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Maritime studies, encompassing a range of disciplines, increasingly rely 
on advanced data analytics, particularly in the context of navigation. As 
technology advances, the statistical averaging of large datasets has become 
a critical component of these analyses. However, recent studies have 
highlighted discrepancies between statistical predictions and observable 
realities, especially in high-stress environments like port approach procedures 
conducted by marine pilots. This study analyzed physiological responses 
recorded during simulation exercises involving experienced marine pilots. 
The focus was not on the specific outcomes of the simulations but on 
the potential faults arising from conventional statistical signal processing, 
particularly mean-centered approaches. A large dataset of signals was 
generated, including one signal with a dominant characteristic intentionally 
designed to introduce imbalance, mimicking the uneven distribution of 
real-world data. Initial analysis suggested that the average physiological 
response of the pilots followed an S-shaped curve, indicative of a psycho-
physiological reaction to stress. However, further post hoc analysis revealed 
that this pattern was primarily influenced by a single participant’s data. 
This finding raises concerns about the generalizability of the S-curve as 
a typical stress response in maritime pilots. The results underscore the 
limitations of relying solely on conventional statistical methods, such as 
mean-centered approaches, in interpreting complex datasets. The study 
calls into question the validity of standardizing data interpretations based 
on dominant characteristic curves, particularly in environments as intricate 
as maritime navigation. The research highlights the need for a re-evaluation 
of these methods to ensure more reliable and nuanced conclusions in 
maritime studies. This study contributes to the ongoing discourse on data 
interpretation in maritime research, emphasizing the critical need to re-
assess conventional statistical signal processing techniques. By recognizing 
the potential pitfalls in data generalization, the study advocates for more 
robust analytical approaches to better capture the complexities of real-
world maritime challenges.
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1 Introduction

This paper discusses the reasons for misleading conclusions in 
scientific texts, generated during postprocessing through unintentional 
presumption or by basic error. These types of results provide deceptive 
information that can cause misleading representations of subjects and 
doubts about methodology. The article aims to highlight the challenges 
of the statistical approach in analysing physiological data that we faced 
in the risk assessment of ship simulation during port approach and 
berthing (Žagar et al., 2022). Uncritical data summarization typically 
happens due to oversimplifying complex information, ignoring 
essential details, or presenting a biased perspective, witnessed in 
politics and advertising, where at least one of the following factors is 
included (Calzon, 2023):

 a. Sampling bias when the sample used in the study does not 
represent the population being studied.

 b. Confounding variables when the influencing factors are not 
accounted for in the analysis.

 c. Incorrect statistical methods when the approach must 
accurately reflect the relationship between the variables.

 d. Hypothesis errors when the null hypothesis is rejected even 
though it is accurate or vice versa.

 e. Small sample size when more statistical information is required 
to detect significant effects.

 f. Publication bias is when an overestimation of the proper effect 
size leads to significant results which are more likely to 
be published.

To avoid misleading conclusions, it is essential to consider the 
context and nuances of the information and any potential sources of 
error or bias to avoid flawed conclusions and misguided suggestions. 
The impetus of this paper comes largely from the need to fill a 
significant gap regarding the working conditions of pilots.

The profession of sea pilot is demanding, pilots consistently 
exposed to irregular work and sleep schedules, extreme and 
concentrated temperature extremes, adverse weather conditions, and 
frequent exposure to unfamiliar, stressful, and high-risk work 
environments. Individuals who work continuously in such settings 
for long periods often develop risky behaviors. Once risky behaviors 
are established in seafarers, decision-making becomes impaired, and 
the risk of maritime accidents increases (Xu et al., 2021). Decision-
making is consistently cited as one of the essential factors in shipping 
accidents or incidents and is critical in pilotage operations (Butler 
et al., 2022). On top of that, solutions are generally abstract and 
technological, not natural. For instance, avoiding a head-on collision 
was once a simple matter of both parties turning right, something 
natural and simple; now navigation itself is quite abstracted, 
involving instruments that already remove the pilot from the natural 
plane of human reaction.

