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Methodological aspects of the 
highly adaptive testing design for 
PISA
Aron Fink †, Christoph König † and Andreas Frey *†

Institute of Psychology, Goethe University Frankfurt, Frankfurt, Germany

This methods paper describes the methodological and statistical underpinnings 
of the highly adaptive testing design (HAT), which was developed for the 
Programme for International Student Assessment (PISA). The aim of HAT is to 
allow for a maximum of adaptivity in selecting items while taking the constraints 
of PISA into account with appropriate computer algorithms. HAT combines 
established methods from the area of computerized adaptive testing (a) to 
improve item selection when items are nested in units, (b) to make use of the 
correlation between the dimensions measured, (c) to efficiently accomplish 
constraint management, (d) to control for item position effects, and (e) to 
foster students’ test-taking experience. The algorithm is implemented using the 
programming language R and readers are provided with the necessary code. 
This should facilitate future implementations of the HAT design and inspire 
other adaptive testing designs that aim to maximize adaptivity while meeting 
constraints.
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1 Introduction

In recent years, the Programme for International Student Assessment (PISA) has made 
considerable changes to its assessment design. The main goal of these changes was to increase the 
accuracy with which student proficiency is measured. In the 2018 assessment cycle, PISA moved 
from fixed test forms to multistage adaptive testing for the reading domain (MST; Yamamoto et al., 
2019). In 2022, MST was introduced for the mathematics domain (OECD, in press). MST strives 
for a more individualized item assignment to achieve a better fit between the difficulty of the 
presented items and the individual proficiency level of the students, thereby preventing the use of 
items that are far too easy or far too difficult. An adaptive item selection increases the precision of 
individual student ability estimations, especially in low- and high-achieving countries. Thus, it 
makes it possible to match the level of precision that was previously only reached in countries with 
an average performance. By making it possible to measure across a broader ability range, a more 
diverse group of students can be measured, thereby extending the global reach of PISA.

The introduction of MST resulted in an increase of 4–7% in terms of test information 
(Yamamoto et al., 2019). This increase can be characterized as modest. When looking into the 
literature on computerized adaptive testing (CAT; e.g., Frey, 2023), the PISA 2018 MST design 
is more restrictive than necessary and larger increases in test information would have been 
expected with a higher degree of adaptivity. However, fully unconstrained adaptive test designs 
are not feasible for PISA, which has numerous constraints besides statistical optimality. 
Amongst other constraints, adaptive test designs have to take into account that most items are 
nested in units (testlets) in PISA and that PISA’s assessment framework includes cognitive 
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processes and domain-specific substructures, as well as the use of link 
items. Empirical evidence, however, highlights that a considerable 
increase in test information is possible while taking a wide range of 
different constraints into account (Frey and Seitz, 2011 and Frey et al., 
2013 for PISA; Frey and Fink, 2021 for the Teaching and Learning 
International Survey, TALIS).

The purpose of this methods paper is to outline and formalize the 
algorithm of the highly adaptive testing design (HAT; Frey et al., 2023) 
for PISA, which is based on CAT with shadow testing (e.g., van der 
Linden and Reese, 1998). The HAT design for PISA maximizes the 
adaptivity while taking the core constraints of PISA assessments into 
account, thus making it feasible for application in operational PISA 
settings. The HAT design for PISA combines methods (a) to improve 
item selection when items are nested in units, (b) to make use of the 
correlation between the dimensions measured, (c) to efficiently 
accomplish constraint management, (d) to control for item position 
effects, and (e) to foster students’ test-taking experience. In the following, 
the core elements of the HAT design for PISA are described in detail.

2 Elements of the highly adaptive 
testing design

2.1 Unit-level item selection with 
within-unit adaptation

The operational item pool of PISA consists of dichotomous and 
polytomous items. The HAT design for PISA accounts for this mixture 
of item types by utilizing the multidimensional two-parameter logistic 
item response theory (IRT) model (M2PL; e.g., Reckase, 2009) for the 
former and the generalized partial credit model (GPCM; Muraki, 1992) 
for the latter item type. This is in line with the scaling practice currently 
adopted in PISA (OECD, 2024). Under the M2PL and assuming D 
dimensions, the probability of person j to correctly answer item i, 
i = 1,…, I is denoted as p y b bi ji j i i i j i=( ) = −( )



