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Introduction

The concept of similarity is crucial to our exploration and understanding of cognitive

processes. For example, by examining how visual attention is differentially distributed to

targets and distractors (varying in similarity of appearance), researchers can gain insight

into cognitive resource management, template matching, and object recognition. In such

experiments, researchers often couple manipulation of similarity among their stimuli with

measures of attentional allocation and decision-making (Kahneman and Tversky, 2013).

By manipulating the similarity of targets and distractors, or the similarity amongst the set

of distractors themselves (Desimone and Duncan, 1995), such research offers insights into

the mechanisms of attention, decision-making, and human behavior.

Controlling for stimuli in such experiments can be expensive in labor and time,

however, resulting in a tendency to rely upon hyper-simplistic experimental designs;

for instance, experimenters wishing to employ a task with highly similar targets and

distractors may ask their participants to search for a 7 target among many T distractors.

Such simplicity is not always preferred (or optimal) however, especially in research

necessitating more complexity, such as tasks that use categorically defined targets (Hout

et al., 2017; Madrid et al., 2019; Robbins and Hout, 2020), searches set in visually complex

environments (Hout et al., 2021, 2023), or dynamic search tasks that are challenging to

hyper-simplify (Scarince and Hout, 2018). Questions such as these often require complex

stimuli, but when similarity must be manipulated in an experiment, it can be challenging

to know how best to do so precisely. One may, for instance, reasonably assume that a 7 is

more similar to the letter T than it is to the letter R; such an assumption is uncontroversial

andmay suffice if the researcher simply requires pairs of stimuli that are or are not alike. If a

researcher is interested in categorical visual search, however—how people look for a class of

items (e.g., “search for any coffee mug”) rather than a particular exemplar—alphanumeric

digits (or other simplistic stimuli) typically do not suffice. Moreover, researchers often

require more than a simple dichotomy of similar vs. not similar, and instead need to be

able to explore more nuance in their data by obtaining a continuum of similarity among

the stimuli (one that can be quantified but is therefore much more subject to individual

differences in perception).
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When scaling up to pictures of real-world objects, simple

assumptions—regarding what objects are more or less similar

to one another—are often not sufficient, straightforward, or

uncontroversial. Rating feature rich, complex objects for similarity

requires a significant empirical investment unto itself, but

doing so affords the researcher experimental tools and precision

of manipulation that is otherwise impossible to achieve. The

suboptimal alternative, of course, is exclusive reliance on

hyper-simplistic stimuli for which assumptions about similarity

perception are deemed sufficient.

To provide a concrete example: Hout et al. (2014) established

a similarity database of ∼4,000 visual pictures of real-world items

sampled from across 240 distinct categories; the images were

sourced from the “Massive Memory Database” (Brady et al.,

2008; Konkle et al., 2010; cvcl.mit.edu/MM/stimuli.html). After

collecting similarity ratings, they employed multidimensional

scaling (c.f., Hout et al., 2013b) to model similarity relationships

among the items, providing future researchers with continuous

similarity relationships for 16–17 exemplars from each category.

Since its initial publication, the similarity ratings from this database

have been used to explore various cognitive processes such as

attention, template formation, and memory. For instance, Hout

and Goldinger (2015) systematically manipulated the similarity

between a visual search cue (e.g., “look for this picture or something

like it”) and the subsequent item that appeared in the array.

Similarity scores from the database (Hout et al., 2014) predicted

how efficiently eye movements could be directed to the target, and

how quickly the target would be recognized once it was fixated.

Guevara Pinto et al. (2020) gave participants a visual search task

followed by a surprise alternative forced-choice task in which they

were asked to select which of 16 category-matched exemplars was

presented to them earlier in the experiment. The authors found that

when the correct item was not chosen, similarity scores (i.e., the

similarity of the incorrectly chosen “foil” relative to the item that

had actually been shown previously) predicted the likelihood that

an item would be selected. Simply, when subjects made a mistake,

they were systematically more likely to choose visually similar foils

(and the strength of this relationship was found to be modulated by

the number of items that were being looked for).

