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Communication research has long recognized the dynamic nature of most media 
stimuli and the corresponding dynamic emotional processing implied on the side 
of the audience. Capturing and analyzing these emotional dynamics during media 
reception is imperative for advancing our understanding of media processing and 
effects, but is not common practice in most communication research. This article 
highlights several methodological approaches to measuring the physiological, 
behavioral, and experiential components of emotions during media exposure: 
Electrodermal activity, automated facial expression analysis, continuous response 
measurement, and self-probed emotional retrospections. We discuss these methods 
in terms of what they measure, their practical application to different research 
contexts, and aspects of data-analysis. We further highlight ways to adapt and 
apply these methods to advance research on hot topics in communication science, 
psychology, and related fields and provide recommendations for scholars who 
wish to integrate continuous measures of emotional responses into their research.
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Measuring dynamic emotional experiences in 
response to media stimuli

Most media stimuli are complex and dynamic. These dynamic properties of media such 
as movies and TV shows, books, music, games, social media feeds, and journalistic content 
have been widely described both theoretically and empirically (Boyd et al., 2020; Green and 
Appel, 2024; Ip, 2011; Orjesek et al., 2022; Wise et al., 2010). Important theories of media 
psychology, such as affective disposition theory (Raney, 2006, 2017; Zillmann and Cantor, 
1977), excitation transfer theory (Zillmann, 1971, 2006), and the limited capacity model of 
motivated mediated message processing (LC4MP) (Lang, 2000, 2006; Keene and Lang, 2016) 
connect the content features of media stimuli to dynamic emotional responses and/or postulate 
effects of emotional change (see Nabi, 2015; Nabi and Green, 2015). For empirical research 
dealing with media processing, it is therefore important, if not essential, to capture the 
dynamic emotional responses to media stimuli that are key elements of pertinent theoretical 
approaches. Today, however, only few empirical research projects involve measures of dynamic 
emotional audience responses during media reception (Schmälzle and Huskey, 2023; Walter 
et al., 2018).

The aim of this paper is to address this major shortcoming in the literature on media 
responses and effects. We review classic and novel methodological approaches to measuring 
dynamic emotional responses. A range of methods are available to do so, all of which come 
with unique challenges, advantages, and limitations and are suitable for different research 
contexts. This review aims to help novice and seasoned researchers alike who are new to the 
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field of emotion measurement and interested in emotional processes 
during media reception, by providing an overview of the 
methodological toolkit available, guiding them toward relevant 
in-depth resources, and supporting informed decision-making.

We cover different methodological approaches that are compatible 
with different media formats (e.g., visual, audio or audiovisual media) 
and allow the assessment of physiological, behavioral/expressive, and/
or subjective experience components of emotions. Next to well-
established methods (e.g., psychophysiological measures), we discuss 
less common but promising ways to capture dynamic emotional 
responses, providing a brief overview of the general procedure, 
suitable application contexts, advantages and limitations, and data-
analytic strategies. Furthermore, we discuss how these methods can 
be applied to investigate relevant research questions in key domains 
of media psychology, in particular, research on narrative effects, social 
media, and virtual reality. We  conclude our article with 
recommendations for scholars intending to incorporate measures of 
emotion into their research.

Theoretical and methodological 
considerations of dynamic emotion 
measurement

Emotions can be  defined as internal, mental states that 
represent valenced and conscious responses to an object (e.g., 
Ortony et al., 1988; Ortony, 2022). They can be distinguished from 
moods, which are longer-lasting diffuse affective states that are not 
necessarily directed toward specific stimuli (e.g., Ortony, 2022; 
Scherer, 2005). Most emotion theories agree that the emotional 
response system comprises different components: Minimal 
consensus conceptualizes the emotional response system as 
consisting of an expressive/behavioral, physiological, and 
experiential component (e.g., Bradley and Lang, 2002; Frijda, 2007; 
Lang and Davis, 2006; Mauss et al., 2024; Scherer, 2005). These 
components define the data sources of emotion measurement 

(Lang and Davis, 2006; see Figure  1). Self-report is generally 
viewed as a measure of subjective experience (i.e., whether people 
are feeling what they know as anger, sadness etc.; e.g., Ortony, 
2022; Scherer, 2005; Quigley et al., 2014). Physiological measures 
can capture basic dimensions of emotional responses (e.g., arousal) 
and are essential for understanding the processes that lead to (and 
result from) the subjective experience of emotions (e.g., Quigley 
et  al., 2014; Schmälzle and Grall, 2020). The analysis of facial 
movements constitutes a common measure of the behavioral 
component of emotion and helps to understand how emotional 
states are expressed in the face (which likely varies depending on 
the context and individual differences, see Barrett et al., 2019). 
However, researchers should not expect specific emotion categories 
such as anger, fear, or sadness to be  identifiable by specific 
physiological or expressive patterns (see Behnke et al., 2022; Durán 
and Fernández-Dols, 2021; Lange and Zickfeld, 2021; Siegel et al., 
2018). Neither physiological nor behavioral measures are direct 
assessments of experience (or vice versa), but rather reflect 
different components of emotion that all contribute to 
understanding the construct (Mauss and Robinson, 2009; Mauss 
et al., 2024). Although this review is primarily concerned with the 
methodological challenge of collecting emotion data rather than a 
discussion of emotion theory, aspects of measurement are often 
entangled with theory. This concerns the analysis of facial behavior 
in particular, which we  will discuss in more detail in the 
corresponding section.

Self-report scales that are often used in communication 
research typically reflect a global and retrospective evaluation of 
the media experience (e.g., “How did you feel while watching this 
ad/browsing through these postings/listening to this story?”). 
These measures are an elemental part of communication research 
and contribute substantially to understanding various media and 
communication phenomena. Static measures are appropriate when 
using pictures or brief auditory or audiovisual stimuli that are 
designed to elicit a particular emotional response without 
substantial variability throughout the stimulus (e.g., short film 

FIGURE 1

Assessment of components of dynamic emotional responses to media stimuli. Image credit: iStock.com/Tero Vesalainen.
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clips intended to evoke a consistent emotional response). They are 
also useful for research in which emotional states after stimulus 
exposure are the focus of interest. However, they are unsuited to 
capture emotional responses as they unfold over time: The same 
global average score of emotional responding may represent vastly 
different experiences (e.g., an increase of emotional responding 
over time as well as a decrease, happiness when a villain succeeds, 
or a hero prevails). Assessing responses to dynamic media stimuli 
is particularly challenging because the nature of many experiences 
renders interruptions during reception unfeasible. For example, 
individuals tend to get (more or less) transported into story worlds 
(Gerrig, 1993; Green and Brock, 2000). Applying self-report scales 
during story exposure constitutes an interruption that would 
substantially alter the state of transportation. Thus, such a 
measurement would influence the experience itself in 
undesirable ways.