1| , , logitθθ θθ′′a a 1 , 

where θθ j is the D×1 ability vector of person j , ai  is the D×1 vector 
of discriminations for item i, and bi is the difficulty of item i, which is 
multiplied by a D×1 vector of ones so that the difficulty is applied to all 
dimensions (e.g., Segall, 1996). The majority of operational PISA items 
are organized into units that share a common stimulus. While unit-
level selection offers fewer routing options compared to item-level CAT, 
it still provides more routing possibilities than the two routings 
incorporated into the PISA 2018 MST design, thus resulting in a more 
nuanced adaptation. Due to the construction of units, which aims to 
make the mean item difficulty comparable across units, choosing entire 
units would allow for a reduced amount of adaptivity only. The HAT 
design for PISA utilizes within-unit adaptivity to select only the items 
with the highest information from the selected units. The maximum 
number of units and the maximum number of items per unit are 
specified as constraints using the shadow-test approach (see Constraint 
Management section).

2.2 Making use of the correlation between 
measured dimensions

In the HAT design for PISA, additional information, which 
comes from the covariances between the domains of reading, 

mathematics, and science, is used for multidimensional ability 
estimation. In addition, the HAT design for PISA adopts the 
principles of multidimensional adaptive testing (MAT; e.g., Frey and 
Seitz, 2009) to further refine the unit and item selection process. An 
unrestricted MAT algorithm is likely to present frequent changes in 
the domains measured, which may distract the test takers. In order 
to avoid the possibility of such distractions, the HAT design for PISA 
follows the operational PISA practice of presenting sequences of units 
(“clusters”) that all measure the same domain. The complete 
proficiency test consists of four 30-min clusters. The HAT design for 
PISA covers two clusters for the major domain of PISA 2018, which 
was reading (60 min of testing time), followed by two adaptive 
clusters from one of the two minor domains, which were mathematics 
and science (also 60 min of testing time). This resulted in 24 different 
test forms with varying combinations of major and minor domains 
(see Table 1). The test forms are supposed to be randomly assigned 
to students (e.g., by spiraling within classrooms). Within each test 
form, the item administration was unidimensional. HAT, however, 
still makes it possible to utilize the information about the high 
correlation between the reading, mathematics, and science domains 
by setting the initial ability level θ̂  of the first cluster of the second 
domain (Cluster 3) to the final θ̂  of the second cluster of the first 
domain (Cluster 2).

TABLE 1 The adaptive test forms of the HAT design for PISA 2018.

Form Cluster 1 Cluster 2 Cluster 3 Cluster 4

1 READ1 READ2 MATH1 MATH2

2 READ2 READ1 MATH2 MATH1

3 READ1 READ2 MATH2 MATH1

4 READ2 READ1 MATH1 MATH2

5 MATH1 MATH2 READ1 READ2

6 MATH2 MATH1 READ2 READ1

7 MATH1 MATH2 READ2 READ1

8 MATH2 MATH1 READ1 READ2

9 SCIE1 SCIE2 READ1 READ2

10 SCIE2 SCIE1 READ2 READ1

11 SCIE1 SCIE2 READ2 READ1

12 SCIE2 SCIE1 READ1 READ2

13 READ1 READ2 SCIE1 SCIE2

14 READ2 READ1 SCIE2 SCIE1

15 READ1 READ2 SCIE2 SCIE1

16 READ2 READ1 SCIE1 SCIE2

17 MATH1 MATH2 SCIE1 SCIE2

18 MATH2 MATH1 SCIE2 SCIE1

19 MATH1 MATH2 SCIE2 SCIE1

20 MATH2 MATH1 SCIE1 SCIE2

21 SCIE1 SCIE2 MATH1 MATH2

22 SCIE2 SCIE1 MATH2 MATH1

23 SCIE1 SCIE2 MATH2 MATH1

24 SCIE2 SCIE1 MATH1 MATH2

READ, Reading domain; MATH, Mathematics domain; SCIE, Science domain.

https://doi.org/10.3389/fpsyg.2024.1446799
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Fink et al. 10.3389/fpsyg.2024.1446799