Because such similarity databases are so useful (but are also

relatively rare; see also Horst and Hout, 2016) our goal in this

project was to expand upon the natural category stimuli set created

by Nosofsky et al. (2018; see also Meagher et al., 2017), by adding

to it a set of similarity scores—isolated to each of the basic-level

stimuli categories separately, as was done in Hout et al. (2014)—

that can be used in cognitive experiments exploring attention,

memory, categorization, and more.

Similarity ratings of the Nosofsky et al.
(2018) stimuli

In Nosofsky et al. (2018), 360 rock images were collected

for the purpose of studying the learning of complex natural

science categories. These stimuli consist of high-resolution images,

with each exemplar categorized as belonging to one of the

three superordinate categories (based on the processes governing

its formation): metamorphic, sedimentary, and igneous. Each

superordinate category comprised 10 nested basic-level categories

(e.g., marble, granite, obsidian), and each basic-level category

contained 12 exemplars (or “tokens”), varying in similarity of

appearance, but standardized in form (i.e., all were images

of rocks isolated on a blank white background, uniform in

overall size).

In one experiment, Nosofsky et al. (2018) selected 30

representative tokens (one from each basic-level category), and

had participants rate the similarity of each pair (see also Nosofsky

et al., 2017). In a second study, the researchers had participants

rate the similarity between each of the 360 instances (from all

categories), providing a larger matrix of similarity data, but one

that was more sparsely populated (i.e., with fewer similarity ratings

per pair of stimuli, given that there are 64,620 unique pairs in

a 360 × 360 matrix). What is shared by both studies is the fact

that exemplars were compared to one another across categories.

In the second study, exemplars from within the same category

were also compared to one another, but only in the context of the

entire set of 360 tokens sampled from across 30 categories. Context

effects—the tendency of similarity ratings to be determined not just

by perceived similarity of a pair but to also be influenced by the

participants’ understanding of the entire set of stimuli (see Tversky,

1977; Goldstone et al., 1997)—might therefore may have resulted in

items from within a single category being perceived as more similar

to one another than they would be if that single category was being

considered in isolation.

It is inarguable that the data collected by Nosofsky et al. (2018)

is useful for studying natural category learning (see Nosofsky

et al., 2022, for example, for an application of this dataset to

prototype and exemplar models of category formation). What is

lacking, however, are complete similarity matrices for each basic-

level category collected in a method that is free of potential context

effects that might “compress” the perceived similarity of items

within a single category. To add to the utility of this dataset, we

had participants rate the similarity of all exemplars in a given basic-

level category in isolation, allowing them to appreciate the nuance

of the perceptual details contained within a category without being

affected by the context of the greater set of categories/tokens.

Similarity rating methods and
multidimensional scaling

Frequently, similarity ratings are obtained via the pairwise

method of comparison (Thurstone, 2017), whereby participants are

tasked with numerically rating item pairs via Likert Scales (Likert,

1932), progressing through every possible pairing in a stimulus set.

While the pairwise method has the advantage of task simplicity, a

central drawback is that it burdens researchers (and participants)

with a costly expense in time and data collection effort. This is

especially the case when used for rating large stimulus sets, as

the number of needed comparisons grows dramatically with every

stimulus added to the set. Because of the length of time required

to perform the ratings, researchers must be wary of both rater

fatigue and criterion drift, generating concern over data reliability

(Johnson et al., 1990).
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By contrast, the Spatial Arrangement Method (SpAM)

(Goldstone, 1994) presents participants with multiple stimuli at

once, tasking the rater with arranging them in space relative to

the perceived similarity between each pair. Items that are of high

perceived similarity are to be placed proportionally closer together

than items considered dissimilar; the data matrix derived from this

task simply includes recording Euclidean distances between each

pair of items at the end of the arrangement. Whereas the rating of a

12-token set might require 5–10min for a participant to rate all 66

unique pairs, a single SpAM trial could present all the items at once,

and might require only 2–3min of arrangement to obtain complete

ratings. The SpAM task is intuitive, it takes advantage of the natural

tendency to think of similarity in a spatial manner, and it is much

faster and more efficient than pairwise methods. Indeed, while not

right for every experimental scenario (see Verheyen et al., 2016),

it has been shown that this speed and efficiency does not come at

the cost of data quality for perceptual (Hout et al., 2013a; Hout

and Goldinger, 2016) or conceptual (Richie et al., 2020) similarity

rating tasks.

