Week_2, second weekly training load.

TABLE 2 Detailed classification of random forest (RF) algorithm applied 
to feature selection.

Precision Recall f1-score Support

Class

  0 1.00 0.80 0.89 5

  1 0.86 0.100 92 6

Metrics

  Accuracy 0.91 11

  Macro avg 0.93 0.90 0.91 11

  Weighted avg 0.92 0.91 0.91 11

Avg, average.
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SVM algorithms. Therefore, practical applications should consider not 
only individual performance but also the robustness and consistency 
across different scenarios when selecting ML algorithms. ML models 
can achieve relatively high accuracy in predicting outcomes or 
analyzing data, and their performance can vary significantly 
depending on the specific algorithm used. In this study, the overall 
performance of the ML models, as indicated by a compiled algorithm 
performance table, was 74.5%, reflecting a weighted average accuracy. 
Therefore, when applying ML models in practical sports science 
scenarios, it is essential to consider not just the highest performing 
algorithms but also the robustness and consistency across various 
conditions and datasets (Unpingco, 2016; Cai et  al., 2018). This 
comprehensive approach ensures that the chosen ML model performs 
reliably under different circumstances, enhancing its practical utility 
in sports science applications (Hicks et al., 2022; Jierula et al., 2021).

However, the study also highlights the variability in individual 
responses to training loads. The age group was a significant predictor 
of recovery status in a study that identified essential variables, 
including U19, U15, BMI, ACC, DEC, Week_1, Week_2, SPD, and 
RPE. Recent studies have demonstrated the effectiveness of these 
models in classifying young football players’ recovery states based on 
data collected from wearable devices (Majumdar et al., 2022; Rico-
González et al., 2022a; Teixeira et al., 2024). This finding is consistent 
with the systematic study, highlighting the importance of integrating 
subjective wellness and training load indicators (Vallance et al., 2023; 
Herold et al., 2019). The RF classifier demonstrated these models’ 
reliability across various expertise levels, achieving an accuracy of 92% 
on the training set and maintaining an average accuracy of 83% in 
5-fold cross-validation. This finding is consistent with a systematic 
review, highlighting the importance of integrating training load data 
with perceived wellness to improve predictive accuracy in football 

(Rico-González et al., 2022a). Majumdar et al. (2022) also observed 
that despite interpretability issues, black-box models such as RF often 
outperform other methods in predicting relationships between 
workload and injuries in football. Such insights are vital for developing 
customized training and recovery plans for individual athletes. 
Furthermore, feature importance analysis from the study highlighted 
the significant role of perceived exertion in recovery predictions to 
understand player development and injury prevention (Teixeira et al., 
2024). The focus on subjective measures such as RPE and its link to 
objective training loads is further supported by research showing that 
wellness questionnaires can enhance monitoring in football (Calvo, 
2019; García-Aliaga et al., 2021; Calvo et al., 2019). Moreover, testing 
different ML algorithms on a reduced feature set validated the 
effectiveness of the selected variables in predicting recovery states and 
fatigues with consistently strong accuracy (Calvo, 2019; Calvo et al., 
2019). Calvo et al. (2019) recently reported that mental load influences 
recovery states, impacting decision-making, technical performance, 
and physical outputs. Changing the scoring structure during football 
practice has a substantial impact on the physical and mental strain of 
players; this effect is more pronounced in shorter games than in 
possession drills (Calvo, 2019). Fatigue can be effectively managed by 
modifying psychological content, task features, coaching behaviors, 
and competitive structure (Miguel et al., 2021; Oliveira et al., 2021). 
Further research should add variables to measure central and 
peripheral fatigue to compare them with recovery states and the 
possible value of perceived fatigability (Alba-Jiménez et al., 2022).

Despite a standardized training regimen, players exhibited different 
levels of perceived exertion and recovery (Teixeira et al., 2022a; Teixeira 
et al., 2022e). This variability underscores the need for individualized 
training plans that cater to the unique needs and capacities of each player. 
Coaches and sports scientists should consider these individual 

TABLE 3 Algorithm’s performance in classifying football’s fatigue states.

Algorithm Accuracy (%) Precision (%) Recall (%) F-1 score (%) Average metrics

KNN 100 100 100 100 100

XGboost 73 74 73 73 73

SVM 100 100 100 100 100

RF 100 100 100 100 100

DT 100 100 100 100 100

Algorithm’s Aver. 95 95 95 95 95

KNN, k-Nearest Neighbors; XGBoost, Gradient Boosting Gradient Boosting Classifier; SVM, Support Vector Machine; RF, Random Forest Classifier; DT, Decision tree Classifier; Algorithm’s 
Aver, general algorithm’s average.

TABLE 4 Outputs of the cross-validation of the classifying models’ performance.