In the following sections, we  present useful methodological 
approaches to measuring emotional responses as they occur, while 
maintaining minimum interruptions. We  focus on electrodermal 
activity as a measure of physiological arousal and facial expression 
analysis as a behavioral measure. For the experience component of 
emotion, we  discuss continuous response measurement and self-
probed emotional retrospections.

We selected these measures because, among the available 
methods for obtaining continuous emotion data, they pose a 
relatively low threshold for researchers to incorporate into study 
designs.1 These encompass both established, reliable options and 
emerging methods that warrant further investigation and 
exploration. Among all physiological measures, electrodermal 
activity is a relatively accessible and easy-to-interpret indicator of 
sympathetic arousal. With recent advancements driven by 
automated analysis software, analysis of facial expressions is one of 
the most promising ways to obtain behavioral emotion data. Lastly, 
both continuous-response measurement and self-probed emotional 
retrospections present in-the-moment ways to measure subjective 
experiences that minimize interference.

It is beyond the scope of this article to discuss all possible emotion 
measurement methods. We do not discuss methods that primarily 
reflect cognitive processes (such as eye-tracking; King et al., 2019). 
We  also do not cover physiological measures of central nervous 
system activity (Schmälzle and Grall, 2020). Although in the domain 
of psychophysiological research the neuroscience of how the brain 
processes naturalistic media stimuli is gaining traction and holds 
promise for the study of media effects (e.g., Schmälzle and Huskey, 
2023; Turner et al., 2018), the equipment and training required to 
acquire and interpret brain data are unlikely to be available to most 
media and communication researchers. We  do not intend to 
discourage researchers with the necessary training and equipment 
from pursuing this methodological path.

1 We acknowledge that in some underfunded academic systems what 

we  describe as a low threshold can represent a higher barrier. Financial 

limitations may affect the feasibility of incorporating certain emotion measures 

(particularly psychophysiological measures or facial expression analysis). 

However, the self-report measures discussed here represent rather cost-

effective options.

Measuring emotions as they occur

Psychophysiology: electrodermal activity

Emotions are embodied experiences associated with central and 
peripheral nervous system activity, which can be observed through 
psychophysiological measures (e.g., Barrett and Lindquist, 2008). 
Psychophysiological measures offer insights into the bodily responses 
associated with emotion on a moment-to-moment basis and with high 
temporal resolution. They can capture individuals’ immediate affective 
responses to stimuli, before they reach a person’s consciousness to 
interpret an emotional experience (Barrett and Lindquist, 2008). One 
of the most common and established measures of autonomic nervous 
system (ANS) activity is electrodermal activity (EDA). In contrast to 
other physiological arousal measures, EDA is considered a pure 
indicator of sympathetic arousal (the state of the ANS that regulates 
the body’s “fight or flight” response) that is unaffected by 
parasympathetic activity (the process regulating relaxation; e.g., 
Morey, 2020; Potter and Bolls, 2012). In the following, we  briefly 
describe the general procedure of obtaining EDA data and point to 
relevant resources. We further discuss how EDA can be quantified, the 
available research to validate and test the technology, as well as 
opportunities and challenges to consider when integrating this 
methodology into media effects research.

Procedure
EDA is recorded via electrodes that are attached to the skin, 

typically the palm of the hand, the fingers, or the foot (depending on 
the task participants are required to do; for a comparison of different 
measurement sites, see van Dooren et al., 2012). Extensive technical 
guidelines are available for research that incorporates EDA; discussing 
them in detail is beyond the scope of this article. Comprehensive 
overviews that cover practical and technical issues like equipment, lab 
setup, and electrode placement, as well as the theoretical basics and 
interpretation of physiological measures in media research, are 
provided by Potter and Bolls (2012) and Dawson et  al. (2017). 
Braithwaite et al. (2015) offer a detailed guide for data cleansing and 
analysis of skin conductance data. Reporting recommendations can 
be found in Boucsein et al. (2012).

What is measured
The ANS is the branch of the peripheral nervous system that plays 

a key role in regulating involuntary bodily functions, including 
emotional responses and attentional processes (Potter and Bolls, 
2012). EDA is considered a pure indicator of sympathetic activation 
of the ANS. Sympathetic activation leads to “psychological sweating” 
(Potter and Bolls, 2012, p. 113), resulting in changes in the electrical 
conductance of the skin’s surface, which is the signal recorded by 
EDA measures.

Researchers should note that due to the nature of the ANS, EDA 
is not an exclusive indicator of affective processing. It also responds to 
task anticipation and performance, novelty, habituation, and deep 
breathing (Dawson et al., 2017). Furthermore, skin conductance offers 
only limited insight into emotional processing (i.e., the arousal 
dimension) and cannot be used to infer or differentiate between more 
specific emotional states (Behnke et al., 2022; Kreibig, 2010; Siegel 
et al., 2018). Thus, inferences on emotional responses based on skin 
conductance indicators must be drawn strictly within the scope of the 
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experimental context and the materials used. They are further best 
combined with additional measures (e.g., self-report) to gain a fuller 
picture of emotional processes (e.g., Kreibig, 2010; Morey, 2020; 
Quigley et al., 2014).

Data analytic considerations
Skin conductance is most commonly quantified in terms of skin 

conductance level (SCL) or skin conductance responses (SCR). SCL 
as a tonic indicator reflects overall sympathetic activity over longer 
periods of time and changes only slowly. To analyze arousal based on 
SCL, SCL is typically averaged over any predefined time intervals that 
are theoretically of interest (e.g., 1 min before and after a key scene in 
a movie). Then, change scores are calculated based on the average SCL 
scores for each time interval and baseline levels (i.e., the SCL average 
during a short unstimulated period of time before stimulus 
presentation; Potter and Bolls, 2012).

