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Voice biomarkers in middle and 
later adulthood as predictors of 
cognitive changes
Elizabeth Mahon * and Margie E. Lachman 

Psychology Department of Psychology, Brandeis University, Waltham, MA, United States

Background: Prosody voice measures, especially jitter and shimmer, have been 
associated with cognitive impairment and hold potential as early indicators of 
risk for cognitive decline. Prior research suggests that voice measures assessed 
concurrently with longitudinal cognitive outcomes are associated with 10-
year cognitive declines in middle-age and older adults from Midlife in the U.S. 
(MIDUS) study.

Results: Using a subsample from the same study, we  expanded previous 
research to examine voice measures that were (1) collected 8  years before 
cognitive outcomes, (2) derived from narrative speech in logical memory tests 
instead of word list recall tests, and (3) independent of the cognitive outcomes. 
Multilevel analyses controlled for covariates of age, sex, education, neurological 
conditions, depressive symptoms, and chronic conditions. The results indicated 
that higher jitter and lower shimmer predicted greater 10-year declines in 
episodic memory and working memory.

Conclusion: These findings extend previous research by highlighting prosody 
voice measures assessed 8  years earlier as predictors of subsequent cognitive 
declines over a decade.
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1 Introduction

As the aging population grows, identifying reliable indicators of cognitive changes across 
various life stages becomes increasingly important (Livingston et  al., 2020). During the 
preclinical phase, subtle cognitive declines may resemble normal aging and usually do not 
disrupt daily activities. However, as cognitive impairment progresses, these declines become 
more pronounced and begin to significantly impact everyday life (Bryan and Maxim, 2006; 
Gerstner et al., 2007). Cognitive changes can occur 3–7 years before clinical symptoms warrant 
a diagnosis of cognitive impairment (Bateman et al., 2012). This issue is particularly critical, 
as disease pathology can develop long before cognitive impairments become evident 
(Livingston et al., 2020). Abnormal accumulation of amyloid plaques can begin 20–30 years 
before the clinical symptoms appear (Bateman et al., 2012; Sperling et al., 2011). Given that 
interventions are most effective when administered at an early stage an important objective in 
aging and dementia research is the identification of early warning signs. While various factors 
have been associated with the likelihood of cognitive decline and impairment, there is a 
continuing need to identify cost-effective and reliable biomarkers capable of detecting early 
indicators of cognitive risks. This study explores voice prosody as a potential biomarker that 
may be linked to the risk of cognitive decline.
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Measures of voice have shown high sensitivity in distinguishing 
between normal cognition and stages of cognitive impairment 
(Beltrami et al., 2018; Kato et al., 2018; Themistocleous et al., 2020; 
Thomas et al., 2020; Toth et al., 2017; Xue and Deliyski, 2001). Among 
these metrics, prosody voice measures are particularly promising, as 
they can differentiate between individuals with normal cognitive 
function and others with different stages of impairment (Konig et al., 
2018, 2019; Mirheidari et al., 2019; Testa et al., 2001). Key prosody 
measures such as pitch, pulse, voice breaks, jitter, shimmer, and 
amplitude have shown potential (Konig et al., 2018, 2019; Martínez-
Sánchez et  al., 2012; Meilán et  al., 2014; Mirheidari et  al., 2019; 
Nasreen et al., 2021; Nishikawa et al., 2022; Testa et al., 2001). These 
measures could complement existing diagnostic tools like MRI scans 
and blood tests due to their lower cost, less invasive, and ease of 
monitoring cognitive health over time (John et al., 2012; Karlamangla 
et al., 2005; Lu et al., 2015; Österberg et al., 2012; Paterson et al., 2018; 
Quadri et al., 2004; van Himbergen et al., 2012; Wolf et al., 2002).

Our recent research, which analyzed data from middle-aged and 
older adults, found that lower pulse and higher jitter were associated with 
greater cognitive decline over 10 years when assessed concurrently with 
cognitive outcomes (Mahon and Lachman, 2022). This finding suggests 
that voice biomarkers, which are already associated with cognitive 
impairment diagnoses, may also be effective in identifying individuals at 
higher risk for developing impairment. Therefore, voice alterations may 
help differentiate between cognitive declines related to normal aging and 
steeper declines progressing to severe impairment. However, additional 
research is needed to determine the effectiveness of these metrics as 
indicators of early preclinical stages. Ultimately, leveraging voice 
biomarkers already connected to cognitive impairments could enhance 
our ability to identify individuals at increased risk of cognitive decline 
and progression to impairment later in life (Bondi et al., 1999).