Algorithm Accuracy (%) Accuracy 
Sub.1 (%)

Accuracy 
Sub.2 (%)

Accuracy 
Sub.3 (%)

Accuracy 
Sub.4 (%)

Accuracy 
Sub.5 (%)

SD (%)

KNN 83 87 71 85 71 100 11

XGboost 75 75 57 71 71 100 14

SVM 75 62 71 71 71 100 13

RF 83 87 85 71 71 100 11

DT 78 75 71 57 85 100 14

Overall Performance 

(x̄)

79 77 71 71 74 100 13

Sub., subsets from the entire X array; SD, standard deviation; x̄., arithmetical average; KNN, k-Nearest Neighbors; XGBoost, Gradient Boosting Gradient Boosting Classifier; SVM, Support 
Vector Machine; RF, Random Forest Classifier; DT, Decision tree Classifier; Algorithm’s Aver, general algorithm’s average.
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differences when designing training programs to optimize performance 
and reduce the risk of injury. Environmental conditions, such as 
temperature and humidity, were kept relatively consistent during the 
training sessions (Taylor et  al., 2010). This controlled environment 
ensured that external factors did not unduly influence the training loads 
and recovery metrics. Nevertheless, the future studies could explore the 
impact of varying environmental conditions on training and recovery to 
provide more comprehensive guidelines for training under different 
climates. The findings from this study indicate that the training loads 
were systematically managed, with a clear structure to the training 
microcycle. The findings emphasize the importance of individualized 
training approaches and the need for ongoing monitoring to ensure the 
health and performance of young athletes (Howle et  al., 2020). In 
addition, the results of this study provide valuable insights into the 
relative importance of independent variables in the dataset and their 
contribution to predicting the recovery state of football players using ML 
algorithms (Teixeira et  al., 2023; Howle et  al., 2020). This variable 
selection was crucial for reducing data dimensionality and facilitating the 
efficient implementation of ML algorithms. U19, U15, BMI, ACC, DEC, 
Week_1, Week_2, SPD, and RPE are crucial for predicting training 
demands in sub-elite young footballers.

4.1 Practical applications, the future 
research, and limitations

The future research should continue to explore the interplay 
between training load, recovery, and performance, incorporating a 
wider range of variables and more extended observation periods along 
the season. The integration of advanced monitoring technologies, such 
as GPS and accelerometers, has revolutionized the way training loads 
are assessed in sports (Hessels et al., 2020). These tools offer validated 
accuracy and granularity, allowing for more informed decision-
making in training design and load management (Teixeira et  al., 
2021b; Teixeira et al., 2022d). The use of high-frequency sampling 
devices in this study ensured that even the subtle nuances of player 
movement and exertion were captured, providing a robust dataset for 
analysis. The RPE provided an additional layer of understanding by 
quantifying the subjective effort perceived by the players (Chang et al., 
2020; De Meester et al., 2020). This measure is particularly useful for 
assessing internal load and ensuring that training intensities are 
aligned with the players’ physical capacities (Rico-González et al., 
2022b; Sallen et  al., 2020). The use of RPE has been validated in 
numerous studies and is recognized as a reliable indicator of training 
load in football (Teixeira et al., 2022c; Ferraz et al., 2022). All these 
variables are high-intensity variables, so monitoring them is essential 
to describe their impact to predict recovery states and prevent fatigue 
(Alba-Jiménez et al., 2022). This point plays a fundamental role in the 
application of complementary training methodologies associated with 
Strength and Conditioning, such as concurrent training (Seipp et al., 
2023), plyometric (Gherghel et  al., 2021), or strength, agility, and 
quickness (SAQ) (Trecroci et al., 2016; Trecroci et al., 2022). Moreover, 
the RPE session values could be  another strategy for refining the 
recovery states classification model and to further individualize the 
training load. Another potential limitation, as the article currently 
stands, could be  that a preliminary test was not conducted to 
determine the relationship between HR and lactate levels. This may 
have resulted in TRIMP not being a reliable predictor of recovery or 

fatigue. Thus, extending the monitoring periods over different seasons 
and including data from real match contexts may help to better 
understand long-term fatigue and recovery patterns. Thus, the future 
studies could incorporate other variables, such as biochemical 
markers, sleep patterns, and psychological measures, to enhance the 
predictive power of recovery models. The inclusion of biochemical 
data (stress and inflammation) and sleep patterns could also be very 
valuable for more profound comprehension of the recovery state 
during the weekly training process of football players during different 
sportive seasons (Branquinho et al., 2024a; Branquinho et al., 2024b).

In fact, using more advanced modeling, such as deep learning 
and time series approaches, could improve prediction accuracy. 
In addition, incorporating technical and tactical performance 
metrics alongside recovery data could provide more 
comprehensive insights into player readiness. The importance of 
age-related suggests that recovery management protocols should 
be tailored to specific age groups to ensure optimal recovery. The 
integration of GPS, HR data, and perceived exertion provides 
valuable insights that can be  used to monitor recovery states 
during the season. Furthermore, these enhancements could 
further refine models and algorithms for recovery protocols and 
injury prevention strategies in youth football.

As research limitations, data were collected from the unreal 
context of football matches. There is a lack of longitudinal data that 
would help to understand long-term patterns of fatigue and recovery 
state among football players. In addition, the predictor explained 
between 3 and 18% of recovery status, suggesting that additional 
predictors could improve the accuracy of the model. In fact, the low 
training frequency per week (3 days vs. 4 days without activity) makes 
it essential to monitor other activities outside the training period to 
understand the influence of fatigue and the ability of the models 
studied to explain recovery. Thus, additional longitudinal data are 
essential in training algorithms that are more representative of young 
football players. More specifically, we need to understand the effects 
of recovery states on other vital dimensions, such as technical and 
tactical performance at different levels, ages, and development stages 
(De Meester et al., 2020; Branquinho et al., 2024a).