In marine cognitive load and stress analysis, researchers 
commonly analyse data related to performance measures, 
physiological data, or subjective ratings of workload with the mean 
performance score of participants under different workload conditions 
calculated to compare cognitive load between various tasks (Table 1). 
Researchers face the foundational challenge of determining central 
value representatives while analysing their data. The selection of an 
appropriate statistical approach is contingent upon the nuances of the 
research question and the characteristics of the analysed dataset.

The question, therefore, is what kind of sample averaging has 
typically been used when studying a bridge task performance. To 
determine approaches typically used to study cognitive load and stress 
risk we analysed the postprocessing approach in 23 published articles:

The common ground of the studies listed in Table  1 is the 
determination of the causes of cognitive load and stress in the 
maritime and transportation sectors by measuring physiological 
responses while participants performed a simulation. The results 
generally showed that cognitive load was highest when participants 
had to process a large amount of information and make quick 
decisions. Hence, task complexity significantly affected cognitive load.

The analysis showed that 34% of authors used standard methods 
of data analyses, averaging large amounts of physiological data and 
identifying trends or patterns during post-processing analyses; 
ANOVA is used in 22%; regression analyses are used in 13%; SPSS and 
support vector classifier in 9% each, neural networks 4%, and 
undefined methods in 9%.

The problem with identifying trends or patterns by averaging large 
amounts of physiological data is the tendency to disregard significant 
variability and differences between individual data points. Averaging 
can also mask essential outliers or subgroups within the data, which 
may have unique characteristics and require separate analysis: 
Simpson’s paradox (Geng, 2011). The effect is driven by a subgroup 
with a specific characteristic (e.g., introverted, aggressive, experienced 
participants). Averaging the data across all individuals can mask this 
critical finding. The question is, what can be done to recognize and 
avoid this challenge in physiological data? The following section 
provides a brief overview of this topic.

2 Problem statement and goal

This article addresses data from two sources: physiological data 
from six pilots simulating complex port approach procedures, as 
reported in (Žagar et al., 2024), and the expanded amount of data into 
a larger sample. Challenges faced in analysing and interpreting real-
world data and resolutions were clearer.

An empirical study (Žagar et al., 2024) compared the physiological 
responses of experienced marine pilots and trainees. The average 
response on a small sample of experienced pilots (n = 6) yielded an 
approximate S shape, indicating that a psychophysiological reaction 
precedes a stress event. A detailed post-festum examination of 
individual responses, however, revealed that only one of six 
participants matched this pattern, whereas the psychophysiological 
responses of the other participants were relatively flat. Detailed post-
festum analysis showed that the characteristic of the S shape obtained 
by averaging was determined mainly by one participant rather than 
mirroring the typical response pattern in the group of participants. 
Although averaging the data is correct, the detailed post-festum 
analysis suggested that generalizing the S curve as a typical 
psychophysiological response to stress might be misleading.

The phenomenon causing misinterpretation occurs when there is 
a low number m of S curves compared to the number of curves n. 
Note however that when m is not small according to n, the resulting 
mean S shape curve would not be an outlier but the result of a regular 
experimental outcome. In this case, the mean S shape would be the 
correct conclusion rather than a result of misinterpretation.

The problem is that the estimation of confidence intervals would not 
always indicate that there is a hidden dominant response. Furthermore, 
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the resultant estimated confidence interval (depicted as the blue area in 
Figure 1) may narrow when other non-characteristic curves exhibit a 
nearly flat signal. This phenomenon could lead to biased conclusions like 
those drawn from the predominant S shape, highlighting the importance 
of scrutinizing the broader context and considering potential 
confounding factors in data interpretation. The distortion may primarily 
be  related to relatively high inter-individual variability and a small 
sample size. To test this assumption, we simulated the data on larger 
sample sizes, addressing the difficulty of possible misleading inferences 
from psychophysiological signals in the context of a sample size to 
provide guidelines for identifying subgroups of data that may determine 
the response pattern and propose a solution to this problem.