SCL is affected by skin conductance responses (SCR), quick and 
short increases of arousal that appear as peaks in the skin conductance 
recording. They can be elicited by events that are unexpected, new, 
relevant, or aversive, but also occur as spontaneous fluctuations. In 
contrast to the more inert SCL indicator, SCRs can account for arousal 
changes within much shorter time frames (Dawson et al., 2017). To 
quantify arousal in terms of SCRs, the number of SCRs (peaks of at 
least 0.1 microSiemens within 3 s; Dawson et al., 2017) are counted 
within the time interval of interest. Another common approach is to 
calculate the mean amplitude of SCRs, that is, the average difference 
between onset and high point of responses (Dawson et al., 2017; Stern 
et al., 2001).

Stimuli and application contexts
EDA measures are best suited for research using audiovisual or 

auditory stimuli because of the time-locked presentation mode. For 
example, EDA measures have been used to examine dynamic 
emotional responses to auditory (e.g., Schmidt et al., 2023; Ellis and 
Simons, 2005) and audio-visual stimuli (e.g., Armstrong and Cutting, 
2023; Barraza et al., 2015; Clayton et al., 2021; Han et al., 2022; Morris 
et al., 2019; Sukalla et al., 2016). It has also been applied in gaming 
research (e.g., Ravaja et al., 2008; for reviews, see Hughes and Jorda, 
2021; Kivikangas et al., 2011). Studies using EDA during reading are 
less common (e.g., Mason et al., 2020). Synchronizing responses with 
a stimulus presents an additional challenge in this case due to 
individual differences in reading time. Using a self-paced reading 
paradigm allows for recording reading times for moving windows that 
highlight different segments of the text and that participants navigate 
while reading (Just et  al., 1982; Keller et  al., 2009). The recorded 
reading time can then be used to correct the EDA raw scores in each 
reading window.

Advantages
Skin conductance is a reliable and valid measure of sympathetic 

arousal (Koruth et al., 2015; Ravaja, 2004; van Dooren et al., 2012). 
Because it is not affected by parasympathetic ANS, it is easier to 
interpret than other physiological measures of arousal (Braithwaite 
et al., 2015; Dawson et al., 2017). A key benefit of skin conductance is 
its ability to capture involuntary processes beyond participants’ 
awareness and control, thus avoiding biases that typically limit self-
report. Furthermore, EDA measures provide continuous, in-the-
moment data that can be linked directly to the content features of the 

stimulus. If other continuous data exist (e.g., sentiment analyses of the 
stimulus), this opens possibilities for time series analyses (Ravaja, 
2004; Suckfüll, 2010). Recent developments in wearables also enable 
research outside the laboratory, reducing barriers to incorporating 
psychophysiological measures into study designs and increasing the 
external validity of EDA-based research. However, not all wearables 
perform the same. Researchers should check whether the device has 
been validated with more established laboratory systems (Ferreira 
et al., 2023; Konstantinou et al., 2020; van der Mee et al., 2021).

Limitations
Although measuring EDA is relatively inexpensive and 

straightforward compared with other psychophysiological measures, 
conducting physiological research in general is more costly, time-
intensive, and requires an extensive lab setup compared with simpler 
methods such as self-report. Further, additional training is required 
to obtain, process, and interpret data successfully. Inspecting data and 
dealing with common issues like signal loss, artifacts (e.g., drift in the 
SCL, motion artifacts; Braithwaite et al., 2015), or non-responders (an 
estimated 10 % of the population do not show any variation in skin 
conductance; Dawson et al., 2017) can be time-consuming, especially 
for researchers who are new to physiological research. Because of this 
increased effort, the sample sizes that can be  achieved with 
physiological research are typically limited.

Behavior: automated facial expression 
analysis

Emotional states often lead to observable facial muscle 
contractions. Proponents of a basic emotion approach have suggested 
that emotional states can be identified based on specific facial muscle 
configurations (Cordaro et  al., 2018; Ekman, 1993; Keltner et  al., 
2019). Although the hypothesis of prototypical facial expressions 
related to emotional experiences is highly controversial, emotion 
scholars agree that emotional states often lead to facial behavior 
(Barrett et al., 2019). Therefore, analyzing the muscle contractions 
accompanying emotional experiences is meaningful, irrespective of 
the theoretical background. The development of computer-vision 
machine learning technology in recent years has made it possible to 
automate this otherwise laborious process and generate intensive 
facial-behavior data during media reception (Küntzler et al., 2021; 
Stöckli et al., 2018). In the following, we discuss the procedure of 
conducting automated facial expression analysis (FEA), the available 
research to validate and test the technology, and the opportunities and 
challenges of integrating this methodology into media effects research.

Procedure
The most prominent and widely used framework to describe facial 

muscle contractions is the Facial Action Coding System (FACS) 
(Cohn and Ekman, 2005; Ekman and Friesen, 1978). The FACS 
consists of 46 action units (AUs) that identify different facial 
movements (e.g., raising of the upper lip, wrinkling of the nose). The 
coding of AUs is typically performed based on video material of 
participants, frame by frame. Different software applications have 
been developed in recent years to automate this process, for example, 
FaceReader (by Noldus) and FACET (by iMotions; for a performance 
comparison of different software, see Küntzler et al., 2021; Stöckli 
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et al., 2018). Facial expressions are typically recorded in front of a 
screen, which enables a full-frontal view of participants’ faces. To 
ensure high data quality, the participant’s face should be well lit, and 
ideally, a neutral background should be chosen. Covering parts of the 
face (e.g., by facial hair, glasses, excessive make-up, or by participants 
touching their faces) may impair data quality (Küntzler et al., 2021). 
To account for this, researchers should have necessary accessories 
available in the lab (e.g., hair pins to remove fringes), instruct 
participants to come to the lab prepared (e.g., by asking them to wear 
contact lenses and to shave or trim beards, if possible), and to keep 
their hands out of their faces.

What is measured
Research has found that FEA software is generally able to 

differentiate intensities of AUs and standardized prototypical facial 
expressions of emotions (Beringer et  al., 2019; Calvo et  al., 2018; 
Höfling et al., 2022; Lewinski, 2015; Lewinski et al., 2014; Stöckli et al., 
2018). However, naturally occurring expressions are often more 
nuanced and complex. Detection accuracy in these instances tends to 
be  lower compared with prompted and standardized portrayals 
(Höfling et al., 2020; Küntzler et al., 2021; Stöckli et al., 2018), whereas 
humans can recognize more subtle and complex emotional 
expressions (Yitzhak et al., 2017). Of note, the detection accuracy of 
FEA software varies for different emotions: Expressions of happiness/
joy is recognized most accurately. Accuracies for negative emotions, 
such as anger, fear, and sadness, are lower (Calvo et al., 2018; Lewinski 
et al., 2014), particularly for non-standardized and naturally occurring 
expressions (Küntzler et al., 2021; Stöckli et al., 2018; Zempelin et al., 
2021). When considering the valence and arousal dimensions of 
emotions, the sensitivity of FEA software to differentiate between 
observed pleasant and neutral responses is comparable to that of facial 
electromyography (EMG), which records the electric potential of 
facial muscles associated with positive and negative valence. However, 
it is less sensitive in differentiating unpleasant and neutral responses 
and does not seem suited for measuring emotional arousal (Höfling 
et al., 2020).