5 Conclusion

In conclusion, the five ML models, in combination with weekly 
data, demonstrated the efficacy of wearable device-collected features 
as an efficient combination in predicting sub-elite young football 
players’ recovery states. Critical variables were identified by feature 
selection, and 10 variables—body mass, U15, U19, accelerations, 
decelerations, training weeks, sprint distance, and RPE—were taken 
into consideration while implementing the machine learning 
algorithms. The future research could explore incorporating technical, 
tactical, and psychological variables and applying deep learning 
techniques to potentially further improve the predictive accuracy and 
practical utility of ML models in the team’s sports contexts.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

https://doi.org/10.3389/fpsyg.2024.1447968
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Teixeira et al. 10.3389/fpsyg.2024.1447968

Frontiers in Psychology 10 frontiersin.org

Ethics statement

The studies involving humans were approved by Ethics Committee 
at the University of Trás-os-Montes e Alto Douro (3379-
5002PA67807). The studies were conducted in accordance with the 
local legislation and institutional requirements. Written informed 
consent for participation in this study was provided by the participants’ 
legal guardians/next of kin.

Author contributions

JT: Writing – review & editing, Writing – original draft, Visualization, 
Methodology, Investigation, Formal analysis, Conceptualization. SE: 
Writing – original draft, Visualization, Formal analysis, Data curation. LB: 
Writing – review & editing, Validation, Software, Methodology. RF: 
Writing – review & editing, Resources, Methodology, Conceptualization. 
DP: Writing – review & editing, Visualization, Validation, Data curation. 
DM: Writing – review & editing, Formal analysis, Data curation, 
Conceptualization. RM: Writing – review & editing, Validation, 
Methodology, Formal analysis. TB: Writing – review & editing, Validation, 
Resources, Methodology, Conceptualization. AM: Writing – review & 
editing, Validation, Supervision, Project administration. PF: Writing – 
review & editing, Supervision, Project administration, Conceptualization.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. This research 
was supported by the Portuguese Foundation for Science and 
Technology, I.P., under grant number UID/CED/04748/2020; 

SPRINT—Sport Physical Activity and Health Research & Innovation 
Center, Portugal; Life Quality Research Center (LQRC-CIEQV), 
Santarém, Portugal; Research Center for Active Living and Wellbeing 
(Livewell), Bragança, Portugal; and Research Centre in Sports Sciences, 
Health Sciences and Human Development, Vila Real, Portugal.

Acknowledgments

The authors acknowledge all coaches and playing staff for 
cooperation during all collection procedures.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member 
of Frontiers, at the time of submission. This had no impact on the peer 
review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
Akubat, I., Patel, E., Barrett, S., and Abt, G. (2012). Methods of monitoring the 

training and match load and their relationship to changes in fitness in professional youth 
soccer players. J. Sports Sci. 30, 1473–1480. doi: 10.1080/02640414.2012.712711

Alba-Jiménez, C., Moreno-Doutres, D., and Peña, J. (2022). Trends assessing 
neuromuscular fatigue in team sports: a narrative review. Sports 10:33. doi: 10.3390/
sports10030033

Aquino, R., Carling, C., Maia, J., Vieira, L. H. P., Wilson, R. S., Smith, N., et al. (2020). 
Relationships between running demands in soccer match-play, anthropometric, and 
physical fitness characteristics: a systematic review. Int. J. Perform. Anal. Sport 20, 
534–555. doi: 10.1080/24748668.2020.1746555

Beato, M., Devereux, G., and Stiff, A. (2018). Validity and reliability of global 
positioning system units (STATSports viper) for measuring distance and peak speed in 
sports. J. Strength Condition. Res. 32, 2831–2837. doi: 10.1519/JSC.0000000000002778

Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., and Lloyd, S. (2017). 
Quantum machine learning. Nature 549, 195–202. doi: 10.1038/nature23474

Bourdon, P. C., Cardinale, M., Murray, A., Gastin, P., Kellmann, M., Varley, M. C., 
et al. (2017). Monitoring athlete training loads: consensus statement. Int. J. Sports 
Physiol. Perform. 12, S2-161–S2-170. doi: 10.1123/IJSPP.2017-0208

Branquinho, L., De França, E., Teixeira, J., Paiva, E., Forte, P., Thomatieli-Santos, R., 
et al. (2024a). Relationship between key offensive performance indicators and match 
running performance in the FIFA Women’s world cup 2023. Int. J. Perform. Anal. Sport, 
1–15. doi: 10.1080/24748668.2024.2335460

Branquinho, L., De França, E., Teixeira, J., Titton, A., Barros, L., Campos, P., et al. 
(2024b). Identifying the ideal weekly training load for in-game performance in an elite 
Brazilian soccer team. Front. Physiol. 15:1341791. doi: 10.3389/fphys.2024.1341791