3 Materials and methods

In processing our data, we were confronted with the misleading 
aspect that averaging may lead to potentially erroneous conclusions 
as a typical statistical approach, post-processing showing that:

 a. The relationship between variables is non-linear and averaging 
can lead to incorrect conclusions. This might happen in 

scenarios where the relationship between the participant’s 
experience and the demanding cognitive task varies, and the 
averaging of the data might suggest a linear relationship that 
does not accurately represent the data.

 b. Outliers can significantly impact the averaging results, leading 
to potentially incorrect conclusions, where a single data point 
is very different from the rest of the data, leading to 
inaccurate conclusions.

 c. In scenarios where participants vary in characteristics, 
averaging the data may obscure important differences between 
groups. The significant variation within the data set 
(heterogeneity) is not accurately captured.

 d) If the data is collected through a biased sampling approach, 
averaging can lead to incorrect conclusions, especially in the 
case when participants from a specific non-representative 
group (students and cadets) reflect (falsely) the larger 
population (experienced mariners).

Thus, to avoid potentially incorrect conclusions due to averaging, 
careful consideration of the data and statistical methods during post-
processing is necessary, using alternative approaches, such as 
visualization and non-parametric tests, applicable to the specific data 

TABLE 1 Review of cognitive load and stress analysis.

Stress risk Year Sensor type Author Participants

1 1998 Review AMSA (1998) Pilots

2 1999 Review Lovell (1999) Pilots

3 2015 Review Main et al. (2017) Pilots

4 1990 Psychomotor task Shull (1990) Pilots

5 2020 Questionnaire Maglić et al. (2020) OOWs

6 2018 EEG-stress Lim et al. (2018) Pilots

7 2017 EEG-emotions Liu et al. (2024) Students

8 2016 Self-assessment, TLX Di Nocera et al. (2016) OOWs

9 2019 Cardiovascular, TLX Barbarewicz et al. (2019) Pilots

10 2019 EDA Zontone et al. (2019) Students

11 2019 Pupil, bio response Barbarewicz et al. (2019) Pilots

12 2021 Questionnaire Oldenburg et al. (2021) Pilots

13 2022 Questionnaire Butler et al. (2022) Pilots

14 2021 Questionnaire Xu et al. (2021) Pilots

15 2022 Lidar Kang et al. (2022) Pilots

16 2014 Questionnaire Ceyhun and Ozbag (2014) Pilots

17 2022 EDA, HR Žagar et al. (2022) Pilots, students

Cognitive load Tug masters

18 2007 ECG, TLX Kim et al. (2007) Students vs. pilots

19 2010 Eye-tracking Arenius et al. (2010) Students

20 2010 Self-report Jha et al., 2010) Us marines

21 2012 ECG electrodes Saus et al. (2012) Students

22 2015 Self-report Haase et al. (2015) Elite athletes

23 2016 Eye-tracking Hareide and Ostnes (2017) Officers

24 2018 Self-assessment, TLX Orlandi and Brooks (2018) Pilots

25 2018 Pupil Fridman et al. (2018) Drivers

26 2020 HR, BVP Kim (2010) OOWs
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and research question. Following, we explain the design of both the 
experimental and the generated data.

3.1 Real-world data

The experimental data are from the test conducted in Wartsila’s 
Navi Trainer 5,000 ship handling simulator. The full-mission simulator 
consists of a modern and ergonomic navigation console with standard 
navigation equipment, such as redundant multifunctional displays, a 
conning station, a ship’s wheel stand, an overhead monitor and a 
communication unit. The simulator offers hundreds of vessels for 
creating the most complex scenarios in different weather conditions 
and navigation areas. The simulator is also equipped with visualization 
and provides a 270° view of the scene. All activities performed by the 
pilots were recorded.