Regardless of the similarity rating method used, obtained data

are then most frequently subjected to multidimensional scaling

(MDS) analysis, a statistical procedure used to model the similarity

relationships among items in a set (see Hout et al., 2013b and Hout

et al., 2016, for tutorials). The goal of subjecting this “proximity

data” (i.e., similarity ratings obtained via pairwise method, SpAM,

or some other technique) to MDS is to produce a visually

accessible interpretation of the similarity relationships present in

the data (which can be useful in hypothesizing as to what features

of the stimuli governed participant ratings), and to provide a

comprehensive set of “distances” in MDS space that quantify the

degree to which any given pair of stimuli are perceived as similar or

dissimilar (relative to the other items/pairs in the set).

The current project

In this project, we collected similarity ratings (via SpAM) for

each of the 30 basic-level categories (separately) from the Nosofsky

et al. (2018) dataset. Participants rated the similarity of all 12

exemplars in a category on each trial, and data were thereafter

subjected to MDS analysis. This data report presents those data

and MDS models; full results can be found on our OSF page. It

is important to note that this database is intended merely as a

supplement to Nosofsky et al. (2018). Specifically, this dataset is

intended to focus on the discriminability and similarity of items

within each category, which can vary significantly depending on

the heterogeneity of the set (e.g., members of the Quartz category

are highly similar to one another, whereas those in the granite

category vary more in appearance). By collecting similarity ratings

within a single category at a time, within-category similarity can

be better appreciated, without being “compressed” via comparison

to members of other categories (e.g., Quartz items might clump

together more than granite in the context of all other categories

present in Nosofsky et al., 2018).

The cost of allowing for more nuance in within-category

ratings, however, is that we are unable to provide across-category

ratings for the stimuli, as have already been provided by Nosofsky

et al. (2018). As such, this dataset is likely more useful for studies

of visual attention (that necessitate within-category similarity

manipulations as in Hout and Goldinger, 2015) than it is for

category-learning paradigms that require similarity comparisons

across categories. Moreover, our approach does not allow for

comparisons across categories (e.g., determination of the relative

discriminability of Quartz items relative to granite tokens), and

might influence of the impact of “global” features that are common

across many categories [e.g., light vs. dark was shown to be

a feature of high importance in the Nosofsky et al. (2018)

dataset, but for universally dark categories like Obsidian, isolated

similarity ratings are unlikely to reveal that featural dimension].

Instead, the value of our dataset is that it provides relatively

unperturbed similarity ratings within each category, allowing for

subtle differences between tokens to be more impactful when not

influenced by the features of other categories.

Methods

Ethics

This research was approved by the Institutional Review

Board of New Mexico State University (on 7/2/22, IRB Protocol

#2206002241), and was considered “exempt” in accordance with

Federal regulations, 45 CFR Part 46. Upon arrival, informed

consent detailing the aim and scope of the research (as well as the

right to refuse or withdraw at any time without consequence) was

obtained from all participants in writing. Participants were then

instructed how to perform the task and were given an opportunity

to ask questions before they began.

Participants

Thirty-five participants were recruited from the student

population at New Mexico State University. Students were

compensated with participation credits that could be used as

extra credit or as partial fulfillment of course requirements. All

participants had normal or corrected-to-normal vision, and all

reported normal color vision.

Design

All participants completed an experiment where they were

given 30 SpAM trials (with categories selected in random order)

containing 12 stimuli each, taking an average of 50min to complete.