Although the aim of this review is to highlight different 
measurement options while remaining neutral in terms of theory, it 
should be noted that the classification of emotion categories in all 
FEA applications builds on basic emotion theory. In particular, the 
view of emotions as biologically basic is disputed in the literature 
(for a review, see Barrett et al., 2019). Most emotion scholars agree 
that emotional states often lead to facial behavior and that this 
should be  taken into account in a comprehensive assessment of 
emotions. It is also uncontroversial that people use basic emotion 
terms (e.g., anger, joy, sadness) to organize their knowledge about 
and describe their experiences of emotions (Barrett et  al., 2019; 
Ortony, 2022). However, evidence suggests that facial expressions 
associated with experienced emotions are likely more heterogeneous 
and less prototypical than proponents of biologically basic emotions 
suggest (for meta-analyses, see Durán and Fernández-Dols, 2021; 
Reisenzein et al., 2013; see Mauss et al., 2024 for a general discussion 
of emotional response system coherence). One exception is 
amusement, which highly co-occurs with laughter and smiling 
(Durán and Fernández-Dols, 2021). Conversely, facial movements 
do not necessarily signal an emotional state and are influenced by 
context (Barrett et  al., 2019). For example, facial expressions 
classified as angry may result from a genuine experience of 

frustration, but could also reflect cognitive effort or concentration 
associated with a task (e.g., Talen and den Uyl, 2022; Yu and 
Ko, 2017).

Data analytic considerations
Automated FEA yields continuous data for various emotion 

categories. Most FEA software applications also allow the analysis of 
AUs rather than emotion categories, which is relevant for researchers 
who wish to conduct FEA without the background of basic emotion 
theory. Analyzing AUs rather than relying on the categorization of 
emotional expressions has been encouraged by some emotion 
scholars. Conducting FEA in this manner may require a more 
descriptive approach because an alternative theoretical framework 
that allows valid and reliable inferences of emotional expressions 
from facial behavior is currently not available. Barrett et al. (2019) 
recommends combining FEA with self-report and to consider the 
context in which facial movements occur (see also Mauss 
et al., 2024).

Stimuli and application contexts
As with psychophysiological data, FEA software is best suited for 

measuring responses to audiovisual and auditory media stimuli, as 
this allows to synchronize audience responses with the stimulus. 
However, applications using text-based stimuli are also feasible. 
Measuring facial movements using FAE software is possible in and 
outside of laboratory settings (most providers offer online 
applications), provided that researchers ensure proper conditions to 
maximize the likelihood of accurate expression classification (see 
Küntzler et al., 2021).

As a rather novel technology, research using automated FEA to 
infer emotional responses during media use is scarce. However, some 
research has applied this method successfully to study continuous 
emotional responses to music (Weth et al., 2015), in a user experience 
setting (Talen and den Uyl, 2022), to examine the role of emotional 
responses for the persuasive effects of a movie (Appel et al., 2019) and 
for sharing of advertisements (McDuff and Berger, 2020). Importantly, 
these studies also provide evidence of the predictive validity of 
emotion data gathered using FEA software (Appel et al., 2019; McDuff 
and Berger, 2020).

Advantages
Whereas much of the FACS research has traditionally relied on 

intensively trained human coders, the manual coding of continuous 
responses to dynamic media stimuli presents a colossal task (Barrett 
et al., 2019; Stöckli et al., 2018). Thus, automated FEA is a promising 
method to generate intensive datasets of facial behavior during media 
reception, which cannot be achieved using manual coding. Automated 
FEA software has been found to perform similarly to human coders 
(Calvo et al., 2018; Küntzler et al., 2021; Lewinski et al., 2014). These 
applications are continuously under development; thus, their 
performance can be expected to improve over time.

Compared with facial EMG, automated facial expression analysis 
(FEA) enables easier data collection, is less intrusive for participants 
(because no electrodes need to be attached in their faces, possibly 
obstructing their view and causing an artificial situation), and has a 
low risk for motion artifacts. In addition, facial expression data are 
free from biases (e.g., social desirability, memory biases, demand 
characteristics) that may affect self-report (e.g., Quigley et al., 2014).
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Limitations
At this point, automated FEA is less accurate and sensitive for 

classifying negative emotional expressions than positive expressions 
(e.g., Calvo et al., 2018; Höfling et al., 2020; Küntzler et al., 2021; 
Zempelin et  al., 2021). This likely boils down to the fact that the 
categorization of facial expressions relies on basic emotion theory, 
which has been increasingly criticized by emotion scholars. Because 
an alternative framework for categorizing constellations of AUs in 
terms of emotion expression is lacking, researchers who wish to study 
facial expressions without the lens of basic emotion theory are left 
with an inductive approach to data analysis (for a detailed discussion 
and recommendations, see Barrett et al., 2019).

Self-report measures

Given their easy use and relatively straightforward interpretation, 
self-report measures are the most common way to measure emotions. 
In contrast to physiological measures and observations of facial 
behavior, self-reports allow for more direct inferences of emotional 
experiences and offer insight into the subjective feeling component of 
emotions (Barrett et al., 2007; Scherer, 2005).

Several limitations are inherent to all self-report measures. For 
one, they depend on an individual’s consciousness of an experience 
and their ability and willingness to report it (e.g., Nisbett and Wilson, 
1977; Quigley et al., 2014; Scherer, 2005). Furthermore, self-reports 
can be influenced by demand effects and social desirability biases, 
such that participants’ response behavior might be affected by their 
assumptions of what the study is about or by perceived social norms 
(Moulds et al., 2023).

More specific challenges arise when using self-report to capture 
dynamic emotional responses to media stimuli. Simply probing 
emotional experiences mid-exposure by pausing the stimulus or 
retrospective self-reports based on predefined cues (e.g., film stills, 
event descriptions) might be sufficient for some research purposes, 
but can cause problems in terms of reactivity and disrupt relevant 
processes (e.g., Durkin and Wakefield, 2008; Kalch and Bilandzic, 
2017; Larsen and Seilman, 1988). Furthermore, both options do not 
capture potentially relevant variance in emotional responses outside 
of these predefined measurement points. In the following, we discuss 
methods that avoid or mitigate these issues.