The Empatica E4 sensor obtained physiological data during the 
experiment. Physiological data were obtained from six participants 
during a simulated port approaching procedure wherein a large 
container ship was heading to a designated berth. We collected and 
processed various signals, including the participants’ average heart 
rate (HR), sampled at 1 Hz. Each average HR value was computed 
from inter-beat intervals (IBI) within 10-s spans. Electrodermal 
activity (EDA) was sampled at 4 Hz for this study. Further details on 
experimental scenarios and procedures are available in our previous 
publication (Žagar et al., 2024). Due to constraints associated with the 
availability of experienced marine pilots, our real-world dataset 
needed to be improved. We conducted simulations to address this 
limitation and enrich the dataset with data from the earlier work.

3.2 Simulated data

In addition to the data obtained in the simulator, computer 
simulations obtained random data based on a real data model, using 
continuous autoregressive signal generation where the data model was 
estimated from real data (see section 3.1). For this purpose, the Python 
library TimeSynth1 ver. 0.2.4 was run to obtain 110 simulated time series 
of HR sampled at 1 Hz and EDA sampled at 4 Hz separately sampled at 
the same frequency as real signals. The number of signals is driven by 
the need for a diverse dataset that includes a variety of simulated time 
series’. In statistical analysis and machine learning, having a sufficiently 
large and diverse dataset is crucial for obtaining robust and results fit for 
generalization. In this context, using 110 simulated heart rate (HR) time 
series’ and electrodermal activity (EDA) enables a comprehensive 
exploration of different signal characteristics. All but one of these signals 
were generated from the “no shape group” and one from the “shape 
group.” The “no shape” group’s signals have no characteristic shape and 
vary little. The “shape” group consists of signals that have a characteristic 
shape with higher total variation, see section 3.2.1.

Assuming a set of discrete time-dependent psychophysiological 
signals is denoted by S, where some of them belong to a “no shape 
group” Sa  (they average to a flat curve) and some of them to a 
“characteristic shape” group Sb (they average into a characteristic 

1 https://pypi.org/project/timesynth/

shape). In our notation, S S Sa b= ∪ . The average signal of a given set 

of signals S is denoted by ∝S = 1

S
s

s S∈
∑ ,  where S  is the number of 

elements of the set. The assumption is that the signal ∝Sa  has no shape 
(i.e., close to a flat curve) and the signal ∝Sb  has a characteristic shape 
used to illustrate the phenomenon, leading to the issue we address in 
this paper manifest in the following two situations:

 a. A set of signals comprises one or a few characteristic shape 
curves and numerous close-to-flat curves.

 b. A set of signals comprises one or a few characteristic shape 
curves and numerous random curves.

The conclusion regarding the pattern (in our case, the expectation 
of stressful events by the marine pilot can be  seen from the 
psychophysiological signals) is typically made on the average of 
signals (curves). Formally, we can break down the average curves as a 
weighted sum of averaged signals to
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Even though the weight S
S
b  of the signal group Sb is much 

smaller than the weight of the “no shape” group Sa , the shape of ∝Sb
determines the shape of the all-signal average ∝S . Compare this 
reasoning to results given in Sec 4. Results.

3.2.1 Total variation as a measure of an impact on 
the mean curve

The total variation of the curve can be  used to measure how 
dominant one curve is in terms of its impact on the mean curve. A 
time-dependent signal s on a time interval a b,[ ] is given by

 
V s s t s ta
b

P i
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( ) = ( ) − ( )
=
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+∑sup

0

1

1

for all partitions P t t tnP= …{ }0 1, , ,  and interval a b,[ ] where sup is 
a supremum over all partitions. If the partition P is selected such that 
the signal s is monotone on any time interval t ti i, +[ ]1 , the total 
variation is V sa

b ( ) simply a sum of absolute differences without the 
supremum. To allow comparisons, we normalize total variation to a 
1-s interval; this normalized total variation is TV divided by the time 
interval lengths in seconds.