All participants saw and arranged all items within each of the

basic-level categories for similarity. In this manner, each item was

scaled for similarity against every other item within their respective

categories (e.g., all granite exemplars were rated against all other

granite exemplars).

Stimuli

The stimuli used were from the Nosofsky et al. (2018) study.

There were a total of 360 stimuli, sampled from across three
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superordinate categories (metamorphic, sedimentary, igneous),

and belonging each to one of 30 basic-level categories (e.g.,

marble). Each basic level category contained 12 exemplars; all

pictures were standardized in format, with a single picture

presented across a blank white background, and uniform

in size.

Apparatus

Data were collected on five computers simultaneously,

all with identical hardware and software, and supervised by

research assistants. The computers used were Dell Inspiron

14 5410 2-in-1 computers with Intel i7 processors running

Windows 10 and high-resolution ASUS VP28UQG LCD monitors

operating on a 60 GHz refresh rate. The experiment was

run on E-Prime v3.0 Professional Software (Schneider et al.,

2002).

Procedure

In each trial, a new selection of images was shown to the

participant on a computer screen (see Figure 1a). The screen was

divided vertically by a black border into three distinct areas: left,

right, and a central “arena.” The left and right areas on the

periphery of the screen were each populated by a row of rock

images from top to bottom, placed in random order. Participants

were asked to “drag and drop” each item from the periphery

into the center arena and arrange them by perceived similarity

such that items that were perceived of as similar would be placed

proportionately closer together than items perceived as more

dissimilar. Samples were not provided to participants because we

did not want to bias the participants’ perception of the stimuli, and

our many prior experiments suggest that users find this interface

intuitive and simple. That said, participants were also afforded the

opportunity to ask research assistants any questions they had prior

to beginning the task in order to ensure that they understood how

to utilize the space.

Participants were given as much time on the task as they

needed but were not able to advance to the next trial until

all items had been removed from the periphery and arranged

in the arena (see Figure 1b). Typically, these trials lasted 2–

5min. Upon completion, participants were instructed to click

on a Stop Sign icon at the bottom of the screen. To avoid

accidental termination of trials, participants were then asked if

they were satisfied with their arrangement of the stimuli or

if they’d like more time. If they indicated satisfaction with a

key press, they were then advanced to the next trial (if not,

they were returned to their ongoing trial). The experiment

continued in this way through to completion, with participants

being allowed to take breaks as needed. Similarity scores were

recorded at the end of each trial; we calculated the two-

dimensional Euclidean distance between each pair of items at the

end of the arrangement and used that information to populate

each participants’ similarity matrix (for each category). Upon

completion, all participants were debriefed on the experimental

aims and released.

Analysis

Open access materials

All data discussed in the analysis section can be found in

the Open Science Framework page (https://osf.io/azrmw/). The

page houses a downloadable zip file with four key contents: (1)

a spreadsheet containing the database, (2) the R script utilized to

conduct the analysis, (3) a folder containing all raw input data

for the R script in .csv format, and (4) a folder containing all

outputs from the R script in .csv format that were used to construct

the database.

MDS algorithm

For each of the 30 rock categories, we used Kruskal’s non-

metric multidimensional scaling (MDS) (Kruskal, 1964) to derive

a series of MDS coordinate solutions with successively increasing

dimensionality. Kruskal’s stress formula was used to calculate a

stress metric for each dimensional solution within each of the

categories. The MDS analysis was conducted in R, utilizing a script

(Daggett et al., under review)1 that takes the aggregated similarity

data collected via SpAM as input and iteratively runs the data

through the MDS program at a dimensionality of 1 through n,

with the experimenter choosing the value of n as the maximum

dimensionality to be utilized. With each successive iteration of

the process, the script produces a coordinate set, a measure of

stress, measures of prototypicality (centrality), and a metric called

“uniqueness” (detailed below) for each item in the set.

Dimensionality of the MDS space

A traditional methodology for determining the proper

dimensionality for the MDS solution is to analyze the reduction in

stress exhibited as the dimensionality of the solution is increased.