This study investigates prosody voice as a potential biomarker for 
cognitive decline. Our previous research assessed prosody measures 
concurrently with 10-year cognitive outcomes, revealing associations 
between lower pulse and higher jitter and cognitive decline (Mahon 
and Lachman, 2022). The current study expands on this work in 3 
ways: (1) Instead of assessing voice concurrently with cognitive 
outcomes, we measured voice 8 years before to cognitive outcomes to 
examine predictive associations; (2) Unlike our previous work, voice 
data was derived from recorded cognitive interviews that were not 
included as longitudinal cognitive measures in our study, addressing 
potential concerns that voice features may reflect level of test 
performance; and (3) We analyzed voice data from narrative speech 
during recall of a story rather than recall of a word list. 
We hypothesized that lower pulse and higher jitter, measured 8 years 
prior to cognitive outcomes, would be  associated with greater 
cognitive decline across 10 years, after adjusting for demographic and 
health variables. Additionally, based on past research, we expect that 
higher pitch, higher voice breaks, higher shimmer, and lower 
amplitude would be associated with greater cognitive decline.

2 Methods

2.1 Participants

Participants in this study were a subset of the Midlife in the 
United States Study (MIDUS), who were included if they had cognitive 

data from both MIDUS 2 (M2) and MIDUS 3 (M3), with a mean lag 
time of 96–120 months (M = 109.79 months ± 5.32). Our inclusion 
criteria also required participants to have audio recordings from the 
Boston Longitudinal Study (BOLOS) subsample (N = 79), which were 
collected 3–45 months after M2 (M = 10.98 months ± 8.01) and 
65–111 months before M3 (M = 98.62 months ± 9.27). Additional 
information about the samples used in this study can be found in prior 
publications (Radler and Ryff, 2010; Agrigoroaei and Lachman, 2011; 
Hughes et al., 2018). At the time of M2, our analysis sample ranged in 
age from 34 to 82 years (M = 57.94 ± 11.75), were 51.9% women, and 
had an average education of 15.50 years.

2.2 Cognitive measures

The cognitive measures from M2 (2004–2005) and M3 (2013–
2014) were from the Brief Test of Adult Cognition by Telephone 
(BTACT; Tun and Lachman, 2006; Lachman and Tun, 2008; 
Lachman et al., 2014). The BTACT evaluated a range of cognitive 
functions: episodic memory was measured with the Word List 
Immediate and Delayed tests; inductive reasoning was measured 
with the Number Series test; category verbal fluency was measured 
with the Category Fluency test; working memory span was measured 
with the Backward Digit Span test; processing speed was measured 
with the 30 Second and Counting Task test; and attention switching 
reaction time and inhibitory control was measured with latencies 
from the Stop and Go Switch Task test. Additional information can 
be found in prior publications (Lachman and Tun, 2008; Hughes 
et al., 2018).

2.3 Voice measures

Six prosody voice measures were averaged across 2 Logical 
Memory tests (narrative speech from immediate and delayed story 
recall) that were not used as cognitive measures in this study. Pitch 
was measured by mean number of vocal cord vibrations per second; 
pulse was measured by number of glottal pulses of air; number of 
voice breaks was measured by total time of breaks/by total time of 
voice; jitter was measured by frequency instability; shimmer was 
measured by amplitude instability; and amplitude was measured by 
average noise-to-harmonics ratio. These voice measures were 
extracted from 2 tests in the BOLOS subsample interview (2004–
2005) which had the longest uninterrupted segments of participant 
voice from Logical Memory Immediate and Delayed tests (Weschsler, 
1981), with a total of 79 recordings. Each research recording was 
randomly assigned to 2 separate research assistants, who identified the 
voice segment and voice analyzed it with Praat voice analysis software 
(Boersma and Weeink, 2019); the interrater reliability was 98.21%, 
with any discrepancies resolved by the author through reanalysis of 
the voice segments. Only recordings that were of high quality and 
complete for cognitive assessments were included (n = 79). The 
correlations of the Praat measures across the 2 Logical Memory tests 
were as follows: pitch, r(79) = 0.781, (p = <0.001), pulse, r(79) = 0.406, 
(p = <0.001), voice breaks, r(79) = 0.204, (p = 0.088), jitter, r(79) = 0.748, 
(p = <0.001), shimmer, r(79) = 0.709, (p = <0.001), and amplitude, 
r(79) = 0.717, (p = <0.001). Voice measures were averaged across the 2 
tests to create composites.
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2.4 Covariates

Consistent with our previous study, we included covariates from 
M3: self-reported age (continuous), sex (male = 0, female = 1), 
education (in years), depressive symptoms (0 = no, 1 = yes), the 
number of neurological conditions (a count of “yes” responses to 4 
health conditions: stroke, serious head injury, Parkinson’s disease, or 
other neurological disorder), and the number of chronic conditions 
(a count of “yes” responses to 22 health conditions). Additional 
information on these covariates can be found in our prior publication 
(Mahon and Lachman, 2022).