Continuous response measurement
Continuous response measurement (CRM) or real-time response 

measurement (RTR) describes measurement systems that allow 
participants to provide continuous ratings of subjective experiences 
while being exposed to a stimulus (Biocca et al., 1994; Maier et al., 
2009). In principle, CRM is suited for measuring any aspect of 
subjective emotional experience that participants can indicate on up 
to two dimensions simultaneously.

Procedure
CRM is administered using devices such as handheld rating dials, 

sliders, joysticks, or via web interfaces on touchscreens of smartphones 
and tablets (Wagner et  al., 2021). Participants use these tools to 
provide continuous feedback on up to two rating dimensions in 
response to a media stimulus. Tools and systems to implement CRM 
measurement are widely available, such as the Software for Continuous 

Affect Rating and Media Annotation (CARMA) (Girard, 2014), the 
Software for Dual Axis Rating and Media Annotation (DARMA) 
(Girard and Wright, 2018), EMuJoy (Nagel et  al., 2007), or the 
emoTouch web application (Louven et al., 2022).

What is measured
Most CRM studies use a single dimension to assess subjective 

emotional experiences, typically a bipolar valence scale (e.g., 
Siegenthaler et al., 2021; Winkler et al., 2022) or a unipolar scale of a 
specific emotion category, such as amusement or sadness (e.g., Mauss 
et al., 2005). Some studies have also measured more complex affective 
experiences such as suspense (e.g., Bente et al., 2022). After a short 
learning period to get accustomed to the procedure, participants 
typically perceive continuous ratings on a single dimension as a 
manageable task (Ruef and Levenson, 2007; Wagner et  al., 2021). 
Importantly, research has found the use of a single-item RTR measure 
to be non-reactive, meaning that the task itself does not seem to alter 
subjective experiences (Hutcherson et al., 2005; Mauss et al., 2005; 
Wagner et al., 2021).

Some studies measured subjective experiences on two dimensions 
simultaneously, either by using two independent sliders (Fayn et al., 
2022; Lottridge and Chignell, 2010) or by navigating a joystick to 
indicate responses within a two-dimensional grid (e.g., positive and 
negative valence; Larsen et al., 2009). This allows for the examination 
of mixed subjective emotional experiences (i.e., positive and negative 
emotions at the same time), which cannot be adequately represented 
on a single bipolar scale. Few studies have examined the cognitive load 
associated with two-dimensional RTR measures and possible issues 
related to reactivity. The available evidence suggests that although 
cognitive load and perceived difficulty increase with two-dimensional 
measures, participants can become accustomed to the task (Fayn et al., 
2022; Lottridge and Chignell, 2010). The use of two independent 
sliders appears to be easier for participants and reduces measurement-
related dependencies compared to a two-dimensional grid (Fayn et al., 
2022). However, more research is needed to determine the conditions 
under which two-dimensional CRM of subjective emotional 
experiences can be applied successfully. Rather than measuring two 
dimensions simultaneously, researchers can assess multiple 
dimensions of subjective experience by exposing participants to a 
stimulus repeatedly and instructing them to indicate how they 
remember feeling during the first time of exposure. Mauss et al. (2005) 
found subjective emotional experiences (sadness and amusement) 
measured through this method of stimulated recall upon repeated 
viewing of a film to correlate strongly with previous continuous ratings.

Data analytic considerations
CRM yields continuous data of the respective 

measurement dimensions.

Stimuli and application contexts
CRM is best suited to audiovisual and auditory stimuli. It has been 

used in various areas of research, such as political communication 
studies on audience evaluations of political speeches or televised 
debates (e.g., Boussalis and Coan, 2021; Friederike Nagel et al., 2012), 
research on affective and cognitive processing of narratives and 
entertainment (e.g., Armstrong and Cutting, 2023; Bente et al., 2022; 
Tchernev, 2022; Tchernev et al., 2023; Winkler et al., 2022), health 
communication (e.g., Siegenthaler et al., 2021), or research on music 
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and aesthetic experiences in response to art (e.g., Svanås-Hoh et al., 
2022; Wagner et  al., 2021). In principle, the ubiquity of personal 
smartphones presents an opportunity for applications outside of the 
lab, and some tools for tablets and smartphones are available to 
facilitate CRM studies in naturalistic settings (e.g., the free web 
application emoTouch; Louven et  al., 2022). However, research 
utilizing this potential remains limited (Boydstun et al., 2014; Maier 
et  al., 2016; for a scoping review of communication studies, see 
Schnauber-Stockmann and Karnowski, 2020).

Advantages
A major advantage of this method is that it allows for an 

inexpensive and straightforward way to collect high-resolution real-
time subjective experience data while avoiding the memory biases 
often associated with retrospective self-reports. Furthermore, it can 
also be implemented outside the lab in naturalistic settings or online 
studies (e.g., Maier et al., 2016).

Limitations
The main limitation of CRM is that it typically allows the 

measurement of only one or two dimensions of experience. 
Researchers interested in a broader assessment of emotional 
experience must rely on workarounds that come with their own 
limitations (e.g., repeated exposure, between subject variation of 
experience dimensions).

Self-probed emotional retrospection
Self-probed emotional retrospection is a method to capture rich 

subjective emotional experiences of text-based stimuli as they occur 
within the reader. Larsen and Seilman (1988; Seilman and Larsen, 
1989) first used a similar method that united the advantages of 
probing and thinking aloud to study personal memories evoked by 
literature. It was later adapted by Eng (2002; see also Mar et al., 2011 
for a discussion) to examine the role of emotional experiences, 
memory, and distracting thoughts in reading comprehension.

Procedure
The method comprises two steps. Participants are instructed to 

mark an “E” (for emotion) on the margin of a text whenever they 
experience an emotion while reading. After they finish reading, 
participants are asked to return to these markings and specify their 
emotional experiences for each “E,” for example, by rating the 
experienced intensity of different emotion categories. For lengthy 
stimuli, researchers are recommended to limit the amount of “E”s to 
be qualified after reading (but not the amount of “E”s to be marked 
during reading). Interindividual differences in the number of “E”s 
people mark can be  quite large, thus, researchers may instruct 
participants to only select the most relevant markings to specify (see 
Winkler et al., 2023).

