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Alignment of color discrimination
in humans and image
segmentation networks

Pablo Hernández-Cámara*, Paula Daudén-Oliver,

Valero Laparra and Jesús Malo

Image Processing Lab, Parc Científic, Universitat de València, València, Spain

The experiments allowed by current machine learning models imply a revival

of the debate on the causes of specific trends of human visual psychophysics.

Machine learning facilitates the exploration of the e�ect of specific visual goals

(such as image segmentation) by di�erent neural architectures in di�erent

statistical environments in an unprecedented manner. In this way, (1) the

principles behind psychophysical facts such as the non-Euclidean nature of

human color discrimination and (2) the emergence of human-like behaviour in

artificial systems can be explored under a new light. In this work, we show for

the first time that the tolerance or invariance of image segmentation networks

for natural images under changes of illuminant in the color space (a sort of

insensitivity region around thewhite) is an ellipsoidoriented similarly to a (human)

MacAdam ellipse. This striking similarity between an artificial system and human

vision motivates a set of experiments checking the relevance of the statistical

environment on the emergence of such insensitivity regions. Results suggest,

that in this case, the statistics of the environment may be more relevant than the

architecture selected to perform the image segmentation.

KEYWORDS

vision models, color discrimination, image segmentation, artificial neural networks,
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1 Introduction

Natural images and principled explanations in vision science. A long-standing

hypothesis in vision science assumes that sensory behaviour derives from an evolutionary

adaptation to the regularities of the environment (Barlow, 1959, 2001). This hypothesis is

statistical in spirit because it assumes that certain architecture (network of sensors and

neurons) is progressively updated to become optimal according to certain task for the

inputs faced by the system (Richards et al., 2019). As a result, the concept of natural images

has become central in this kind of principled explanation (Field, 1987; Simoncelli and

Olshausen, 2001; Torralba and Oliva, 2003; Hyvärinen et al., 2009), because it refers to

stimuli (e.g., photographic images) which are representative of certain visual environments

and constitute the training set for the system.

Linear statistical models in color vision. The link between color vision and

the statistics of the natural environment has a long and fruitful history. Classical

approaches often employ linear models to explain different aspects of color vision. For

instance, one seminal study derived opponent color channels from the statistics of color

samples (Buchsbaum and Gottschalk, 1983): authors assumed that the goal of the color

sensors is to decorrelate the neural responses after the photoreceptors so they computed

the linear Principal Component Analysis (PCA) of color samples in natural images. PCA
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transforms data into a set of linearly uncorrelated

components (Jolliffe, 2002), identifying the directions (principal

components) in which the data varies the most. It turns out that

the best directions to encode natural colors are the luminance,

the red-green, and the yellow-blue directions. This statistical

explanation of the physiological achromatic and opponent

channels (Shapley and Hawken, 2011) is more conclusive than

classical hue cancellation experiments (Vila-Tomás et al., 2023).

This is because the opponent spectral sensitivities obtained from

PCA are more similar to the final sensitivities in multi-stage models

such as (DeValois and DeValois, 1993), while hue cancellation

results are mainly determined by the experimental choice of the

cancellation stimuli (Vila-Tomás et al., 2023). Another notable

linear approach involved the derivation of chromatic Contrast

Sensitivity Functions (CSFs) through linear filters designed to

maximize information transmission (Atick and Redlich, 1992;

Atick et al., 1992). In this case the authors also assumed a

decorrelation goal but in the presence of retinal noise. The

optimal filters amplify certain spatial frequencies to whiten the

responses (to make their spectrum flat) while attenuating the

spatial frequencies where the noise is bigger than the typical signal.

Additionally, explanations of chromatic adaptation, a process

by which the visual system adjusts to changes in the lighting

conditions, have been based on linear shifts in the average and

covariance of color samples (Webster and Mollon, 1997; Clifford

et al., 2007). The average represents the mean color value, while

the covariance indicates how color values vary together, providing

insights into the overall color distribution in the visual scene.

Adaptation is understood as a transform to an invariant inner

representation that compensates for the color shifts induced

by changes in the environment (illumination, shadows, etc.).

In summary, linear statistical models have identified opponent

chromatic channels, the frequency bandwidth for achromatic and

opponent chromatic patterns, and adaptation mechanisms based

on the mean and the covariance of the chromatic signals.