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32. doi: 10.1023/A:1010933404324

Brink, M. S., Nederhof, E., Visscher, C., Schmikli, S. L., and Lemmink, K. A. P. M. 
(2010). Monitoring load, recovery, and performance in young elite soccer players. J. 
Strength Condition. Res. 24:597. doi: 10.1519/JSC.0b013e3181c4d38b

Cabral, L. L., Nakamura, F. Y., Stefanello, J. M. F., Pessoa, L. C. V., Smirmaul, B. P. C., 
and Pereira, G. (2020). Initial validity and reliability of the Portuguese Borg rating of 
perceived exertion 6-20 scale. Measurement Phys. Educ. Exer. Sci. 24, 103–114. doi: 
10.1080/1091367X.2019.1710709

Cai, J., Luo, J., Wang, S., and Yang, S. (2018). Feature selection in machine learning: a 
new perspective. Neurocomputing 300, 70–79. doi: 10.1016/j.neucom.2017.11.077

Calvo, T. G. (2019). Mental load and fatigue in football: current knowledge and 
practical applications. Actividad física y deporte: ciencia y profesión 31:33.

Calvo, T. G., González-Ponce, I., Ponce, J. C., Tomé-Lourido, D., and Vales-Vázquez, Á. 
(2019). Incidence of the tasks scoring system on the mental load in football training. 
Revista de Psicologia del Deporte 28, 79–86.

Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L., and Lopez, A. (2020). A 
comprehensive survey on support vector machine classification: applications, challenges 
and trends. Neurocomputing 408, 189–215. doi: 10.1016/j.neucom.2019.10.118

Chang, C. J., Putukian, M., Aerni, G., Diamond, A. B., Hong, E. S., Ingram, Y. M., et al. 
(2020). Mental health issues and psychological factors in athletes: detection, management, 
effect on performance, and prevention: American medical Society for Sports Medicine 
Position Statement. Clin. J. Sport Med. 30:e61. doi: 10.1097/JSM.0000000000000817

Clemente, F. M., González-Fernández, F. T., Ceylan, H. I., Silva, R., Younesi, S., 
Chen, Y. S., et al. (2021). Blood biomarkers variations across the pre-season and 
interactions with training load: a study in professional soccer players. J. Clin. Med. 
10:5576. doi: 10.3390/jcm10235576

Coutinho, D., Gonçalves, B., Wong, D. P., Travassos, B., Coutts, A. J., and Sampaio, J. 
(2018). Exploring the effects of mental and muscular fatigue in soccer players’ 
performance. Human Movement Sci. 58, 287–296. doi: 10.1016/j.humov.2018.03.004

De Meester, A., Barnett, L. M., Brian, A., Bowe, S. J., Jiménez-Díaz, J., Van Duyse, F., 
et al. (2020). The relationship between actual and perceived motor competence in 
children, adolescents and young adults: a systematic review and Meta-analysis. Sports 
Med. 50, 2001–2049. doi: 10.1007/s40279-020-01336-2

https://doi.org/10.3389/fpsyg.2024.1447968
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://doi.org/10.1080/02640414.2012.712711
https://doi.org/10.3390/sports10030033
https://doi.org/10.3390/sports10030033
https://doi.org/10.1080/24748668.2020.1746555
https://doi.org/10.1519/JSC.0000000000002778
https://doi.org/10.1038/nature23474
https://doi.org/10.1123/IJSPP.2017-0208
https://doi.org/10.1080/24748668.2024.2335460
https://doi.org/10.3389/fphys.2024.1341791
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1519/JSC.0b013e3181c4d38b
https://doi.org/10.1080/1091367X.2019.1710709
https://doi.org/10.1016/j.neucom.2017.11.077
https://doi.org/10.1016/j.neucom.2019.10.118
https://doi.org/10.1097/JSM.0000000000000817
https://doi.org/10.3390/jcm10235576
https://doi.org/10.1016/j.humov.2018.03.004
https://doi.org/10.1007/s40279-020-01336-2


Teixeira et al. 10.3389/fpsyg.2024.1447968

Frontiers in Psychology 11 frontiersin.org

Díaz-García, J., González-Ponce, I., Ponce-Bordón, J. C., López-Gajardo, M. Á., 
Ramírez-Bravo, I., Rubio-Morales, A., et al. (2022). Mental load and fatigue assessment 
instruments: a systematic review. Int. J. Environ. Res. Public Health 19:419. doi: 10.3390/
ijerph19010419

Ferraz, R., Forte, P., Branquinho, L., Teixeira, J., Neiva, H., and Marinho, D., et al. 
(2022). The performance during the exercise: Legitimizing the psychophysiological 
approach.