What is measured
Because this method does not rely on predefined measurement 

points, it is particularly suited to capture highly idiosyncratic 
subjective emotional experiences (e.g., emotional memories, which 
cannot be anticipated from the content of the stimulus). Studies using 
lengthy and naturalistic stimuli likely benefit using this method the 
most. In principle, any self-report scale to assess the emotional 
experiences for each “E” can be combined with this method depending 

on the researcher’s needs (e.g., the Circumplex Model of Affect, Posner 
et al., 2005; the Modified Differential Affect Scale, Renaud and Unz, 
2006; the Geneva Emotion Wheel, Scherer, 2005; Scherer et al., 2013). 
However, brief scales are advisable to prevent fatigue from completing 
long scales repeatedly.

Initial data exists that examines this method’s validity, accuracy, 
and non-reactivity. Participants in Larsen and Seilman (1988) found 
the task of marking parts of a text while reading to be  easy and 
non-intrusive. Furthermore, participants rarely forgot what they had 
been reminded of when using self-probed retrospection (although 
unfortunately the study did not include a control group). Some 
evidence underscores the method’s sensitivity to capture subjective 
emotional experiences of varying quality (Koopman 2016) and 
intensity (Winkler et  al., 2023). Koopman (2016) found that the 
method was able to capture variance in aesthetic and ambivalent 
emotional experiences resulting from stylistic variations in stories. 
Winkler et al. (2023) showed that a greater amount of “E”s marked was 
predicted by individuals’ tendencies to seek out emotional experiences 
(need for affect). Furthermore, subjective emotional experiences 
measured in this way were associated with theoretically related 
processes (transportation) and outcomes (social sharing intentions; 
Winkler et al., 2023). Clearly, more research is needed to examine 
whether this method holds advantages over free retrospective recall 
in terms of memory biases and whether it is reactive.

Data analytic considerations
Because the frequency and spacing of observations (e-markings) 

varies between individuals, the data generated through self-probed 
emotional retrospection is not fully continuous. Depending on how 
researchers intend to analyze the data, two data structures are possible: 
The variables in the dataset reflect the e-markings by the participant 
in their chronological order. This implies that individual observations 
are not comparable between participants (i.e., “E1” may refer to 
different events in the narrative for different individuals). This option 
is suitable if an aggregate indicator of subjective emotional changes is 
computed (e.g., Winkler et al., 2023).

Alternatively, variables in the dataset may also reflect properties 
of the stimulus (e.g., a paragraph, a line in the text). Observations 
(e-markings) are allocated to specific units of analysis (e.g., if “E1” 
appears in line 6 of the text, experience ratings given for “E1” are 
entered for the variable reflecting the line 6). The remaining data 
points may be treated as missing values or imputed, depending on the 
type of data analysis planned (e.g., in contrast to time-series analyses, 
multilevel modeling can accommodate an unequal number of 
observations per person; Snijders and Bosker, 2012). This option is 
appropriate for researchers who plan to analyze the data in conjunction 
with the text and/or intend to conduct between-
participant comparisons.

Stimuli and application contexts
Whereas the methods discussed so far are most readily 

applicable to audiovisual or auditory stimuli, self-probed emotional 
retrospection presents a feasible way of obtaining rich data on 
subjective emotional experiences while reading text-based stimuli. 
It requires no additional methods or workarounds (i.e., 
eye-tracking, reading windows) if the goal is to match emotional 
experiences to the text. Only a few studies have used this method 
so far. Koopman (2016) applied it to investigate the effects of 
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foregrounding on the emotional experience of a novel, and Winkler 
et al. (2023) used it to quantify the experience of emotional shifts 
in narrative persuasion.

In instances in which CRM is not feasible and/or a more 
comprehensive assessment of subjective experiences is desired, the 
method could also be  adapted to contexts other than literature. 
We discuss possible examples in the discussion section.

Advantages
This method combines the advantages of thinking aloud and 

retrospective probing. It records subjective emotional experiences in 
response to a text in the moment they occur, but without disturbing 
the reading experience by prompting participants to report on their 
experiences immediately, which could possibly prompt an analytic 
reading mode (Larsen and Seilman, 1988). Compared with CRM, this 
method allows for a richer assessment of feelings and enables 
researchers to study the dynamics of emotionally complex experiences, 
including the occurrence of mixed emotional experiences. Because the 
measurement points are determined by the reader, the demand 
characteristics of this method should be  lower than those of 
researcher-induced probing, although research is needed to investigate 
this hypothesis.

Limitations
The downside of this is approach is that self-probed emotional 

retrospection yields a lower level of resolution than other methods 
discussed so far, and measurement points are not directly comparable 
between participants. Furthermore, although the marking of 
subjectively emotion-eliciting passages in the text creates an anchor 
that should later help to cue recall more accurately, it is still possible 
that the retrospective nature of qualifying emotional experiences 
prompts a higher degree of rationalizing and memory bias than 
CRM. Further research is needed to investigate this.

Discussion

Contributions to key areas of media 
psychology and communication research

Many media stimuli and related interactions are dynamic. Thus, 
we argue that empirical approaches to measuring emotional states 
should reflect dynamic changes in affective responses. In the following 
section, we support this claim: How can the dynamic measurement of 
emotional processes contribute to key areas of communication and 
media effects research? We highlight some examples and discuss how 
dynamic measures of emotion can be applied and adapted to answer 
relevant open questions in central areas of investigation.

Narrative effects research
The dynamic nature of narrative structures—characterized by a 

setting of the stage, events that move the story forward and a rise and 
fall of action as a protagonist faces conflicts and challenges—have 
been described by narrative theory since Aristotle (1994; e.g., Freytag, 
1905). Research using large-scale language analysis has recently 
confirmed these structural features in a variety of narrative formats 
(e.g., books, movies, but also science communication, or TED talks; 
Boyd et al., 2020). Sentiment analyses have further revealed typical 

emotional trajectories that are prevalent in movies (e.g., del Vecchio 
et al., 2021; Dale et al., 2023) and novels (Reagan et al., 2016).