Frontiers in Psychology 03 frontiersin.org

2.3 Constraint management

2.3.1 Shadow-test approach
In addition to selecting highly informative items within units, 

the HAT design for PISA uses the shadow-test approach to account 
for the numerous constraints of PISA. Satisfying these constraints 
is crucial for the derivation of valid test score interpretations. The 
different constraints of the HAT design for PISA 2018 (reading 
domain) are presented in Table 2. The constraints regarding the 
three cognitive domains were derived from the PISA 2018 
assessment and analytical framework for reading (OECD, 2019). 
Please note that the HAT design for PISA allows for a 1:1 
translation of the assessment and analytical framework for the 
three cognitive domains of reading, mathematics, and science into 
constraints for the shadow test. The constraints for mathematics 
and science are illustrated in Tables 3, 4. The HAT design for PISA 
implements a shadow test model that optimally selects the kth item 
while preserving the desired values of these parameters (for a 
detailed description of the shadow-test approach, see van der 
Linden, 2022).

To assemble a test of t items from a calibrated pool of I items 
(i I= …1, , ) that provides maximum information at point θk  of the 
measured scale, the first step is to identify the decision variables for 
each possible solution. This can be done by using I binary variables 
(x1,… , xI ), where xi =1 if item i is selected and 0 otherwise. Each 
combination of values for these variables represents a different test. 
The Fisher information for each item i at θk  is represented as Ii kθ( )
; under the 2PL IRT model (because item selection in the HAT design 
for PISA is unidimensional), the Fisher information is calculated as 
I a P Qi k i i k i kθ θ θ( ) = ( ) ( )2 , where P a bi k i k iθ θ( ) = −( ) logit  and 
Q Pi kθ θk( ) = − ( )1 . The objective function for automated test 
assembly can be written as

 
maximize I x

i

I
i k i

=
∑ ( )
1

θ .

For the PISA 2018 HAT design for reading, for example, the first 
constraint is the test length t. We used a test length of 36 items. The 
corresponding constraint can be formulated as

 i

I
ix

=
∑ =
1

36.

Additionally, items frequently fall into various subsets Vc , where 
i V c Cc∈ = …; , , .1  For instance, a subset may exclusively contain items 
that belong to a particular content category (e.g., items belonging to 
the cognitive process “represent”) and a special item type (e.g., 
machine- vs. human-coded items). To account for this, categorical 
constraints can be incorporated into the model, such as specifying the 
desired number of items nc  from the subsetVc as

 i V
i c

c

x n c C
∈
∑ = … , , ,1

where  denotes the choice of a (strict) (in)equality. All the 
constraints of PISA that are incorporated into the HAT design can 
be expressed in this way. For example, the number of items in each 
individual test from the subset of items VRep measuring the cognitive 
process “represent” should be between four and six. The respective 
constraint can be formulated as follows:

 i V
i

Rep

x
∈
∑ ≥ 4,

 i V
i

Rep

x
∈
∑ ≤ 6.

As most operational PISA items are grouped into units, an extra 
set of binary decision variables is needed for the level of units. Let 
s S= …1, ,  denote each stimulus in an item pool and 1, ,… Sz z  its 
corresponding decision variables so that zS =1 if stimulus s is selected 
and 0 otherwise. The existence of a hierarchical structure between the 
items and the stimuli requires the inclusion of additional logical 
constraints. For instance, selecting an item that belongs to a particular 
unit necessitates the selection of the stimulus as well. Therefore, the 
following condition needs to be met:

 x zi ss
− ≤ 0,

where i Vs s∈  denotes the items belonging to unit s. In addition, 
the minimum/maximum number of items ns to be selected per unit 
can be specified via the constraint

 i V
i s s

s s

s
x n z

∈
∑  .

This constraint ensures that the constraint is only triggered when 
zs =1, which means that the respective unit was selected. In addition 

TABLE 2 Constraints for the PISA 2018 reading HAT design.