Filipas, L., Borghi, S., Torre, A. L., and Smith, M. R. (2020). Effects of mental fatigue 
on soccer-specific performance in young players. Sci. Med. Football 5, 150–157. doi: 
10.1080/24733938.2020.1823012

García-Aliaga, A., Marquina, M., Coterón, J., Rodríguez-González, A., and 
Luengo-Sánchez, S. (2021). In-game behaviour analysis of football players using 
machine learning techniques based on player statistics. Int. J. Sports Sci. Coach. 16, 
148–157. doi: 10.1177/1747954120959762

Gherghel, A., Badau, D., Badau, A., Moraru, L., Manolache, G. M., Oancea, B. M., et al. 
(2021). Optimizing the explosive force of the elite level football-tennis players through 
plyometric and specific exercises. Int. J. Environ. Res. Public Health 18:8228. doi: 
10.3390/ijerph18158228

Gómez-Carmona, C. D., Rojas-Valverde, D., Rico-González, M., Ibáñez, S. J., and 
Pino-Ortega, J. (2021). What is the most suitable sampling frequency to register 
accelerometry-based workload? A case study in soccer. J. Sports Eng. Technol. 235, 
114–121. doi: 10.1177/1754337120972516

Haddad, M., Stylianides, G., Djaoui, L., Dellal, A., and Chamari, K. (2017). Session-
RPE method for training load monitoring: validity, ecological usefulness, and 
influencing factors. Front. Neurosci. 11:612. doi: 10.3389/fnins.2017.00612

Hancock, J. T., and Khoshgoftaar, T. M. (2020). Survey on categorical data for neural 
networks. J. Big Data 7:28. doi: 10.1186/s40537-020-00305-w

Haslwanter, T. (2016). An introduction to statistics with Python. With Applications 
in the Life Sciences. Switzerland: Springer International Publishing.

Helwig, J., Diels, J., Röll, M., Mahler, H., Gollhofer, A., Roecker, K., et al. (2023). 
Relationships between external, wearable sensor-based, and internal parameters: a 
systematic review. Sensors 23:827. doi: 10.3390/s23020827

Herold, M., Goes, F., Nopp, S., Bauer, P., Thompson, C., and Meyer, T. (2019). Machine 
learning in men’s professional football: current applications and future directions for 
improving attacking play. Int. J. Sports Sci. Coach. 14, 798–817. doi: 
10.1177/1747954119879350

Hessels, R. S., Niehorster, D. C., Holleman, G. A., Benjamins, J. S., and Hooge, I. T. C. 
(2020). Wearable technology for “real-world research”: realistic or not? Perception 49, 
611–615. doi: 10.1177/0301006620928324

Hicks, S. A., Strümke, I., Thambawita, V., Hammou, M., Riegler, M. A., Halvorsen, P., 
et al. (2022). On evaluation metrics for medical applications of artificial intelligence. Sci. 
Rep. 12:5979. doi: 10.1038/s41598-022-09954-8

Howle, K., Waterson, A., and Duffield, R. (2020). Injury incidence and workloads 
during congested schedules in football. Int. J. Sports Med. 41, 75–81. doi: 
10.1055/a-1028-7600

Jierula, A., Wang, S., Oh, T. M., and Wang, P. (2021). Study on accuracy metrics for 
evaluating the predictions of damage locations in deep piles using artificial neural 
networks with acoustic emission data. Appl. Sci. 11:2314. doi: 10.3390/app11052314

Kellmann, M., Bertollo, M., Bosquet, L., Brink, M., Coutts, A. J., Duffield, R., et al. 
(2018). Recovery and performance in sport: consensus statement. Int J Sport Physiol 
Perform. 13, 240–245. doi: 10.1123/ijspp.2017-0759

Kenttä, G., and Hassmén, P. (1998). Overtraining and recovery: a conceptual model. 
Sports Med. 26, 1–16. doi: 10.2165/00007256-199826010-00001

King, M., Ball, D., Weston, M., McCunn, R., and Gibson, N. (2022). Initial fitness, 
maturity status, and total training explain small and inconsistent proportions of the 
variance in physical development of adolescent footballers across one season. Res. Sports 
Med. 30, 283–294. doi: 10.1080/15438627.2021.1888106

Kursa, M., and Rudnicki, W. (2011). The all relevant feature selection using 
random Forest.

Lee, G., Ryu, J., and Kim, T. (2023). Psychological skills training impacts autonomic 
nervous system responses to stress during sport-specific imagery: an exploratory study 
in junior elite shooters. Front. Psychol. 14:1047472. doi: 10.3389/fpsyg.2023.1047472

Majumdar, A., Bakirov, R., Hodges, D., Scott, S., and Rees, T. (2022). Machine learning 
for understanding and predicting injuries in football. Sports Med. 8:73. doi: 10.1186/
s40798-022-00465-4

Miguel, M., Oliveira, R., Loureiro, N., García-Rubio, J., and Ibáñez, S. J. (2021). Load 
measures in training/match monitoring in soccer: a systematic review. Int. J. Environ. 
Res. Public Health 18:2721. doi: 10.3390/ijerph18052721

More, K., and Ingman, D. (2008). Quality approach for multi-parametric data fusion. 
NDT & E Int. 41, 155–162. doi: 10.1016/j.ndteint.2007.10.010

Narayan, S. (1997). The generalized sigmoid activation function: competitive 
supervised learning. Inf. Sci. 99, 69–82. doi: 10.1016/S0020-0255(96)00200-9

Natekin, A., and Knoll, A. (2013). Gradient boosting machines, a tutorial. Front 
Neurorobot:7. doi: 10.3389/fnbot.2013.00021