Nonlinear statistical models in color vision. More recently,

nonlinear descriptions of color statistics have been used to

reproduce the nonuniform resolution and adaptation of the

response of opponent mechanisms. In particular von der Twer and

MacLeod (2001); MacLeod and von der Twer (2003) suggested that

the nonlinear behaviour of opponent channels could be explained

by using univariate Cumulative Density Functions (CDFs) of

color samples. The CDF transforms the input probability into a

uniform probability. This means that if the sensor responses are

related to the CDF, simple uniform resolution in the response

domain minimizes the error introduced in the representation of

the signal (Lloyd, 1982). This philosophy was further extended

to other optimization principles and higher-dimensional scenarios

using Sequential Principal Curves Analysis (SPCA), a statistical

method that generalizes PCA by fitting smooth curves through

the data allowing for the representation of nonlinear structures.

The different nonlinearities that can be accommodated in

SPCA (Laparra and Malo, 2016) extend the cumulative density

approach from optimal error minimization (Lloyd, 1982) to

optimal information maximization (Laughlin, 1983). In this way,

new explanations of color adaptation, color constancy and color

illusions were proposed (Laparra et al., 2012; Laparra and Malo,

2015).

Signal statistics and model architecture. By definition,

nonlinear models are more accurate and general than linear

models. However, the above nonlinear descriptions of color

phenomena were more focused on the statistics of the color signals

rather than on the architecture, i.e., they oversaw the specific

network required for the implementation of the computations.

In general, the interactions between the statistical goal and

architecture are not trivial (Poggio, 2021; Hernández-Cámara et al.,

2023a; Hernández-Cámara et al., 2024). For example, different

deep-learning architectures trained according to the same statistical

goal may lead to critically different behaviours. This has been

the case in studying color illusions (Gomez-Villa et al., 2020), or

chromatic contrast sensitivity, either from low-level (Li et al., 2022),

or higher-level principles (Akbarinia et al., 2023). In these studies

authors show that for the same functional goal deeper networks

may get better performance in the goal, but they display less-human

behaviour than shallow networks (in terms of bandwidth or visual

illusions).

Open issues in statistical explanations of color

discrimination. The metric of the tristimulus space is not

Euclidean, for instance, the discrimination region around the

white has a specific asymmetry and orientation (MacAdam,

1942). Current statistical explanations of that fact are based on

very low-level principles: error-minimization or information-

maximization using SPCA (Laparra et al., 2012) or Gaussianization

techniques (Jiménez et al., 2013), or the techniques based on

Fisher information (da Fonseca and Samengo, 2016, 2018) which

is another form of information maximization. Neither of these

explanations take the architecture of the system into account

(they only describe the properties of color distributions), and the

principles are so low-level that are not directly connected to actual

visual tasks.

Questions addressed in this work:

• Is it possible to derive basic properties of human color

discrimination ellipses from visual tasks of higher-level than

error-minimization or information-maximization? Particularly

[as opposed to the cited low-level literature (Laparra et al.,

2012; Jiménez et al., 2013; da Fonseca and Samengo, 2016,

2018)] by explicitly optimizing a neural architecture with

certain resemblances to the retina-cortex pathway.

• In solving the considered higher-level visual task, what is

the relative relevance of the color statistics of the environment

versus the consideration of reasonable variants in the network

architecture?

In this work, we address these questions using networks trained

to perform image semantic segmentation (Guo et al., 2018), which

is a mid-level vision task that consists of identifying the objects

in the input images by classifying each pixel into one semantic

category. We implement this task using variants of the successful

U-net architecture (Ronneberger et al., 2015). The encoding part

of this architecture is a cascade of linear-nonlinear stages which

displays certain resemblances (in connectivity and function) with

early vision (Jacob et al., 2021). Moreover, we augment the

conventional U-net by including biologically-inspired layers, the

so-called Divisive Normalziation (DN) (Hernández-Cámara et al.,

2023b). This DN layer is a canonical non-linearity in sensory
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neuroscience (Carandini and Heeger, 2012) that takes into account

the inhibitory effect of neighbour neurons and explains chromatic

adaptation too (Abrams et al., 2007; Hillis and Brainard, 2005).

Finally, to check the relevance of the statistics of the environment,

we conduct the training and testing of the networks with different

kinds of images with distinctly different color statistics.

The idea is to check if human-like tolerance regions to color

changes emerge in these networks tuned to solve semantic image

segmentation. And, if they sometimes do, does it depend more on

the statistics of the environment or on the variants introduced in

the architecture?