ID Constraint LB UB

1 Number of items per test (test length) 36 36

2 Number of units per test 12 12

3 Number of items per unit 3 3

4 Number of items of cognitive process “Scan” 4 6

5 Number of items of cognitive process “Represent” 4 6

6 Number of items of cognitive process “Integrate” 

(Single text)

4 6

7 Number of items of cognitive process “Integrate” 

(Multiple texts)

4 6

8 Number of items of cognitive processes “Reflect” 

and “Assess”

6 8

9 Number of items of cognitive process “Corroborate” 3 5

10 Number of items of cognitive process “Search” 3 5

11 Number of human-coded items 7 17

12 Number of single-text items 24 35

13 Number of multiple-text items 1 13

14 Number of trend items 3 21

LB, lower bound; UB, upper bound.
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to these kinds of constraints, there are numerous other possibilities 
(see van der Linden, 2022 for an overview of how to formulate 
different kinds of constraints in the shadow-test approach).

In adaptive item selection, the automated test assembly procedure 
described above, with all the constraints, has to be accomplished after 
each update of the provisional ability estimate. The general idea is to 
select items from a hypothetical test (i.e., a shadow test), which is 
compiled automatically before the selection of each item, instead of 
selecting from the complete item pool. The algorithm can be described 
as follows:

 1 Initialize the ability estimation.
 2 Assemble a shadow test that accounts for all constraints (e.g., 

test length, content coverage, number of units, number of items 

per unit, etc.), contains all items already administered, and 
provides maximum Fisher information at the current 
provisional ability estimate.

 3 Administer an item from the shadow test that was not yet 
administered and that has maximum Fisher information at the 
current ability estimation. Return all unused items to the 
item pool.

 4 Update the ability estimate.
 5 Update the constraints to consider the attributes of the items 

already administered.
 6 Repeat Steps 1–5 until the termination criterion of the adaptive 

test is met.

To automatically include all items in the set Sk−1 that have already 
been administered in the next shadow test (Step 5), the following 
constraint has to be added:

 i S
i

k

x k
∈ −

∑ = −
1

1.

Assembling each shadow test at each step to satisfy all constraints 
imposed ensures that the resulting set of presented items satisfies all the 
constraints. Furthermore, the shadow tests are assembled to provide 
maximum information with regard to the provisional ability estimate at 
each step. Normally, the shadow test has to be assembled in real time 
before the administration of each item. This process is handled by an 
automated test assembly method that uses mixed-integer programming. 
Solvers for this linear type of optimization are available in different 
software packages (see Technical Implementation section).

2.3.2 Item exposure
Allowing an unrestricted adaptive unit and item selection could 

result in uneven item exposure rates, with some items being presented 
more frequently than others. This can cause problems in calibration 
and also regarding content coverage. The HAT design for PISA 
therefore utilizes Revuelta and Ponsoda’s (1998) progressive item 
exposure method to control the item exposure rates. The progressive 
method adds a random component to the maximum Fisher 
information item selection criterion. The influence of this random 
component gets smaller over the course of the test. It is most 
influential at the beginning of the test, where the provisional ability 
estimate is less precise. As the test progresses, the provisional ability 
estimate becomes more precise, and the item selection is based more 
on the item information. The algorithm of the progressive method is 
as follows (Revuelta and Ponsoda, 1998):

 1 Calculate the Fisher information Ii  for each unused item i, 
based on the ability estimate ˆ jθ  of student j obtained from the 
h items already administered. The highest information value 
obtained is denoted as H.

 2 For each unused item i, draw a random value Ri  from a uniform 
distribution (0, H).

 3 Compute a weight wi  for each unused item i as a linear 
combination of the random value Ri  and the information Ii by 
w s R sIi i i= −( ) +1 , where s equals the relative serial position 
of the item in a test with test length t , calculated by s h t= / .

 4 Use this weight instead of the item information in the item 
selection procedure.

TABLE 3 Constraints for the PISA 2018 mathematics HAT design.

ID Constraint LB UB

1 Number of items per test (test length) 24 24

2 Number of units per test 10 10

3 Number of items per unit 1 4

4 Number of items of cognitive process “Employ” 7 9

5 Number of items of cognitive process “Formulate” 7 9

6 Number of items of cognitive process “Interpret” 7 9

7 Number of items of content category “Change” 5 7

8 Number of items of content category “Space” 5 7

9 Number of items of content category “Quantity” 5 7

10 Number of items of content category “Uncertainty” 5 7

11 Number of human-coded items 4 8

12 Number of machine-coded items 16 18

LB, lower bound; UB, upper bound.

TABLE 4 Constraints for the PISA 2018 science HAT design.