Nobari, H., Fani, M., Mainer Pardos, E., and Perez-Gomez, J. (2021). Fluctuations in 
well-being based on position in elite young soccer players during a full season. 
Healthcare 9:586. doi: 10.3390/healthcare9050586

Oliva-Lozano, J. M., Rojas-Valverde, D., Gómez-Carmona, C. D., Fortes, V., and 
Pino-Ortega, J. (2020). Worst case scenario match analysis and contextual variables in 
professional soccer players: a longitudinal study. Biol. Sport 37, 429–436. doi: 10.5114/
biolsport.2020.97067

Oliveira, R. (2023). Relationships between physical activity frequency and self-
perceived health, self-reported depression, and depressive symptoms in Spanish older 
adults with diabetes: a cross-sectional study. Int. J. Environ. Res. Public Health 20:857. 
doi: 10.3390/ijerph20042857

Oliveira, R., Francisco, R., Fernandes, R., Martins, A., Nobari, H., Clemente, F., et al. 
(2021). In-season body composition effects in professional women soccer players. Int. J. 
Environ. Res. Public Health 18:12023. doi: 10.3390/ijerph182212023

Oliver, J. L., Ayala, F., De Ste Croix, M. B. A., Lloyd, R. S., Myer, G. D., and Read, P. J. 
(2020). Using machine learning to improve our understanding of injury risk and 
prediction in elite male youth football players. J. Sci. Med. Sport 23, 1044–1048. doi: 
10.1016/j.jsams.2020.04.021

Parr, J., Winwood, K., Hodson-Tole, E., Deconinck, F. J. A., Hill, J. P., and 
Cumming, S. P. (2021). Maturity-associated differences in match running performance 
in elite male youth soccer players. Int. J. Sports Physiol. Perform. 1, 1–9. doi: 10.1123/
ijspp.2020-0950

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. 
(2011). Scikit-learn: machine learning in Python. J. Machine Learn. Res. 12, 2825–2830.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. 
(2012). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12.

Pillitteri, G., Rossi, A., Simonelli, C., Leale, I., Giustino, V., and Battaglia, G. (2023). 
Association between internal load responses and recovery ability in U19 professional 
soccer players: a machine learning approach. Heliyon 9:e15454. doi: 10.1016/j.
heliyon.2023.e15454

Python. (2023). Welcome to Python.org. Available online at: https://www.python.org/

Ramos-Cano, J., Martín-García, A., and Rico-González, M. (2022). Training intensity 
management during microcycles, mesocycles, and macrocycles in soccer: a systematic 
review. Proc. Instit. Mech. Eng.:17543371221101228. doi: 10.1177/17543371221101227

Rico-González, M., Pino-Ortega, J., Méndez, A., Clemente, F., and Baca, A. (2022a). 
Machine learning application in soccer: a systematic review. Biol. Sport 40, 249–263. doi: 
10.5114/biolsport.2023.112970

Rico-González, M., Pino-Ortega, J., Praça, G. M., and Clemente, F. M. (2022b). 
Practical applications for designing soccer’ training tasks from multivariate data 
analysis: a systematic review emphasizing tactical training. Percept Mot Skills 129, 
892–931. doi: 10.1177/00315125211073404

Rodriguez, J. D., Perez, A., and Lozano, J. A. (2010). Sensitivity analysis of k-fold cross 
validation in prediction error estimation. IEEE Trans. Pattern Anal. Machine Intel. 32, 
569–575. doi: 10.1109/TPAMI.2009.187

Rossi, A., Perri, E., Pappalardo, L., Cintia, P., Alberti, G., Norman, D., et al. (2022). 
Wellness forecasting by external and internal workloads in elite soccer players: a 
machine learning approach. Front. Physiol.:13. doi: 10.3389/fphys.2022.896928/full

Sallen, J., Andrä, C., Ludyga, S., Mücke, M., and Herrmann, C. (2020). School 
Children’s physical activity, motor competence, and corresponding self-perception: a 
longitudinal analysis of reciprocal relationships. J. Phys. Activity Health 17, 1083–1090. 
doi: 10.1123/jpah.2019-0507

Santos, F. J., Figueiredo, T., Ferreira, C., and Espada, M. (2021). Physiological and 
physical effect on U-12 and U-15 football players, with the manipulation of task 
constraints: field size and goalkeeper in small-sided games of 4x4 players [Efecto 
fisiológico y físico en los jugadores de fútbol Sub-12 y Sub-15, con la manipulación de 
las restricciones de tareas: tamaño de campo y portero en juegos reducidos de jugadores 
4x4]. Rev int cienc deporte 17, 13–24. doi: 10.5232/ricyde2021.06302

Sarker, I. H. (2021). Machine learning: algorithms, real-world applications and 
research directions. SN Comput. Sci. 2:160. doi: 10.1007/s42979-021-00592-x

Seipp, D., Quittmann, O. J., Fasold, F., and Klatt, S. (2023). Concurrent training in 
team sports: a systematic review. Int. J. Sports Sci. Coach. 18, 1342–1364. doi: 
10.1177/17479541221099846