In this work, we report the following finding: the region

of invariance to changes in illumination in image segmentation

networks trained with naturally illuminated images is similar

to the region of insensitivity (or invariance) to color changes

in humans (the MacAdam ellipse around the white). Therefore,

this mid-level task may be an alternative to previous lower-level

explanations. However, we find that the statistics of the colors in

the environment are more relevant to explain color discrimination

than the considered variants in the architecture in the segmentation

network.

2 Materials and methods

Here we introduce the six methodological elements required

for our experiments: (1) various distinct chromatic environments

for the segmentation goal: a naturally illuminated scenario (regular

photographic scenes with daylight illumination), and then two

counter-examples selected to have quite different color statistics

(submarine images and achromatic images respectively). Then,

(2) we outline the methodology we follow to compare the

tolerance to color changes in artificial networks and in humans.

As this general methodology implies generating consistent color

shifts in scenes annotated for segmentation, (3) we select one

of the possible approximated ways to introduce such color

shifts, namely the variation of a simulated spectral illumination.

Then, (4) we illustrate the shape of the tolerance of humans

to color shifts around the white color (or the anisotropy of

that MacAdam ellipse), (5) we present the scenes with shifted

colors to check the tolerance of the networks, and finally, (6) we

present details of the neural architectures of the considered image

segmentation networks.

2.1 Environments of di�erent statistics

The analysis of color discrimination of different image

segmentation networks requires training these artificial systems

in visual environments with substantially different color statistics.

The idea is checking if differences in color statistics induce

consistent changes in color discrimination. To this end, we

considered three datasets with known segmentation ground truth,

but distinct scene statistics: Cityscapes (Cordts et al., 2016),1

SUIM (Islam et al., 2020),2 and Oxford-IIIT Pets (Parkhi et al.,

1 https://www.cityscapes-dataset.com/

2 https://irvlab.cs.umn.edu/resources/suim-dataset

2012).3 While Cityscapes consists of a range of urban photographic

scenes under natural illumination (see Figure 1), the other two

environments are counter-examples specifically selected to have

distinct color statistics. On the one hand, SUIM is shifted to

blue because it consists of underwater pictures. On the other

hand, while Pets also has natural daylight illumination, we

intentionally removed all chromatic information by changing the

images to gray-scale so that the segmentation has to be based on

alternative (non-chromatic) visual features such as shape or texture.

The term “natural scenes” is applicable to the “urban scenes”

in CityScapes, because “natural” refers more to the low-level

statistical features of the images (smoothness, edge consistency and

continuity, or day-light illumination) rather than to the presence

of natural versus man-made objects. In fact, similarly to the

achromatic literature (Field, 1987; Olshausen and Field, 1996),

when dealing with spatio-chromatic scenes Gabor-like sensors in

chromatically-opponent channels emerge both in forest-landscape

scenes and in urban scenes (Doi et al., 2003; Gutmann et al.,

2014).

The color statistics of these environments are illustrated by

the scatter plots of color samples in the 1931 CIE xy chromatic

diagrams in Figure 1. In these diagrams, the spectral locus and

the triangle defined by the red, green and blue primaries of

regular displays have been plotted for useful reference. For

each environment, we took the 1000 nearest neighbours to the

average chromaticity and computed the local Principal Component

Analysis (local PCA) as in Laparra et al. (2012) and Laparra

and Malo (2015). The local principal components (in green

and blue) and ellipses (in orange) associated with the local

covariance matrices from the local PCA highlight the difference

in color statistics. Therefore, systems trained for information

maximization or error minimization in these environments should

have different metrics when considering color differences. Of

course, nothing can be said for systems trained in (artificially)

achromatic environments.

A technical note on the color of the databases. The images in the

considered databases are expressed in digital values. This device-

dependent color representation is transformed into standard

1931 CIE XYZ tristimulus vectors assuming a standard display

calibration (Hunt, 2005; Malo and Luque, 2002). To simplify

the implementation of the experiments involving changes of

illumination in the following sections, we reduced by a factor 0.75

the excitation purity of all the colors in Cityscapes and SUIM.