The dynamic emotional responses audiences experience in 
response to a narrative’s unfolding events are suggested to be driving 
forces behind narrative persuasion (Nabi, 2015; Nabi and Green, 2015; 
Winkler et al., 2023). This proposition has generated research efforts 
in the domain of health communication in particular (e.g., Adams 
et al., 2022; Alam and So, 2020; Fitzgerald et al., 2020; Ophir et al., 
2021; Ort et al., 2023; Shen and Li, 2023; Siegenthaler et al., 2021). 
However, these studies rarely include continuous measures of 
emotional responses throughout the stimulus to investigate emotional 
responses as mechanisms of effects (but see Siegenthaler et al., 2021). 
To advance research in the domain of health communication and 
narrative persuasion, research needs to move beyond using post-
exposure self-report scales to measure emotional processes during 
media reception. Instead, the dynamic nature of emotional responses 
should be  reflected methodologically. This allows to investigate 
hypotheses related to emotional responses to specific elements in a 
narrative as mechanisms of narrative impact (e.g., Appel et al., 2019; 
Armstrong and Cutting, 2023). For example, Dahlstrom (2010, 2012) 
demonstrated that information placed at locations with causal 
relevance to the narrative leads to higher information acceptance. 
Similarly, the nature of emotional responses (e.g., in terms of their 
intensity or valence) during these causally relevant narrative events 
may be key to understanding narrative effects.

Social media research
An enormous body of research has investigated how social media 

use affects various well-being and ill-being parameters, which has 
been synthesized in multiple meta-analyses (for umbrella reviews, see 
Appel et  al., 2020; Valkenburg, 2022). The results of these meta-
analyses typically point toward weak and heterogenous effects and 
suggest that influences of social media are not adequately described in 
terms of averaged between-person effects (Valkenburg, 2022). Rather, 
experiences during social media use vary depending on individual 
differences and motivations of social media users (Beyens et al., 2021).

Emotions likely influence how social media use affects well-being 
and ill-being. For example, social media offers plenty of opportunities 
for (mostly upward) social comparison (McComb et al., 2023). The 
emotional effects of upward social comparison can be described in 
terms of envy (with negative implications for well-being), but also 
inspiration (Meier et al., 2020). Emotions can be understood as both 
causes and effects of social media use and are likely shaped by 
individual and contextual differences. Which individual and 
contextual factors shape the positive and negative emotional effects of 
upward social comparisons? How does this affect users’ further 
activities and outcomes in terms of well-being? Within-person 
perspectives using continuous emotion measures can help understand 
the dynamic interplay between these variables.

The methods discussed here can advance social media research in 
both naturalistic and experimental settings (see also Griffioen et al., 
2020). For example, the advancement of wearable technology enables 
the assessment of physiological measures during real-life social media 
behavior. To capture emotional experiences, a version of self-probed 
emotional retrospection could be  applied, for example, by asking 
participants to take screenshots of social media content and 
interactions that subjectively were of emotional relevance to them. 
These screenshots can then serve as cues for participants to describe 
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their emotional experiences later (i.e., after a social media browsing 
session) in a media diary or survey. The screenshots can also 
be analyzed for their emotion-eliciting properties through content 
analysis (provided identifying information is removed) or by asking 
participants to describe the object of their emotional experience in 
each instance. In laboratory settings, the possibility of adapting CRM 
to the requirements posed by the activity of using social media might 
also be explored. For example, participants may be able to indicate 
emotional experiences using a foot pedal instead of a handheld device, 
although this possibility needs to be  tested for feasibility and 
possible reactivity.

Virtual reality research
Another area of interest is user experiences in virtual worlds. 

Virtual reality (VR) can take immersive experiences to the next level 
by allowing users to embody and act as characters while being present 
in a virtual world. VR can elicit strong and complex emotions such as 
awe or inspiration (Kahn and Cargile, 2021; Quesnel and Riecke, 
2018). At the same time, interactive immersive settings like VR are 
demanding in various ways (cognitive, emotional, physical, social, 
Bowman et al., 2021), which affects the allocation of users’ limited 
cognitive resources and can lead to potentially detrimental outcomes 
(e.g., cybersickness; Breves and Stein, 2023). For these reasons, VR has 
sparked the interest of researchers interested in understanding 
entertainment experiences in VR as well as the potential prosocial 
effects of this technology (e.g., improving attitudes toward minority 
groups, improving climate change related attitudes and behavior; 
Kahn and Cargile, 2021; Leung et al., 2022). Understanding how the 
demands posed by interacting in virtual worlds shape emotions and 
how these, in turn, mediate effects on outcomes such as persuasion, 
social cognition, and entertainment poses an avenue for 
future research.

Physiological measures are an obvious choice for assessing 
physiological processes during interactions in VR (see for example 
Zhang et al., 2024, for an investigation of arousal escalation and decay 
in VR). Capturing facial behavior presents a greater challenge, given 
that the head mounted display covers a large part of the participant’s 
face. However, technological solutions potentially enabling FEA in VR 
settings are currently being developed and may be  feasible in the 
future (Chen and Chen, 2022). When assessing subjective emotional 
experiences during VR sessions, it is important to select a method that 
requires the lowest possible cognitive demand for participants to 
execute. An adapted version of self-probed emotional retrospection 
might be feasible. For example, time stamps of significant emotional 
experiences can be recorded by using a clicking device. Alternatively, 
time stamps based on verbal cues by the participant could be recorded 
by the experimenter. These time stamps can then be used to revisit the 
corresponding moments in the VR stimulus and ask participants to 
qualify their subjective emotional experiences during that point.

Recommendations for future research

Based on the eminent literature as well as our own experience in 
the field of continuous emotion measurement, we would like to offer 
some methodological and practical recommendations for future 
media effects research that intend to include process measures of 
emotion during media reception.

 1 Measures of different emotion components should not 
be assumed to be interchangeable.

When combining different emotion measures, researchers should 
not expect a one-to-one relationship between these different data 
sources (see Mauss et al., 2024). Researchers should keep in mind the 
meaning of different emotion measures and the inferences they 
warrant. This involves carefully considering which methods align best 
with the research aims when planning a study. For example, if arousal 
is relevant to the research question, a physiological measure should 
be  used, especially if more subtle arousal changes are of interest. 
Research suggests that people can misjudge their physiological arousal 
(Sze et al., 2010), and especially in the case of CRM, self-reporting 
arousal throughout a media experience might be rather demanding 
(Lottridge and Chignell, 2010). Conversely, if researchers seek insight 
into the experience of emotions (i.e., feelings), a self-report measure 
is required. Neither psychophysiological nor behavioral data (e.g., 
facial expressions) are suitable to infer subjective emotional 
experiences (e.g., Barrett, 2016; Behnke et  al., 2022; Durán and 
Fernández-Dols, 2021; Siegel et al., 2018). Self-report remains the 
most direct measure of the subjective feeling component of emotion 
(Barrett, 2016; Scherer, 2009). However, self-report comes with certain 
limitations, which physiological and behavioral measures are not 
affected by. For example, certain mental processes are not accessible 
through introspection (Nisbett and Wilson, 1977) and the influence 
of social desirability may deter participants from disclosing their 
feelings, whereas physiological measures can reveal affective processes 
beyond an individual’s conscious control (and are thus often referred 
to as objective, in contrast to the subjectiveness of self-report 
measures). Thus, incorporating emotion data from various sources 
and capturing the physiological, experiential, and behavioral 
components allows for a more comprehensive assessment of emotional 
responses (e.g., Bradley and Lang, 2002). Multi-method studies can 
help to understand how different components of the emotional 
response system and their interactions shape media effects and 
therefore present a particularly valuable approach.