ID Constraint LB UB

1 Number of items per test (test length) 36 36

2 Number of units per test 12 12

3 Number of items per unit 1 5

4 Number of items of competency “Evaluate” 7 11

5 Number of items of competency “Explain” 14 18

6 Number of items of competency “Interpret” 11 14

7 Number of items of knowledge “Content” 19 24

8 Number of items of knowledge “Epistemic” 4 8

9 Number of items of knowledge “Procedural” 7 11

10 Number of items of system “Earth” 9 11

11 Number of items of system “Living” 12 14

12 Number of items of system “Physical” 12 14

13 Number of human-coded items 6 14

14 Number of machine-coded items 23 33

15 Number of trend items of type “Standard” 26 35

16 Number of trend items of type “Interactive” 5 10

LB, lower bound; UB, upper bound.
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Another relevant aspect is that the PISA main study data is also 
used to estimate item parameters and to link the scale of the current 
assessment to the existing reporting scale. This necessitates that the 
numbers of responses for the individual items do not fall below a 
minimum number. This minimum threshold can be  assured by 
incorporating an additional constraint: in specific test positions, items 
are not chosen adaptively, but rather in a fixed spiraling sequence. 
Therefore, in the HAT design for PISA, each student received two 
complete units during the reading test. These non-adaptive, complete 
units were administered in a spiraling fashion such that Student 1 
received Unit 1 and Unit 2, Student 2 received Units 2 and 3, Student 
4 received Units 3 and 4, and so on. In this way it is ensured, that each 
item has a minimum number of 250 responses in each 
participating country.

2.4 Item position effects

Item position effects (IPEs; e.g., Nagy et  al., 2019) refer to 
situations in which the properties of items vary depending on their 
position in a test. A typical case of an IPE is an increase in item 
difficulty estimates towards the end of a test. Especially for CAT, 
IPEs pose a significant challenge because, in CAT, the item 
parameter estimates are fixed during item selection and ability 
estimation. Moreover, in CAT, items are often presented more 
frequently in specific positions than in others. Disregarding IPEs in 
CAT can result in substantial bias, as emphasized and demonstrated 
by Frey and Fink (in press). This problem can be  avoided by 
balancing the positions in which items are presented. This was 
incorporated into the HAT design for PISA by introducing the 
principle of the continuous calibration strategy (Fink et al., 2018; 
Frey and Fink, in press) simply as an additional constraint in the 
shadow-test approach. By means of automated test assembly, the 
domain-specific item pool was divided into two subpools of equal 
length (18 items), ensuring that each subpool complied with all 
imposed constraints. The allocation of items to subpools was then 
introduced twice as an additional item attribute (once for each 
cluster within a domain), but in reversed order. The IPE constraint 
specified that, within a domain, items from both subpools were to 
be  administered in each cluster, taking the reverse order into 
account. For example, in the first cluster of the first domain, items 
from the first subpool were to be administered prior to items from 
the second subpool, while, in the following second cluster of the 
same domain, items from the second subpool were to 
be  administered prior to items from the first subpool. This 
constraint balances item positions on the level of clusters.

2.5 Students’ test-taking experience

In order to foster students’ test-taking experience, the possibility 
of increasing the desired average response probability that is used for 
the adaptive item selection is implemented into the HAT design for 
PISA. According to the meta-analysis of Frey et al., 2024, this can 
be expected to reduce negative test taker emotions such as anxiety and 
anger. For this purpose, the HAT design for PISA utilizes the 
procedure outlined by Eggen and Verschoor (2006). The goal is to 

select easier items with higher success probabilities compared to items 
that are selected with maximum Fisher information. Therefore, the 
item selection is based on the computation of the Fisher information 
( )ˆ iI θ − δ  at an ability level that is shifted away from the current 

ability estimate θ̂  by δi . For the 2PL model, this shift can be calculated 

by δ
θ δ
θ δ

i
i

i i

i ia
p
p

=
−( )

− −( )












1

1
ln , where pi iθ δ−( )  equals the desired 

response probability. On the basis of the way in which the proficiency 
levels are defined in PISA, we suggest using a response probability 
(RP) of .62 for a correct answer when calculating the maximum Fisher 
information during HAT item selection. Therefore, the item is selected 

with maximum Fisher information at 1 .62ˆ ˆ ln
.38i

ia
 θ = θ − δ = θ −  
 

. 