This can be easily seen in the sharp edge in the cyan colors of

the underwater environment. Incidentally, this sharp edge suggests

that camera recordings in this region are already saturated in the

blue channel. This bias does not represent a problem for our

study because this is just a counter-example with substantially

non-natural statistics. We applied this small reduction because

changes in spectral illumination imply movements of the color

manifold towards the limits of the color gamut that can be properly

represented in digital systems (the triangle in dotted style). This

reduction in the original saturation allows stronger changes in the

illumination. Nevertheless, it is important to note that this does not

change the relative shape of the color distributions (does not change

3 https://www.robots.ox.ac.uk/~vgg/data/pets/
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FIGURE 1

Di�erent environments (top) and associated color statistics (bottom). Left: daylight natural illumination. Center: daylight+underwater filtering and

scattering. Right: artificial achromatic scenes (flat spectral reflectances and equienergetic illuminant). The corresponding 1931 CIE xy diagrams show

representative color samples from the scenes (in black) and the closest neighbours to the average chromaticity (in red). It also shows local principal

components (in green and blue) and the associated ellipsoid (in orange) computed from the local Principal Component Analysis (local PCA) of the

nearest neighbours to the average chromaticity.

the orientation of the covariance matrices nor its relative size) and

then, it does not modify the generality of the results.

2.2 Comparing tolerance to color shifts in
humans and in machines

Color discrimination in humans has been defined in different

ways depending on the stimuli and experimental task done by

the observers. For instance, the classical MacAdam results are

based on the variability of color matching experiments with flat

patches of light sources (MacAdam, 1942; Wyszecki and Stiles,

2000). The covariance of this variability leads to the well-known

ellipses in the 1931 CIE xy diagram. However, detection thresholds

of deviations in different chromatic directions using randomly

textured stimuli (Barbur, 2004) leads to ellipses with the same shape

and orientation but larger size, about a ×5 factor in size (Jennings

and Barbur, 2010). Similar detection thresholds measured with

natural images under controlled changes in illumination (Alabau-

Bosque et al., 2024) are compatible with the results by Jennings and

Barbur (2010).

All these descriptions are qualitatively equivalent: the relevant

facts (Stockman and Brainard, 2010;Wyszecki and Stiles, 2000) that

should be reproduced by the models is that the higher sensitivity

(lower threshold and equivalently lower variability of the color

matches) is observed in a specific red-green direction while the

lower sensitivity (bigger threshold and bigger variability) is in an

almost orthogonal yellow-blue direction. In Section 2.5 we visually

illustrate that these are really robust trends.

In the case of artificial networks we will use the concept of

tolerance region. Note that the performance of the neural net in the

visual task (in this case segmentation) has a certain value given that

the images are illuminated as in the training conditions (and hence

the test images have the same texture and color statistics). However,

if the images are consistently color-shifted (for instance by changes

in the spectrum of the light source) the performance will drop. If

the network is able to cope with the color-shift with a negligible

drop in performance one can say that the network is insensitive

(or tolerant) to that color-shift. Setting an arbitrary threshold on

the network performance one may define a tolerance region in the

color space so that performance drops less than this value. This

tolerance region is a description of the insensitivity of the network

Frontiers in Psychology 04 frontiersin.org

https://doi.org/10.3389/fpsyg.2024.1415958
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Hernández-Cámara et al. 10.3389/fpsyg.2024.1415958

to color shifts, similarly to the MacAdam ellipses for humans.

Obviously, tolerance regions in humans (as classically defined) and

in machines (as defined here) are not identical concepts, but a

convenient analogy to compare their behaviours.

Will these (artificial) tolerance regions have something in

common with the human insensitivity (MacAdam ellipse) region

around the white? Alignment between these two concepts would

suggest a common explanation of both behaviours.

In order to check the above in different training environments

one must: (1) train the considered networks for the task in the

different environments and (2) test the tolerance of those networks

in scenes where color has changed in a consistent form (that can be

systematically represented in the chromatic diagram).

In the next subsections we discuss how to introduce systematic

color changes in photographic images via simulated changes in

spectral illumination and how this can be used to illustrate human

color discrimination around the white.

2.3 Systematic color-shifts via changes in
spectral illumination

To test the tolerance of the segmentation networks to color

shifts in a meaningful way, one should use convenient ways

to generate systematic, chromatically-controlled and consistent

changes in the images of the different environments so that

the networks face new (equivalent and controlled) situations not

considered in the training.