2.5 Data analyses

Descriptive statistics were conducted in SPSS 28.0 (IBM Corp, 
2023). Longitudinal multi-level modeling (MLM; Bolger and 
Laurenceau, 2013) and the lme4 package (Bates et al., 2011) in R (R 
Core Team, 2021) was employed to examine the relationships 
between voice measures and 10-year cognitive changes. Time was 
coded linearly as 0 = M2 cognition and 1 = M3 cognition. The analysis 
controlled for age, sex, education, neurological conditions, depressive 
symptoms, and chronic conditions. Cognitive measures from M2 and 
M3 were standardized using the means and standard deviations of 
M2 cognitive scores. To maintain consistency in directional 
interpretation across cognitive tests, the SGST Latency variable was 
multiplied by (−1), so that higher scores indicated better (i.e., faster) 
performance.

Each of the 7 cognitive tests were analyzed using the following 
multi-level model:
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Equation 1 represents the simple linear growth model 
incorporating the interaction effect of time based on the 2 waves 
of cognitive test scores for the i-th participant: time (t) represents 
the 2 waves (0 = M2 cognition and 1 = M3 cognition). β0i is the 
average cognitive test score at M2 cognition when each covariate 
equals zero. Power analysis (Moineddin et al., 2007) indicated that 
the observed effect size for all 12 predictor variables of voice 
measures and covariates, measured by Cohen’s d, was d = 0.57, 
indicating a medium effect size. Using a multi-level modeling 
approach with 6 primary predictors, we achieved the desired power 
level of 80% and a significance level of p = 0.05. Based on these 

research findings, a sample size of at least 31 participants was 
determined to be necessary.

3 Results

Descriptive statistics are presented in Table 1, and multi-level 
model results are displayed in Table 2. As predicted, higher jitter was 
significantly associated with greater declines in Word List Immediate 
(p = 0.018), Word List Delayed (p = 0.015), and Backward Digit Span 
(p = 0.022). Contrary to expectations, lower shimmer was significantly 
associated with greater declines in Word List Immediate (p = 0.017), 
Word List Delayed (p = 0.023), and Backward Digit Span (p = 0.008). 
Additional analyses that included the lag time between M2 and 
BOLOS time points, as well as the lag time between BOLOS and M3 
time points, produced consistent results.

4 Discussion

The present study adds to the growing literature by suggesting 
that when using narrative speech, voice biomarkers are 
significantly related to longitudinal cognitive changes in a healthy 
community sample. Our study used narrative speech from a 
logical memory test, which was administered on average 8 years 
before cognitive outcomes and not included as a cognitive 
outcome measure. The results show that higher jitter and lower 
shimmer measured 8 years before cognitive outcomes predicted 
individual differences in 10-year cognitive changes in a national 
sample of community-residing middle-aged and older adults. The 
present study contributes to the expanding body of literature 
indicating that voice biomarkers, previously associated with 
dementia, are related to significant changes over approximately 
10 years when assessed using narrative speech. Our findings were 
observed in a sample of healthy, community-dwelling middle-
aged and older adults.

The jitter results in this study were consistent with prior research 
suggesting jitter gradually increases with age (Baken and Orlikoff, 
2000). They also align with our earlier work, which found higher jitter 
assessed at the cognitive outcomes 10 years later was associated with 
greater 10-year cognitive declines (Mahon and Lachman, 2022). These 
jitter results were consistent across multiple tests of episodic memory 
and working memory. Though the shimmer findings were contrary to 
the expected direction, they were nonetheless consistently significant 
across multiple tests of episodic memory and working memory. The 
relationship between shimmer and cognitive decline has been 
relatively unexplored, particularly in a healthy community sample, 
making this an area of interest for further research. Typically, shimmer 
levels increase with age, even when controlling for health factors 
(Linville, 2004). However, the current results suggest that individuals 
with higher shimmer experience less cognitive decline compared to 
those with lower shimmer, when controlling for age and 
neurological conditions.