Please note that the HAT design for PISA is not restricted to an RP of 
.62 and can be used with other RP values too.

2.6 Adaptive algorithm

The complete algorithm of the HAT design for PISA is 
summarized by the flow chart in Figure 1.

2.7 Technical implementation

Each element of the algorithm of the HAT design for PISA can 
be easily implemented in open-source statistical software. Its code 
is transparent and adaptable and can be accessed here: https://doi.
org/10.17605/OSF.IO/RV5YX. The current version of the HAT 
design for PISA runs in the R environment (R Core Team, 2022) 
and uses only two packages, namely, a modified version of the 
TestDesign package (Choi et al., 2022) for test administration and 
shadow testing, and mirt (Chalmers, 2012) for IRT scaling. For 
linear optimization, the current version of the HAT design for PISA 
draws on the gurobi solver (Version 10.0; Gurobi Optimization, 
LLC, 2023). Please note that the HAT design for PISA is not bound 
to this optimizer. For operational applications of the HAT design 
for PISA, open-source optimizers such as the R packages lpSolve 
(Berkelaar et al., 2023) and RSymphony (Harter et al., 2021) can also 
be used.

3 Concluding remarks

This methods paper describes the methodological and statistical 
underpinnings of the HAT design for PISA. This design maximizes 
the amount of adaptivity given typical PISA constraints, making it 
feasible for operational PISA assessments. We  showed that the 
implementation of the core algorithm and its elements is actually quite 
simple. The code necessary to use the HAT design is transparent, 
parsimonious, and manageable. We  see this as an important step 
towards increasing the transparency of the PISA methodology, which 
was considered by Frey and Hartig (2020) to be one of the five current 
methodological challenges of international large-scale assessments. 
Using linear optimization renders the manual allocation of items, 
units, and stages obsolete, resulting in a better and more in-depth 

https://doi.org/10.3389/fpsyg.2024.1446799
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://doi.org/10.17605/OSF.IO/RV5YX
https://doi.org/10.17605/OSF.IO/RV5YX


Fink et al. 10.3389/fpsyg.2024.1446799

Frontiers in Psychology 06 frontiersin.org

representation of the PISA assessment framework in the actual 
assessment. The implementation is flexible and can accommodate 
potential changes in assessment frameworks or the operational 
procedures of the assessments. Lastly, the HAT design for PISA can 
be  implemented with open-source software solutions; proprietary 
software is not necessary.

To back up these arguments with empirical evidence, the 
performance of the HAT design for PISA in terms of relative 
efficiency, accuracy, exposure control, and constraint violations was 
investigated in a comprehensive simulation study (Frey et al., 2023). 
Compared to the PISA 2018 MST reading design, the HAT design for 
PISA resulted in an increase in test information of approximately 30% 
across a range of ability groups. Ability estimates obtained with the 
HAT design for PISA were more accurate (in terms of the RMSE) 
than those obtained with the MST design. Moreover, the HAT design 
for PISA had clear advantages over the MST design regarding 
constraint violations: while the latter violated approximately four 
constraints on average, the former violated none. Thus, with its 

shadow-test approach, the HAT design for PISA indeed maximizes 
test information in the context of a relatively large number of 
potentially conflicting constraints. An area for possible improvement 
is, however, exposure control. Here, the MST design showed a more 
uniform administration of items, compared to that of the HAT design 
for PISA. Items in the HAT design for PISA, however, showed 
exposure rates that are entirely feasible for operational use. One way 
to optimize the item exposure of HAT is to systematically expand the 
item pool. Currently, a number of low-discriminating and very 
difficult items prevent a uniform item usage when the maximum 
Fisher information criterion is used. A targeted development of the 
item pool, including an examination of whether items with low 
a-parameters can be excluded, would not only affect exposure rates 
positively; it would also increase the gains in test information. Frey 
et al. (2023) were able to show that, in the case of an optimal item 
pool, the test information increased almost threefold compared to the 
PISA 2018 MST reading design.

The gain in test information associated with the HAT design for 
PISA is considerable. It is likely that the reduction of the measurement 
error due to this gain positively affects the precision of the population 
estimates used for PISA reporting. Thus, more fine-grained results 
and/or more power for statistical tests can be expected.