The total variation adds all the highs and lows of the curve. Near-
flat curves have TV values close to 0. For HR signals, HR 1 to HR 6 as 
shown in Figure 1 (left) normalized TVs are 0.196, 0.285, 0.102, 0.383, 
0.074, 0.093. Observe that the lowest TV has the signal HR 5, closest 
to the flat curve, and the highest normalized TV has the signal HR 4, 
which has the most notable shape.

3.2.2 Detecting the hidden anomaly
How can the researchers know when this anomaly might affect the 

findings? Practically speaking, the challenge is that modern signal 
plotting libraries (such as Python Matplotlib) do the normalization of 
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axis on their own and thus hide the underlying challenge. There are a 
couple of methods, however, that may help the researchers detect the 
hidden determinator:

 i. Visualization: a group visualization of all signals and their 
average in the same plot and carefully examining their shapes. 
If the researcher is aware of the potentially misleading 
conclusion, it will be clear.

 ii. Confidence interval (CI) estimation: if the confidence interval 
of the average is estimated and visualized, the analysis can 
indicate that a hidden determinator might occur. CI interval 
estimation can help the researcher when the reason for the 
average flattening is that the signals are close to flat and not 
when the reason is that the signals are random.

 iii. Bootstrap and total variation procedures: A histogram of total 
variations generated by the bootstrap method can help identify a 
hidden determinator. When there is no dominant small subset of 
curves, the histogram is unimodal, and when there is a dominant 
subgroup, the histogram will be bimodal. This relates to the fact 
that bootstrap samples that contain no dominant curves will 
compose a major part of the histogram, but those with dominant 
ones will add a separate component of higher values.

3.2.3 Modeling the S-curve formation process
The aim of modeling S-curve formation is to show that the 

occurrence of a small number of S-curves might be a regular rather 
than irregular event. In this case, an S-curve should not be treated as 
an outlier.

To provide further insight into the problem of misinterpretation 
of S-curve occurrences, we modeled the process of S-curve creation 
to show that S curves are not outliers but may appear in a regular 
experimental (and work-task) process.

The rise of the measured physiological signal (the response curve 
has an S shape) occurs when the number of stress circumstances faced 
by the participant is large enough to initiate a stress response (this 
assumption is further discussed in section 5). A normalized S curve 
of a single participant is modeled by the time it starts to rise, denoted 
by tr . The probability distribution of number events required to 

initiate the stress response is geometrical with parameter p where p is 
the probability that the event occurs in one attempt. The assumption 
behind stress event responses’ independence is also discussed in 
section 5. In our experiment, times of and nature of stressful events 
were the same for all participants. In particular, there were two such 
events built into the experiment, and therefore two possible response 
curves s ii : ={ }1 2, }. In the model, the probability of occurrence of the 
response curve (a measured physiological signal for a given pilot) was 
obtained by the geometrical distribution. Theoretically, S-curve as a 
response to the stressor, may occur after the threshold stress was 
achieved, and might be different in different individuals. Therefore, in 
some participants, S-curve as a response to the stressor may occur 
after the first stress event, or after several stress-related events have 
been present one after another. Our approach accounts for these inter-
individual differences. In the current paper, we  assumed that the 
probability of getting stressed in a single stressful circumstance (where 
the response shows S shape) can be modeled for a given participant or 
a group of participants.

The parameter of geometrical distribution can be estimated from 
the data representing either students (denoted by ps ), or experienced 
pilots (denoted by pp ). To demonstrate the estimation on our 
experimental data, we can estimate these probabilities by counting the 
number of S curve appearances at each of the stressful events. In 
particular, for two stressful events that occurred at times t t ii : ={ }1 2, ,  
the counts are denoted by k k ii : ={ }1 2, }., respectively. An 
overdetermined system of nonlinear equations for a distribution 
parameter using these counts can be set and solved using square error 
minimization. There were 8 students and 8 pilots involved in the 
experiment with two stressful events and we obtained ps = 0 14.  and 
pp = 0 06. .Note that this procedure of estimation may be applicable 
for an arbitrary sequence of stressful events.