The required color shifts in the test sets can be introduced

in different ways. In the context of color constancy, different

approaches have been used to model color changes in the

images. These different approaches represent different degrees

of approximation to the physics of image generation. The

approximations differ on how well the geometry of rendering

and the spectrum-to-tristimulus transforms are taken into

account. Approaches to include consistent color-shifts which are

progressively closer to the physics of image generation include:

1. Following simple models of illumination

compensation (Finlayson et al., 1993; Chong et al., 2007),

one should express the color of the images in certain tristimulus

space and introduce independent linear variation in the

tristimulus values. This is clearly better than naive operation

in RGB digital counts, but the diagonal linear transform is

still rather restrictive: the authors recommended this when the

intrinsic dimensionality of spectral reflectance of surfaces and

spectral radiance of the illuminant is as low as two or three.

2. Following general linear models of illumination

compensation (Webster and Mollon, 1997; Clifford et al.,

2007), one could apply a rotation and a scaling matrix to the

tristimulus values. This transform is more general than the

previous method based on diagonal matrices but still disregards

the huge dimensionality reduction process that happens in the

spectrum-to-tristimulus transform.

3. Virtual environments [such as CARLA simulator (Dosovitskiy

et al., 2017)] are appealing to change the chromaticity of the

illumination because they consider the 3-dimensional scene in

the rendering. However, conventional programs usually make

gross approximations from the colorimetry point of view:

spectral distributions are not controllable and they usually

operate in RGB digital counts. As a result, it is not obvious

how to control the changes in the illumination to systematically

sample chromatic directions to check discrimination in the 1931

CIE xy diagram.

4. A convenient alternative is assuming that the original images

come from certain spectral reflectances under a given spectral

illumination and recreating new images by applying the

tristimulus equation assuming Lambertian surfaces with no

mutual illumination. As opposed to methods that operate

on tristimulus values, this method does take into account

the huge dimensionality reduction in the spectrum-to-

tristimulus transform, so illumination change is richer than a

rotation+scaling in the tristimulus space. However, this method

has also been criticized because it disregards the nonlinearities

that come from mutual illumination (Laparra et al., 2012; Deeb

et al., 2018).

5. Create annotated scenes for segmentation using the

unconventional virtual reality tools that take into

account both the geometry and the spectral content

of light and reflectance of surfaces, as for instance

(Heasly et al., 2014).

6. Take real scenes where the spectral illumination can be

physically modified and measure (take pictures) using

colorimetrically calibrated cameras (Laparra et al., 2012;

Gutmann et al., 2014), or spectro-radiometrically calibrated

cameras (Foster et al., 2016; Nascimento et al., 2016).

Of course, the best methods (5th and 6th) are not straight

forward. The 6th case implies building a database from scratch (in

case of having the expensive measurement equipment). Moreover

the mentioned databases that include physical changes in the

spectra are not good for our purposes because the spectral

change is uncontrolled or does not properly sample the chromatic

diagram. Moreover, they are not annotated for segmentation.

In the 5th case, one would have to build virtual scenes from

scratch and then use the internal (non-standard) code for the

objects to derive the image segmentationmaps. Therefore, methods

5 and 6 are too complicated for the illustrative test sets that

we want to generate to check the invariance/tolerance of the

segmentation networks. Then, between the next two methods

(3rd and 4th, each with advantages and shortcomings) we

chose the 4th method for its balance between complexity and

colorimetric realism.

2.4 Human color discrimination illustrated
via changes in the spectra

After the previous discussion about the different ways to

introduce the color shift, here we describe in more detail the

chosen option. Particularly, here we describe the change of

tristimulus values of a surface of known spectral reflectance

when we change the spectral illumination, and then we explicitly

illustrate how uniform changes in hue and saturation over

the chromatic diagram are not perceived uniformly. This
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anisotropic tolerance to color shifts,4 known as the MacAdam

ellipses (Wyszecki and Stiles, 2000; MacAdam, 1942), is the human

behaviour that we want to compare with the invariance region of

the models.

Given an object of spectral reflectance, ρλ ∈ [0, 1], illuminated

by an illuminant with spectral radiance sλ in W/m2str, its

tristimulus values in certain color representation, Ti with i = 1, 2, 3,

are given by Wyszecki and Stiles (2000):

Ti = km

∫ 770

380
ρλ sλ T̄i(λ) dλ (1)

where T̄i(λ) are the color matching functions, or the sensitivity of

the color sensors in that representation, and km = 683 lm/W,

is the luminous efficacy constant. This implies that the chromatic

coordinates, ti = Ti/
∑

i Ti, also change with the illuminant.