Silva, L. M., Neiva, H. P., Marques, M. C., Izquierdo, M., and Marinho, D. A. (2022). 
Short post-warm-up transition times are required for optimized explosive performance 
in team sports. J. Strength Condition. Res. 36:1134. doi: 10.1519/JSC.0000000000004213

Song, Y., and Lu, Y. (2015). Yan, Lu Y. Decision tree methods: applications for 
classification and prediction. Shanghai Arch. Psychiatry 27, 130–135. doi: 10.11919/j.
issn.1002-0829.215044

Taylor, B. J., Mellalieu, D. S., James, N., and Barter, P. (2010). Situation variable effects 
and tactical performance in professional association football. Int. J. Perform. Anal. Sport 
10, 255–269. doi: 10.1080/24748668.2010.11868520

https://doi.org/10.3389/fpsyg.2024.1447968
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://doi.org/10.3390/ijerph19010419
https://doi.org/10.3390/ijerph19010419
https://doi.org/10.1080/24733938.2020.1823012
https://doi.org/10.1177/1747954120959762
https://doi.org/10.3390/ijerph18158228
https://doi.org/10.1177/1754337120972516
https://doi.org/10.3389/fnins.2017.00612
https://doi.org/10.1186/s40537-020-00305-w
https://doi.org/10.3390/s23020827
https://doi.org/10.1177/1747954119879350
https://doi.org/10.1177/0301006620928324
https://doi.org/10.1038/s41598-022-09954-8
https://doi.org/10.1055/a-1028-7600
https://doi.org/10.3390/app11052314
https://doi.org/10.1123/ijspp.2017-0759
https://doi.org/10.2165/00007256-199826010-00001
https://doi.org/10.1080/15438627.2021.1888106
https://doi.org/10.3389/fpsyg.2023.1047472
https://doi.org/10.1186/s40798-022-00465-4
https://doi.org/10.1186/s40798-022-00465-4
https://doi.org/10.3390/ijerph18052721
https://doi.org/10.1016/j.ndteint.2007.10.010
https://doi.org/10.1016/S0020-0255(96)00200-9
https://doi.org/10.3389/fnbot.2013.00021
https://doi.org/10.3390/healthcare9050586
https://doi.org/10.5114/biolsport.2020.97067
https://doi.org/10.5114/biolsport.2020.97067
https://doi.org/10.3390/ijerph20042857
https://doi.org/10.3390/ijerph182212023
https://doi.org/10.1016/j.jsams.2020.04.021
https://doi.org/10.1123/ijspp.2020-0950
https://doi.org/10.1123/ijspp.2020-0950
https://doi.org/10.1016/j.heliyon.2023.e15454
https://doi.org/10.1016/j.heliyon.2023.e15454
https://www.python.org/
https://doi.org/10.1177/17543371221101227
https://doi.org/10.5114/biolsport.2023.112970
https://doi.org/10.1177/00315125211073404
https://doi.org/10.1109/TPAMI.2009.187
https://doi.org/10.3389/fphys.2022.896928/full
https://doi.org/10.1123/jpah.2019-0507
https://doi.org/10.5232/ricyde2021.06302
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1177/17479541221099846
https://doi.org/10.1519/JSC.0000000000004213
https://doi.org/10.11919/j.issn.1002-0829.215044
https://doi.org/10.11919/j.issn.1002-0829.215044
https://doi.org/10.1080/24748668.2010.11868520


Teixeira et al. 10.3389/fpsyg.2024.1447968

Frontiers in Psychology 12 frontiersin.org

Teixeira, J. E., Alves, A. R., Ferraz, R., Forte, P., Leal, M., Ribeiro, J., et al. (2022a). 
Effects of chronological age, relative age, and maturation status on accumulated training 
load and perceived exertion in young sub-elite football players. Front. Physiol. 13:832202. 
doi: 10.3389/fphys.2022.832202

Teixeira, J. E., Branquinho, L., Ferraz, R., Leal, M., Silva, A. J., Barbosa, T. M., et al. 
(2022b). Weekly training load across a standard microcycle in a sub-elite youth football 
academy: a comparison between starters and non-starters. Int. J. Environ. Res. Public 
Health 19:11611. doi: 10.3390/ijerph191811611

Teixeira, J., Encarnação, S., Branquinho, L., Morgans, R., Afonso, P., Rocha, J., et al. (2024). 
Data mining paths for standard weekly training load in sub-elite young football players: a 
machine learning approach. J. Funct. Morphol. Kinesiol. 9:114. doi: 10.3390/jfmk9030114

Teixeira, J. E., Forte, P., Ferraz, R., Branquinho, L., Morgans, R., Silva, A. J., et al. (2023). 
Resultant equations for training load monitoring during a standard microcycle in sub-elite 
youth football: a principal components approach. PeerJ 11:e15806. doi: 10.7717/peerj.15806

Teixeira, J., Forte, P., Ferraz, R., Branquinho, L., Silva, A., and Barbosa, T., et al. 
(2022c). Methodological procedures for non-linear analyses of physiological and 
Behavioural data in football.