4 Results

Here, misleading curves regarding two psychophysiological 
signals are illustrated: heart rate (HR) and electro-dermal activity 
(EDA). Since the number of signals available was very low, 
we generated simulated curves based on models from real data.

FIGURE 1

S shaped mean of six HR curves (left). The dominant characteristic curve determines the shape of the HR mean curve, and the rest contribute much 
less to the shape. Averaging non-characteristic curves yields no characteristic shape (right, blue), while the average of all six curves has a precise S 
shape. This may be misleading since only one curve seems to determine the mean curve.
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4.1 Measured signals

HR results are depicted in Figure 1. Note that three out of six 
curves impose the shape of the mean. Because of the low number of 
curves, the confidence interval cannot detect an anomaly; the 
visualization does.

EDA signal results are shown in Figure 2. According to the curve 
shapes, the effect of the characteristic curve imposing the shape is low, 
but we still observe that a single curve dominates the shape of the 
curve mean. For the same reason, this can be identified primarily by 
plotting the curves and visually inspect individual data.

The identification of an anomaly is based on the bootstrap 
procedure, which is not very effective with a low number of signals.

4.2 Simulated case signals

To demonstrate the effect of a small number of dominant curves 
imposing the shape of the mean of all curves and to explain how 
we identify the challenge, we randomly generated larger samples of 
HR and EDA signals.

4.2.1 Identification using signal visualization
On the left side of Figure 3, a series of HR signals and their mean 

value curve are plotted, with a dominant signal that deviates 
considerably. On the right side of the graph, the two mean curves are 
shown, one of which does not contain the dominant hard rate signal 
(red signal). The dominant signal strongly influences the mean value 
of all measurements. To identify these hidden determinator curves, 
the confidence interval (CI) can be used in addition to plotting and 
visual inspection. Comparing the curves, we observe that there are 
curves of different shapes compared to others and this should alert the 
researcher to the possibility that the mean curve may be inaccurate. 
Note that CI alone does not indicate any anomaly. Simulated data of 
HR and EDA are presented in Figures 3, 4, respectively.

4.2.2 Identification using TV and bootstrap
The third approach to identifying hidden determinators is 

bootstrapping. To demonstrate the challenge of the identification 

approach using total variation (TV) and bootstrap, we  generated 
histograms of TVs for simulated signals HR and EDA with and 
without a dominant subset of signals. In the bootstrap procedure, a set 
of 110 curves was sampled n = 1,000 times with sample sizes 5, first 
without and then with a dominant curve. The TV of a sample mean 
curve was calculated, and the histograms of these mean TVs are 
reported in Figures 5, 6. The sample size should be small enough for 
the dominant curves to impact the sample mean and make them 
distinguishable on the histogram.

Figures  5, 6 demonstrate that the bimodal (or polymodal) 
histograms can identify a dominant curve. If several types of shapes 
were present in the set of signals, they would appear on the sample TV 
histogram as several separate components. In the signals shown above, 
two types of shapes (no characteristic or dominant shape) and two 
components can be seen. Several bootstrap runs not reported here 
showed that the effect on the histogram (including one versus several 
components) is stable.

5 Discussion

The data used to analyse statistical readings are based on two 
sources. The first data source comes from experiments with marine 
pilots, where we  collected physiological data (heart rate and 
electrodermal activity) from experienced pilots during a port 
approach in a full-mission simulator. Further considerations are based 
on the data from six pilots; the averaged results of their responses 
revealed an approximate S-shape, suggesting that a psychophysiological 
reaction likely precedes stressful events. In a detailed post-festum 
analysis that followed individual data sets were plotted to link them to 
the onset of the stress event. This visualization showed that the S-curve 
likely reflected the pattern of a single pilot. In contrast, the patterns of 
the other five participants, which were relatively flat, had a smaller 
effect on the averaged curve. This appears to be a false indication 
because the response of a single pilot determined the average for the 
entire group.