Figure 2 shows the variation of the color appearance of a flat

reflectance, ρλ = 1 ∀λ, when it is illuminated by a set of sources

with spectral radiances, s⋆λ, taken so that the color of the sample

has the desired tristimulus vectors, T⋆, with chromatic coordinates

represented in the 1931 CIE xy diagram at the left and a constant

luminance of 35 cd/m2. The spectral sources were computed via:

s⋆λ = argmin
sλ

∣

∣T⋆ − T (sλ)
∣

∣

2
(2)

where T (sλ) was computed as in Equation 1. Metamerism means

that Equation 2 is ill-posed (Wyszecki and Stiles, 2000). The

algorithm we use5 breaks the multiplicity of solutions by looking

for the illuminant that minimizes the error in tristimulus values

using an exhaustive search in a structured dataset of 20,000 spectral

radiances/reflectances. The structure of this dataset (the way the

spectral shapes are ordered) is based on the Munsell book of color.

This guarantees that the considered spectra represent a perceptually

uniform sampling of the color space. In this example the considered

illuminants are organized as a function of hue and saturation, i.e.,

angle with respect to the x axis, and distance with respect to the

central white point respectively.

The uniform distribution of color variations in a polar

representation along the 1931 CIE xy diagram in Figure 2A

illustrates the fact that that human color discrimination is not

isotropic around the white, i.e., it is non-uniform. Note that

when linearly increasing the saturation of the color along the

different hue directions (going down along each column of the

colored panel), the perception of colorfulness (Fairchild, 2013)

is not uniform. See that, qualitatively and just for illustrative

visualization, the circles in the colored panel define a boundary

between clearly chromatic patches (below the curve) and mainly

achromatic patches (above the curve). This human region of

tolerance or invariance around the white can be plotted in the

chromatic diagram (ellipse represented by the orange dots in

Figure 2B) by using the corresponding cartesian to polar transform.

As an example of this transformation, see for instance the position

of the solid circle located in the colored panel Figure 2A (fourth

4 Here color-shifts modelled as changes in the spectral reflectance or

spectral radiance.

5 The function tri2spec.m of Colorlab (Malo and Luque, 2002).

hue and fifth saturation index) and its corresponding location in

the chromatic diagram.

Figure 2 is just a compelling visual illustration of the anisotropy

of human tolerance to color shifts: the tolerance is maximal in the

yellow-blue direction and minimal in the red-green direction. Of

course, this visualization is not an accurate measurement of the

color discrimination ellipse (MacAdam, 1942; Jennings and Barbur,

2010; Alabau-Bosque et al., 2024). Interestingly, even though

this visualization has all the limitations of color reproduction in

displays (Hunt, 2005), the anisotropy of human tolerance to color

shifts is so robust that the characteristic two-minima-shape of

the achromatic-to-chromatic boundary is clearly visible. Note that

the orientation of this qualitatively drawn boundary-and-ellipse is

consistent with the classical experimental ellipses (MacAdam, 1942;

Wyszecki and Stiles, 2000) depicted in Figure 2C.

We will be back to this two-minima shape in the hue-saturation

plane and the associated ellipsoid when we present the results of the

tolerance regions of the segmentation networks in Section 3.

2.5 Spectral illumination changes in the
environments

Once the networks are trained in the considered environments,

the scenes are modified to introduce changes in spectral

illumination using the sources, s⋆λ, shown in Figure 2. To do so,

spectral reflectances have to be associated to each region of the

original scenes. This association is done by assuming that the

tristimulus vectors, T, in the original scenes (e.g., the chromaticities

in Figure 1 with their corresponding luminances) come from the

illumination of certain reflectances, ρ⋆
λ, with an equienergetic

illuminant:

ρ⋆
λ = argmin

ρλ

∣

∣

∣

∣

T − km

∫ 770

380
ρλ T̄i(λ) dλ

∣

∣

∣

∣

2

(3)

Again, the solution of the ill-posed Equation 3 was obtained

through the function tri2spec.m of Colorlab (Malo and Luque,

2002) because the spectra in the Munsell database do a thorough

sampling of the color space. Once each pixel has an associated

reflectance, ρ⋆
λ, its new color, T′, under the new illumination is

computed with Equation 1 using s⋆λ. Finally, the new 1931 CIE XYZ

colors are transformed into digital values assuming a standard

display calibration (Hunt, 2005; Malo and Luque, 2002). Figure 3

shows an example of the result of this procedure applied to

one image of each of the three different training environments

considered.