We hope that this methods paper is useful for future 
implementations of the HAT design or that it inspires other testing 
designs that strive to maximize adaptivity while meeting constraints.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material, further inquiries can be directed 
to the corresponding author.

Author contributions

AFi: Conceptualization, Formal analysis, Methodology, Software, 
Visualization, Writing – original draft, Writing – review & editing. 
CK: Conceptualization, Formal analysis, Methodology, Software, 
Writing – original draft, Writing – review & editing. AFr: 
Conceptualization, Funding acquisition, Methodology, Project 
administration, Supervision, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. This work was 
supported by the Organisation for Economic Co-operation and 
Development (OECD) within the PISA Research, Development and 
Innovation (RDI) Programme (EDU/500135200).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

FIGURE 1

Flow chart of the highly adaptive testing design for PISA. Note: θ̂ j  = 
provisional abibilty estimate of person j, Σ = covariance matrix of the 
D latent dimensions, RP = response probability.

https://doi.org/10.3389/fpsyg.2024.1446799
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Fink et al. 10.3389/fpsyg.2024.1446799

Frontiers in Psychology 07 frontiersin.org

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 

organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

References
Berkelaar, M., Eikland, K., and Notebaert, P. (2023). lpSolve: Interface to ‘Lp_solve’ v. 

5.5 to Solve Linear/Integer Programs (5.6.20). [R package]. doi: 10.32614/CRAN.
package.lpSolve

Chalmers, R. P. (2012). mirt: a multidimensional item response theory package for the 
R environment. J. Stat. Softw. 48, 1–29. doi: 10.18637/jss.v048.i06

Choi, S. W., Lim, S., and van der Linden, W. (2022). TestDesign: an optimal test design 
approach to constructing fixed and adaptive tests in R. Behaviormetrika 49, 191–229. 
doi: 10.1007/s41237-021-00145-9

Eggen, T. J. H. M., and Verschoor, A. J. (2006). Optimal testing with easy or difficult 
items in computerized adaptive testing. Appl. Psychol. Meas. 30, 379–393. doi: 
10.1177/0146621606288890

Fink, A., Born, S., Spoden, C., and Frey, A. (2018). A continuous calibration strategy 
for computerized adaptive testing. Psychol. Test Assess. Model. 60, 327–346.

Frey, A. (2023). Computerized adaptive testing and multistage testing. In International 
Encyclopedia of Education, (eds.) R. J. Tierney, F. Rizvi and K. Erkican. vol. 14 4th 
Edition, (Amsterdam: Elsevier), pp. 209–216.

Frey, A., and Fink, A. (2021). Increasing test efficiency in an international assessment 
of teachers’ general pedagogical knowledge through multidimensional adaptive testing. 
In Teaching as a knowledge profession. Studying pedagogical knowledge across educational 
systems. (ed.) H. Ulferts (Paris: OECD Publishing), pp. 123–140.

Frey, A., and Fink, A. (in press). Controlling for item position effects when 
adaptive testing is used in large-scale assessments. In L. Khorramdel, M. von Davier 
and K. Yamamoto (Eds.), Innovative computer-based international large-scale 
assessments – Foundations, methodologies, and quality assurance procedures. 
Cham: Springer.

Frey, A., and Hartig, J. (2020). “Methodological challenges of international student 
assessment” in Monitoring of student achievement in the 21st century. eds. H. 
Harju-Luukkainen, N. McElvany and J. Stang (Cham: Springer), 39–49.

Frey, A., König, C., and Fink, A. (2023). A highly adaptive testing design for PISA. J. 
Educ. Meas. doi: 10.1111/jedm.12382

Frey, A., Liu, T., Fink, A., and König, C. (2024). Meta-analysis of the effects of 
computerized adaptive testing on the motivation and emotion of examinees. Eur. J. 
Psychol. Assess. doi: 10.1027/1015-5759/a000821

Frey, A., and Seitz, N. N. (2009). Multidimensional adaptive testing in educational and 
psychological measurement: current state and future challenges. Stud. Educ. Eval. 35, 
89–94. doi: 10.1016/j.stueduc.2009.10.007

Frey, A., and Seitz, N. N. (2011). Hypothetical use of multidimensional adaptive 
testing for the assessment of student achievement in PISA. 