The first attempt to correct results was to treat this S-curve as an 
outlier. It turned out that it is difficult to detect outliers because point-
based results of these analyses did not differ from those not considered 

FIGURE 2

EDA: The orange curve on the left figure is dominant. The right Figure shows the mean of the EDA curve (plotted on the left side). The upper red curve 
presents the mean of all curves and blue presents the mean without a dominant curve.
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as outliers. What did differ was the whole pattern of response, shown 
as an S curve, obtained within a specific period just before and just 
after the occurrence of the stress event. Further reasoning led us to the 

observation that these S curves might not necessarily be an outlier but 
may to appear as a regular outcome of the experiment (see 
reasoning below).

FIGURE 3

Simulated heart rate responses are given with their mean (left). Means of all signals are reproduced (right, red curve) for purposes of comparison.

FIGURE 4

Simulated EDA are given with their mean (left). Means of all signals are reproduced for purposes of comparison.

FIGURE 5

Histograms of mean TVs using a bootstrap procedure of simulated HR are given: no dominant curve (left) and with the dominant curve (right). Note 
that the dominant curve reflects two components on the histogram on the right.
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In the second step, we assumed that the challenge might be solved 
by applying a larger sample size. In empirical research, however, 
obtaining physiological responses in experimental settings from larger 
samples of experienced marine pilots is impractical. Instead, 
we increased the number of participants by simulating the data rather 
than collecting new empirical data; the simulations were based on real 
data obtained in a previous experiment. Continuous autoregressive 
signal generation was used for the simulation. The simulated model 
was estimated from the real data using Python library TimeSynth. To 
test the hypothesis that data set enlargement might solve the challenge 
of identifying and treating the dominant curves (the determinators), 
we ran the simulation on a sample which could be considered a large 
sample for physiological research, 109 participants.

Our simulations showed that more than a simple increase in 
sample size is needed to solve the issues regarding what we considered 
an outlier. Both simulations indicated that a small data set might 
determine the response pattern relatively independently of the sample 
size. Data sets that matched the S-curve with relatively high amplitudes 
were likely to determine an averaged response curve.

In the third step, we introduced bootstrap analysis as a technique 
to identify a possible dominant curve (determinator) hidden in the 
data. Bootstrapping is a resampling method (sampling with 
replacement) where a given sample (set of signals) is subsampled, and 
characteristics are estimated from these subsamples. Typically, it is 
used to measure the accuracy of estimators (bias, variance, confidence 
intervals, etc.) (Efron, 1979; Davison & Hinkley, 1997) and selected 
characteristics of underlying distributions. Bootstrapping was applied 
to identify the presence of shape-dominant curves by plotting 
histograms of signals’ total variation. The results showed that the 
presence of a dominant curve can be identified by the bimodality or 
the polymodality of the histograms.

The bootstrapping estimation method of total variations (TV) is 
a promising method that can help us identify subgroups of 
characteristic determining shapes in our set of signals. In short, 
unimodal histograms indicate a unimodal (homogenous) group of 
curves, and a multimodal histogram indicates several groups and 
heterogeneous types of data, which may alert researchers of the need 
for further inspection. The conclusions derived from the means are 
likely reliable when a single group is shown on a histogram.

Note that an alternative approach to identification of misleading 
results is using the appropriate clustering method. Here, the 
characteristic S curves would present one cluster, and the rest of the 
curves would represent the rest of the clusters. However, our attempts to 
identify characteristic curves did not yield promising results. This might 
be due to the distance among non-characteristic curves which tends to 
be large and comparable in size to the distance of S curves to the rest of 
curves. A proper normalization of curve ranges did not improve results 
significantly. Therefore, we conclude that the clustering approach may 
not be appropriate for the misinterpretation problem identification.