It is encouraging that by using prosody voice measures from 
narrative speech assessed approximately 8 years before cognitive 
outcomes, we were able to replicate and extend previous findings 
linking jitter with cognitive decline. These results suggest that it is 
feasible to predict cognitive decline through the analysis of voice 
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TABLE 2 Multilevel model results for prosody voice variables.

Cognitive Test B SE p CI95

Word list immediate

Time × jitter* −0.755 0.312 0.018 −1.376; −0.134

Time × shimmer* 0.325 0.133 0.017 0.059; 0.591

Word list delayed

Time × jitter* −0.915 0.366 0.015 −1.643; −0.183

Time × shimmer* 0.366 0.158 0.023 0.052; 0.683

Backward digit span

Time × jitter* −0.433 0.185 0.022 −0.800; −0.065

Time × shimmer** 0.213 0.079 0.008 0.056; 0.371

**Correlation is significant at to 0.0 level (2-tailed).
*Correlation is significant at to 0.05 level (2-tailed).

metrics from speech samples collected with community-dwelling 
adults. Past studies have indicated that jitter and shimmer show 
age-related changes (Wilcox and Horii, 1980; Baken, 2005; Dehqan 
et al., 2013; Lortie et al., 2015). The current study adds that these 2 

voice measures are also related to cognitive changes associated 
with aging. There are also some limitations of the study to consider. 
Given that our sample included only 3.8% non-white participants, 
future research involving more diverse samples is needed to 

TABLE 1 Descriptive statistics for our analysis sample.

N Minimum Maximum Mean Std. Deviation

Pitch 79 86.94 264.35 155.71 37

Pulse 79 292.50 2,724 1251.43 582.25

Voice breaks 79 17 128.50 56.01 23.04

Jitter 79 1.52 8.85 3.28 1.11

Shimmer 79 10.30 23.13 17.46 2.96

Amplitude 79 0.13 0.55 0.32 0.09

M2 age 79 34 82 57.94 11.75

Sex (51.90% women) 79

Education (years) 79 8 20 15.50 2.82

M3 neurological conditions 79 0 2 0.22 0.45

M3 depressive symptoms (11.4% yes) 79

M3 chronic conditions 78 0 8 2.53 2.13

M2 word list immediate 78 3 11 7.04 1.80

M2 word list delayed 76 0 9 4.37 2.24

M2 category fluency 78 7 36 20.79 6.31

M2 backward digit span 78 3 8 5.62 1.39

M2 number series 78 0 5 3.03 1.44

M2 30 second and counting task 78 0 78 39.47 11.46

M2 stop and go switch task 74 −2 −0.72 −1.037 0.20

M3 word list immediate 79 2 12 6.77 2.23

M3 word list delayed 75 0 9 4.40 2.73

M3 category fluency 78 0 33 19.59 6.35

M3 backward digit span 79 0 8 4.90 1.68

M3 number series 75 0 5 2.68 1.49

M3 30 second and counting task 77 16 70 37.30 10.01

M3 stop and go switch task 73 −3.59 −0.70 −1.302 0.42
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provide more generalizable results. Also, cognitive diagnoses were 
not available in the sample, and having only 2 occasions is not ideal 
for examining differential trajectories of cognitive change.

Voice changes are among the earliest indicators of cognitive 
decline (Lin et al., 2020), and various prosody voice measures have 
been identified as risk factors for more rapid cognitive declines 
(Mahon and Lachman, 2022). While previous studies have explored 
these indicators to improve the identification of cognitive decline in 
healthy middle-aged and older adults, a universally accepted 
approach for using prosody voice measurements in the early 
diagnosis of preclinical stages of impairment before overt symptoms 
has yet to be established. Natural, cost-effective, and easily accessible 
voice measures from speech are a promising tool for detecting early 
cognitive decline and monitoring long-term progression to 
impairment, potentially serving as an additional comprehensive 
longitudinal biomarker. Thus, identifying voice biomarkers in midlife 
that predict later-life risk could facilitate earlier interventions by 
enabling the modification of disease risk factors (National Academies, 
2017). As the prevalence of cognitive impairment grows, illuminating 
biomarkers capable of distinguishing significant patterns of cognitive 
changes from normal aging could prove invaluable in delaying or 
reversing the progression of the disease.
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