Teixeira, J. E., Forte, P., Ferraz, R., Branquinho, L., Silva, A. J., Monteiro, A. M., et al. 
(2022d). Integrating physical and tactical factors in football using positional data: a 
systematic review. PeerJ 10:e14381. doi: 10.7717/peerj.14381

Teixeira, J. E., Forte, P., Ferraz, R., Leal, M., Ribeiro, J., Silva, A. J., et al. (2021a). 
Quantifying sub-elite youth football weekly training load and recovery variation. Appl. 
Sci. 11:4871. doi: 10.3390/app11114871

Teixeira, J. E., Forte, P., Ferraz, R., Leal, M., Ribeiro, J., Silva, A. J., et al. (2021b). 
Monitoring accumulated training and match load in football: a systematic review. Int. J. 
Environ. Res. Public Health 18:3906. doi: 10.3390/ijerph18083906

Teixeira, J., Forte, P., Ferraz, R., Leal, M., Ribeiro, J., Silva, A., et al. (2022e). The association 
between external training load, perceived exertion and Total quality recovery in sub-elite 
youth football. Open Sports Sci. J. 15:e2207220. doi: 10.2174/1875399X-v15-e2207220

Towlson, C., Salter, J., Ade, J. D., Enright, K., Harper, L. D., Page, R. M., et al. (2021). 
Maturity-associated considerations for training load, injury risk, and physical 
performance in youth soccer: one size does not fit all. J. Sport Health Sci. 10, 403–412. 
doi: 10.1016/j.jshs.2020.09.003

Trecroci, A., Cavaggioni, L., Rossi, A., Moriondo, A., Merati, G., Nobari, H., et al. 
(2022). Effects of speed, agility and quickness training programme on cognitive and 
physical performance in preadolescent soccer players. PLOS ONE 17:e0277683. doi: 
10.1371/journal.pone.0277683

Trecroci, A., Milanović, Z., Rossi, A., Broggi, M., Formenti, D., and Alberti, G. (2016). 
Agility profile in sub-elite under-11 soccer players: is SAQ training adequate to improve 
sprint, change of direction speed and reactive agility performance? Res. Sports Med. 24, 
331–340. doi: 10.1080/15438627.2016.1228063

Uddin, S., Haque, I., Lu, H., Moni, M. A., and Gide, E. (2022). Comparative 
performance analysis of K-nearest neighbour (KNN) algorithm and its  
different variants for disease prediction. Sci. Rep. 12:6256. doi: 10.1038/
s41598-022-10358-x

Unpingco, J. (2016). Python for probability, statistics, and machine learning, vol. 1. 
New York: Springer.

Vallance, E., Sutton-Charani, N., Guyot, P., and Perrey, S. (2023). Predictive 
modeling of the ratings of perceived exertion during training and competition in 
professional soccer players. J. Sci. Med. Sport 26, 322–327. doi: 10.1016/j.
jsams.2023.05.001

Vallance, E., Sutton-Charani, N., Imoussaten, A., Montmain, J., and Perrey, S. (2020). 
Combining internal- and external-training-loads to predict non-contact injuries in 
soccer. Appl. Sci. 10:5261. doi: 10.3390/app10155261

Wong, T. T. (2015). Performance evaluation of classification algorithms by k-fold and 
leave-one-out cross validation. Pattern Recogn. 48, 2839–2846. doi: 10.1016/j.
patcog.2015.03.009

https://doi.org/10.3389/fpsyg.2024.1447968
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.832202
https://doi.org/10.3390/ijerph191811611
https://doi.org/10.3390/jfmk9030114
https://doi.org/10.7717/peerj.15806
https://doi.org/10.7717/peerj.14381
https://doi.org/10.3390/app11114871
https://doi.org/10.3390/ijerph18083906
https://doi.org/10.2174/1875399X-v15-e2207220
https://doi.org/10.1016/j.jshs.2020.09.003
https://doi.org/10.1371/journal.pone.0277683
https://doi.org/10.1080/15438627.2016.1228063
https://doi.org/10.1038/s41598-022-10358-x
https://doi.org/10.1038/s41598-022-10358-x
https://doi.org/10.1016/j.jsams.2023.05.001
https://doi.org/10.1016/j.jsams.2023.05.001
https://doi.org/10.3390/app10155261
https://doi.org/10.1016/j.patcog.2015.03.009
https://doi.org/10.1016/j.patcog.2015.03.009

	Classification of recovery states in U15, U17, and U19 sub-elite football players: a machine learning approach
	1 Introduction
	2 Methodology
	2.1 Participants
	2.2 Study design
	2.3 Procedures
	2.4 Variables
	2.4.1 Physical parameters
	2.4.2 Heart rate
	2.4.3 Perceived exertion
	2.4.4 Body composition
	2.4.5 Data preprocessing and normalization
	2.4.6 Classifying algorithms
	2.4.7 K-nearest neighbors classifier
	2.4.8 Gradient boosting classifier
	2.4.9 Support vector machine
	2.4.10 Random forest classifier
	2.4.11 Decision tree classifier
	2.4.12 Model evaluation

	3 Results
	4 Discussion
	4.1 Practical applications, the future research, and limitations

	5 Conclusion

	References