The likelihood of the misinterpretation being based on mean 
curves as presented in this paper is higher than one would expect, and 
this makes our observation relevant for a wider audience. Why is it 
higher? The misinterpretation of a mean curve arises only when a 
small number m of S curves appears in the sample compared to the 
sample size n. For larger m compared to n, the impact of S curves to 
the mean S curve is a correct impact and thus not a misinterpretation. 
When the probability of S-shape appearance is denoted by p, the 
skewness of the underlying geometrical distribution (see section 3.2.3) 
is (2-p)/√(1-p) and it approaches to two for small p and approaches 
to infinity for p getting close to one. In our case, the skewness is 
always above two and the distribution is leaning toward low 
probabilities. Therefore, the probability of getting a low number of S 
curves is relatively large, meaning that such curves may not be outliers, 
but may appear as a rule in the real data and that the likelihood that 
the problem of misinterpretation arising in real experiments is high.

In our experiment there were 8 experienced pilots and 8 students. 
The estimation of probability of appearance of S-curve for 
inexperienced pilots was higher than for experienced ones as expected.

Note, however, the generation modeling by geometrical distribution 
is based on the assumption that that the probability of stress response 
of the participant is independent of previous stress events. This 
assumption might be addressed in greater detail in future research.

6 Conclusion

Advanced statistical methods and the ubiquitous use of statistics 
in not just the physical sciences, but the humanities as well, have 

FIGURE 6

Histograms of sample mean TVs using a bootstrap procedure of simulated EDA are given without the dominant curve (left) and with the dominant 
curve (right). Again, the histogram has two components as a dominant curve is reflected.
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perhaps led to a degree of excessive trust in what they appear to 
communicate. Previous work regarding physiological signals in the 
study of the stress undergone by maritime pilots indicated that the 
statistical presentation of stress factors obviously did not align with 
what could clearly be seen by researchers on hand during the testing. 
Maritime pilots have one of the best-paid but riskiest jobs in the 
transportation industry, engaged in an extremely demanding job often 
carried out in very difficult conditions with the stress of an awareness 
that a mistake can lead to serious accidents, loss of life, loss of goods, 
environmental damage, etc. These circumstances illustrated the need 
to understand statistical results better and to be aware of the hidden 
anomalies that statistically precise results might deliver.

Our analysis showed that a single participant or a small data set 
can determine results, leading the researcher to a biased conclusion. 
This mechanism is not due to a small sample size. The results of our 
simulations indicated that a plain increase in data sets (or the number 
of participants) would not solve the challenge of determining to what 
degree statistical presentations might or might not be trustworthy. Is 
an outlier determining the results, which might lead to inaccurate 
conclusions about pilots’ heart rate or electrodermal activity response 
preceding stress events during the port approach?

Classical statistical methods to identify outliers do not work well 
because what we may consider outliers are determined by a complex 
pattern series response rather than point-related data sets that are 
likely to escape statistical detection. In addition, a detailed visual 
inspection may also fail to identify anomalies because time series 
visualizations depend heavily on scales and temporal periods included 
in the inspection; in our case, the visualizations depended on how 
we defined the beginning of the stress event (to anchor the curves), as 
well as to the periods just before and just after a stress event included 
in the analyses. This kind of visualization technique requires both 
experience and intuition to detect hidden patterns behind small-scale 
repeated measurements and large time-related data sets such as heart 
rate or electrodermal activity during the port approach.

This article was written to alert researchers to the problem of over-
relying on statistical “results.” As a byproduct, attention is brought to 
the specific case of studying physiological signals in simulated 
environments, and in particular, the study of maritime pilots. This is 
particularly important because physiological measurements are 
becoming increasingly accurate, so researchers are making advances 
using various experiments with real-time data analysis on simulators 
and in the real-world environment.
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