 2 Interpretation of distinct emotion categories should be aided 
by self-report.

Empirical evidence to date does not support the notion of “affect 
programs” in a sense of specific elicitation patterns of ANS activity or 
facial expressions (except for amusement) that allow to clearly 
differentiate between distinct emotion categories (Durán and 
Fernandez-Dols, 2021; Siegel et  al., 2018). Thus, inferences about 
specific emotion categories (e.g., anger, guilt, hope, nostalgia) are 
limited when based solely on physiological and facial expression data. 
If researchers intend to investigate specific emotion categories rather 
than—or in addition to—the broader valence and arousal dimensions 
of emotion, self-report measures should be included.

If a continuous self-report measure is unfeasible in a specific 
context (e.g., too demanding for participants, incompatible with the 
task or other measures), a retrospective assessment is an appropriate 
compromise. Cues can help participants recall their experiences. For 
FEA, one possibility is to use live analyses of facial expressions (i.e., 
expressions are analyzed by the software in the moment they are 
recorded, an option that is offered by some providers). Time stamps 
of high-intensity emotional expressions may be recorded and later 
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replayed to participants, who could then describe their experience of 
the moment in question (Barrett et al., 2019).

 3 When using physiological measures for the first time, 
collaborate with researchers who have experience with 
these methods.

Researchers should be  aware that successfully incorporating 
psychophysiological measurements into their studies requires 
considerably more effort, time, and additional training compared to 
other methods, and researchers should expect things to go wrong at 
first. Therefore, researchers are well advised to collaborate with or seek 
advice from others who are experienced in the domain of 
psychophysiological measures. Furthermore, technical support should 
also be ensured to avoid technical issues that could cause delay in 
research projects.

 4 Define an a priori analysis plan.

Assessing multiple continuous emotion measures creates large 
amounts of data. Analyzing these data presents a complex task. It is 
important to articulate clear questions and expectations that guide data 
analysis and interpretation, even when conducting exploratory research. 
This pertains to both the selection of emotion measures for inclusion in 
a study and the appropriate data analysis methods to avoid searching for 
the needle in a haystack. A theory-guided assessment is crucial in this 
regard. Whenever possible, researchers should develop expectations of 
emotional responses to media stimuli based on theory. Furthermore, 
multi-method studies that combine different emotion measures should 
have a foundation in emotion theory that helps to integrate these 
different data sources successfully. Lange and Zickfeld (2021) suggested 
a network analysis approach for this purpose, which is built on the 
notion that emotions are distinct constructs with fuzzy boundaries, 
meaning that they share connections in their components.

Recently, communication and media effects research has made 
considerable progress conceptually articulating the change processes 
of communication phenomena. Brinberg and Lydon-Staley (2023) 
described nine ways in which change can be described (e.g., growth/
decay, entrainment, ruptures) and recommended analytic techniques 
suitable for modeling these change processes. For example, the 
question of whether physiological arousal produces more intense 
subjective experiences could be analyzed as a process of entrainment. 
Shen and Li (2023) described the fluctuations of subjective fear and 
hope in response to a threat appeal in terms of a U-shaped (or inverted 
U-shaped) curve, which may be quantified using latent growth curve 
modeling. How emotional changes are conceptualized and analyzed 
matters tremendously for the outcomes that can be predicted by these 
emotional dynamics. For example, Shen and Coles (2015) 
demonstrated that a linear within-person increase in subjective fear 
in response to a fear appeal message predicts reactance, whereas a 
reverse U-shaped pattern of fear experience (increase, then decrease) 
predicts the persuasive effects of the message.

 5 The data analytic strategy should appropriately reflect the 
change processes of interest.

Continuous measures present the opportunity to sample dynamic 
changes in emotional processes with high temporal resolution. 

Ideally, researchers should opt for analytic strategies that reflect the 
dynamic and longitudinal nature of their data because aggregate 
(static) measures cannot capture the within-person changes 
occurring in response to media stimuli adequately (e.g., Koruth et al., 
2015). The appropriate data analytic strategy is determined by various 
factors. This includes the amount of data points available, the change 
processes of interest, the model specifications (i.e., whether there are 
moderators or mediators to consider), whether there are missing data 
or a different number of observations between participants (which 
multi-level modeling approaches can accommodate, but time-series 
analyses or structural equation modeling cannot; Snijders and 
Bosker, 2012). Brinberg and Lydon-Staley (2023) offer a 
comprehensive overview of appropriate modeling strategies for 
various change processes.

Conclusion

This article addresses one of the main methodological challenges of 
communication and media effects research by discussing ways to 
measure emotional responses to media in the moment they occur. 
Understanding how emotional dynamics during media reception 
unfold can help advance various domains of media effects research. 
We spotlighted methodological approaches that, compared to other 
continuous emotion measures, offer a low threshold for integration into 
future media reception and effects studies. These approaches present a 
diverse toolkit that is suited to capture aspects of the physiological, 
expressive, and experiential components of emotion: Electrodermal 
activity, automated facial expression analysis, continuous response 
measurement, and self-probed emotional retrospections. These 
methods can be  flexibly adapted to various research contexts. 
Furthermore, technological advances (e.g., wearables, the ubiquity of 
smartphones) have made it easier than ever to apply methods that were 
previously confined to a laboratory context to naturalistic settings. With 
this article, we hope to help researchers be aware of the challenges, but 
also recognize the potential of measuring emotional processes. 
We thereby hope to encourage future studies to empirically account for 
the dynamic nature of emotional processing of media content by 
incorporating continuous measures of emotion.
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