Educ. Psychol. Meas. 71, 503–522. doi: 10.1177/001316441038 
1521

Frey, A., Seitz, N. N., and Kröhne, U. (2013). Reporting differentiated literacy 
results in PISA by using multidimensional adaptive testing. In Research on PISA. 
(eds.) M. Prenzel, M. Kobarg, K. Schöps and S. Rönnebeck (Dordrecht: Springer), 
pp. 103–120.

Gurobi Optimization, LLC (2023). Gurobi optimizer reference manual. Available at: 
https://www.gurobi.com (Accessed June 10, 2023).

Harter, R., Hornik, K., and Theussl, S. (2021). Rsymphony: SYMPHONY in R. R 
package version 0.1-33. Available at: https://CRAN.R-project.org/
package=Rsymphony (Accessed June 10, 2023).

Muraki, E. (1992). A generalited partial credit model: application of an em algorithm. 
ETS Research Report Series, 1–30. doi: 10.1002/j.2333-8504.1992.tb01436.x

Nagy, G., Nagengast, B., Frey, A., Becker, M., and Rose, N. (2019). A multilevel study 
of position effects in PISA achievement tests: student- and school-level predictors in the 
German tracked school system. Assess. Educ. Prin. Policy Pract. 26, 422–443. doi: 
10.1080/0969594X.2018.1449100

OECD (2019). PISA 2018 assessment and analytical framework. Paris: 
OECD Publishing.

OECD (2024). PISA 2022 technical report. Paris: OECD Publishing.

OECD (in press). PISA 2018 technical report. Paris: OECD Publishing.

R Core Team (2022). R: A language and environment for statistical computing 
[software]. Vienna: R Foundation for Statistical Computing.

Reckase, M. D. (2009). Multidimensional item response theory. New York: Springer.

Revuelta, J., and Ponsoda, V. (1998). A comparison of item exposure control methods 
in computerized adaptive testing. J. Educ. Meas. 35, 311–327. doi: 
10.1111/j.1745-3984.1998.tb00541.x

Segall, D. O. (1996). Multidimensional adaptive testing. Psychometrika 61, 331–354. 
doi: 10.1007/BF02294343

van der Linden, W. J. (2022). Review of the shadow-test approach to adaptive testing. 
Behaviormetrika 49, 169–190. doi: 10.1007/s41237-021-00150-y

van der Linden, W. J., and Reese, L. M. (1998). A model for optimal constrained 
adaptive testing. Appl. Psychol. Meas. 22, 259–270. doi: 10.1177/01466216980223006

Yamamoto, K., Shin, H., and Khorramdel, L. (2019). Introduction of multistage 
adaptive testing design in PISA 2018. OECD Education Working Papers, No. 209. Paris: 
OECD Publishing.

https://doi.org/10.3389/fpsyg.2024.1446799
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://doi.org/10.32614/CRAN.package.lpSolve
https://doi.org/10.32614/CRAN.package.lpSolve
https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.1007/s41237-021-00145-9
https://doi.org/10.1177/0146621606288890
https://doi.org/10.1111/jedm.12382
https://doi.org/10.1027/1015-5759/a000821
https://doi.org/10.1016/j.stueduc.2009.10.007
https://doi.org/10.1177/0013164410381521
https://doi.org/10.1177/0013164410381521
https://www.gurobi.com
https://CRAN.R-project.org/package=Rsymphony
https://CRAN.R-project.org/package=Rsymphony
https://doi.org/10.1002/j.2333-8504.1992.tb01436.x
https://doi.org/10.1080/0969594X.2018.1449100
https://doi.org/10.1111/j.1745-3984.1998.tb00541.x
https://doi.org/10.1007/BF02294343
https://doi.org/10.1007/s41237-021-00150-y
https://doi.org/10.1177/01466216980223006

	Methodological aspects of the highly adaptive testing design for PISA
	1 Introduction
	2 Elements of the highly adaptive testing design
	2.1 Unit-level item selection with within-unit adaptation
	2.2 Making use of the correlation between measured dimensions
	2.3 Constraint management
	2.3.1 Shadow-test approach
	2.3.2 Item exposure
	2.4 Item position effects
	2.5 Students’ test-taking experience
	2.6 Adaptive algorithm
	2.7 Technical implementation

	3 Concluding remarks

	References