The saturation of the considered spectral sources was limited by

the fact that we did not want the manifold of modified colors to lie

outside the triangle of primary colors in a regular display.

These modified scenes can be used to test each of the image

segmentation networks which were trained on the three different

original scenes. The performance is expected to be similar for

illuminants with small spectral contrast: the segmentation results

for the scenes of the first row in Figure 3 will be similar to the

performance on the original scenes. However, it is expected to

change for illuminants of bigger saturation and different hues

(down along the different columns).
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FIGURE 2

Illustration of human color discrimination: tolerance to saturation for di�erent hues. (A) Shows patches of flat spectral reflectance illuminated by

sources with spectral radiances selected to cover the 1931 CIE xy diagram as seen on a standard CRT display (Malo and Luque, 2002). Black dots in

the CIE xy chromatic diagram of (B) show the polar distribution of the chromaticity of the considered illuminants. The illuminants are organized as a

function of hue and saturation, i.e. angle with respect to the x axis, and distance with respect to the white point respectively. For each hue [each

column in the colored panel of (A)] the Euclidean distance in the chromatic diagram required to induce certain perceptual departure from the white

color of the same luminance is di�erent. That is why the insensitivity region around the white [determined by the circles in (A)] is an ellipse with

certain orientation [orange dots in (B)]. The diagram in (C) displays the insensitivity regions for humans measured by MacAdam (1942) at a number of

color locations over the chromatic diagram.

2.6 Networks for image segmentation

In this work, we used U-Nets networks to perform image

semantic segmentation following the state-of-the-art for this visual

task (Ronneberger et al., 2015). See Figure 4 for an illustration of

this architecture. In these networks, the input images (in digital

values) go through a set of layers with progressively lower spatial

resolution, i.e., the image dimensions decrease as the image passes

through each block. Also, each block has a progressively higher

number of features, i.e., different attributes detected by the network,

such as different patterns, to capture more complex information

up to the network bottleneck. From this inner representation, the

signal is spatially expanded again up to the original resolution

ending with a layer (in white in the figure) with a number of

features equal to the number of distinct classes to be identified.

Part of the high-resolution information is passed from the early
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FIGURE 3

Scenes with modified illumination starting from a di�erent original image: natural (top), underwater (center), and flat-reflectance, i.e., achromatic

(bottom).
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layers to the late layers after the bottleneck through the so-called

skip connections. The final layer performs the classification of each

pixel to one of the possible classes in the dataset, i.e., assigned to the

class that achieves higher response in this final layer. Note that this

implies that this layer depends on the number of possible classes of

the considered dataset and therefore a model trained in one dataset

can not be applied to a different dataset with a different number

of classes.

Apart from the standard U-nets, we considered the

biologically inspired modification proposed in Hernández-

Cámara et al. (2023b). This modified architecture considers

Divisive Normalization (DN) layers in the encoding part of the

U-Net (layers depicted in green in Figure 4). This nonlinear

computation, y = N (x), is relevant because the response of each

unit, xi, is normalized by a pool of the responses of the neurons

tuned to neighbour features:

yi = sign(xi)
|xi|

bi +
∑

j Hij|xj|
(4)

and this normalization has proven to be important to explain both

chromatic adaptation (Abrams et al., 2007; Hillis and Brainard,

2005; Fairchild, 2013) and contrast and texture adaptation (Watson

and Solomon, 1997; Martinez et al., 2019). This previous literature

on the benefits of Divisive Normalization for adaptation suggests

that U-Nets with Divisive Normalization may be more tolerant

to changes in illumination, and their insensitivity regions may be

more similar to those of humans.

3 Experiments and results

In this section, the considered networks are first trained

and evaluated for the image semantic segmentation task on the

different environments. Then, the models are tested in the scenes

under the new spectral illuminations covering a range of hue

and saturation values to see the shape of the tolerance region to

changes in illumination. We show that in the naturally illuminated

environment human-like tolerance regions emerge, but they do not

in the counter-example environments where the color statistics are

markedly different.