Such data can be visualized in a scree plot. A typical heuristic

approach to analyzing the scree plot involves the subjective

identification of an “elbow” in the often monotonically decreasing

stress value as a function of dimensionality. This elbow represents

a point at which an increase in dimensionality represents a

diminishing return in the reduction of stress (Kruskal and Wish,

1978). Other approaches for determining dimensionality include

the use of Bayesian techniques (Lee, 2001) to more objectively

determine an optimal tradeoff between lower, more interpretable

dimensionality and stress.

Classification of item prototypicality
(centrality)

Within the results form, a metric of centrality is provided for

each rock in each of the MDS solutions (see Figure 2). Centrality

1 Daggett, E. W., and Hout, M. C. (under review). A methodology for

visualizing high-dimensional psychological spaces without dimensionality

reduction. Behav. Res. Methods.
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FIGURE 1

Example progression of a Spatial Arrangement Method (SpAM) trial. (a) Trials began with all stimuli from a single category (this one being breccia)

placed at random on the periphery of the central arena. (b) Participants would then drag and drop stimuli into the center, arranging them for

similarity with like items placed close together, and dissimilar items placed further apart. When satisfied with their arrangements, they would

terminate the trial by clicking on the “Stop” icon at the bottom right of the screen.

FIGURE 2

The first two dimensions of the marble category MDS space. Both the geometric center (green triangle) and the centroid (red circle) are depicted for

visualization purposes. From the visual, it is possible to see the benefits of utilizing the centroid—or center of mass—over the geometric center, as the

centroid accounts for the increased density on the right side of space. The centroid more aptly depicts the orange-tinted marble as being less

prototypical for this particular space of marble rocks. The most “unique” rock in the space (blue square)—the rock with the largest average pairwise

distance to all other rocks—can be seen in contrast to the least unique rock (blue circle), which has the smallest average pairwise distance. Finally,

the most central (red diamond) and most peripheral (red pentagon) rocks are classified based on their distance from the centroid (red circle).

represents a hypothetical measure of “prototypicality” in the

context of the set of images being rated, where the more central

an object is within the set, the more similar it is to a hypothetical

prototypical object. To calculate centrality, we first calculated the

center of mass (centroid) of the space of objects for each MDS

solution by averaging each of the coordinate dimensions across all

objects. We believe this approach to designating the center of the

MDS space—as opposed to calculating the geometric center, for

Frontiers in Psychology 05 frontiersin.org

https://doi.org/10.3389/fpsyg.2024.1438901
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


White et al. 10.3389/fpsyg.2024.1438901

instance—is superior in the context of psychological data because

it places outlier objects in the peripheral of the space. Consider the

generated MDS space of marble rocks (Figure 2), where there is a

clear distinction between achromatic (i.e., gray and white rocks)

and the orange/red rocks in the stimuli set. The achromatic rocks

vastly outnumber the orange/red rocks, and while the geometric

center of this space would reside equidistant between all objects,

this would not give any consideration to the relatively higher

density of stimuli on the right hand (achromatic) side of the space.

The centroid of the space, however, does take into account the

relative densities within the space. In this example, the centroid

would exist farther to the right of the space than the geometric

center, resulting in the achromatic rocks being more central than

the orange/red rocks.

Item uniqueness scoring

In addition to centrality scores, the outputs include a metric

of “uniqueness”1 for each object in each MDS solution (see

Figure 2). This scoring represents a novel metric for this stimulus

set that offers new avenues by which the images can be leveraged.

Uniqueness is a metric that is independent of centrality. Rather

than relating each rock to the centroid of the space, uniqueness

instead relates each rock to every other rock in the space. To achieve

this—for each rock in the space—the mean pairwise distance

between a rock and every other rock in the space is calculated. The

most unique rock in the space will be the one with the greatest mean

pairwise distance between it and any other rock in the space. The

least unique rock will be the rock with the smallest average pairwise

distance in the total set of pairwise distances in the space.
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