3.1 Model training and segmentation
performance

In both kinds of architectures (without and with Divisive

Normalization) the parameters of the nets are obtained via

supervised learning: the models are trained to minimize a measure

of the segmentation error over a set of images from the considered

original environments. In this case, the selected measure was the

Mean Absolute Error (MAE), which is maximised if, for each pixel,

the correct class is predicted with probability one and the other

classes have probability zero, and therefore lower MAE is better.

The final performance of the networks was measured using the

Intersection over Union (IoU) measure (Rahman andWang, 2016)

over the validation data, a subset of the 20% of the training images

that are not used in the training process. IoU takes into account the

predicted area and the real area for each class and how much they

intersect and therefore higher is better, with IoU ∈ [0, 1] . We train

each network during 200 epochs (each complete pass of the whole

training data) using Adam as the optimizer (Kingma and Ba, 2014)

and a batch size of 16 images. We keep the model parameters that

achieve higher IoU on the validation data, which we compute after

each epoch.

We trained six artificial systems performing image semantic

segmentation: 2 architectures × 3 environments. This includes

two biologically interesting cases (both architectures trained on

the naturally illuminated images under daylight source), and four

counter-examples: the ones trained in environments with non-

natural illumination (underwater) or spectrally flat reflectances

(achromatic images).

Given that the encoding part of the considered networks has

certain resemblances with the retina-cortex pathway (Jacob et al.,

2021), and the aforementioned biological inspiration of the divisive

normalization layer (Abrams et al., 2007; Hillis and Brainard,

2005), our U-nets have the ability to use color information to solve

segmentation. However, as other features (e.g., edges, shape, and

textures) may also contribute to the solution of the problem there is

no guarantee that these nets develop human-like tolerance to color

shifts. The counter-example case that consists of achromatic images

particularly was chosen to ensure that the networks trained in this

condition do not use color information at all.

We tested the performance of the considered nets (U-Net

and U-Net+DN) in the three environments where they were

trained (numbers in bold-face in Table 1). Moreover, we did

two extra tests in order to check the relevance of color in the

segmentation problem. To do so we considered the databases that

originally consisted on scenes under natural daylight illumination

(CityScapes and Pets). In particular, we removed the color

information in CityScapes, and we recovered the original color

information in Pets (numbers in light-face in Table 1).

To test each model we perform 300 realizations where we

randomly select 20 test images from their corresponding test set

and compute the IoU performance. Table 1 summarizes the results.

First, as expected results show that using the model with DN

layers generally improves the segmentation results (compare first

and second row of numbers in bold). Second, when comparing

the color segmentation importance, the most important factor

seems to be consistency with training, i.e., the models trained

with color images get worse when removing color information,

and the models trained with achromatic images get worse when

facing color images (compare columns in bold and light in the non-

underwater environments). However, if we compare the reductions

in performance, we see higher reductions in the color-trained

models tested with achromatic images (21% average reduction

in IoU) than in the achromatic-trained models tested with color

images (12% average reduction in IoU). This highlights that color

is certainly beneficial for segmentation.

In order to check the significance of the differences between

the performances seen in Table 1, we carried out a Mann-Whitney

U-test (Mann and Whitney, 1947). In this non-parametric test the

null hypothesis is that the distribution of the set of samples of a

variable is the same as the distribution of the samples of another
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FIGURE 4

Illustrative U-Net architecture for image segmentation. The blocks in blue represent regular convolutional layers, and the blocks in green represent

bio-inspired Divisive Normalization layers. Numbers by the layers indicate the number of features and black arrows represent the skip unions.

TABLE 1 Segmentation performance: test IoU results (mean ± standard deviation) of the models trained in the di�erent environments when performing

300 evaluations over subsets of the test images.

Training env. Color Natural Illum. Underwater Illum. Achrom. images

Test env. Color Achrom. Color Achrom. Color

U-Net 0.77± 0.02 0.54± 0.03 0.66± 0.05 0.77± 0.02 0.72± 0.04

U-Net + DN 0.78± 0.02 0.68± 0.02 0.70± 0.04 0.80± 0.02 0.66± 0.04

variable. Therefore, rejection of the null hypothesis implies that the

compared variables are significantly different, i.e. one is larger than

the other (Howell, 2013; Corder and Foreman, 2009). Table 2 shows

the U-statistic over the number of samples (the effect size, or the

proportion of pairs that support that items from group 2 are larger

than items from group 1) and the corresponding p-values for all

the different comparisons. We compared the IoU performance of

the no-DN vs the DN models within each training environment

(Table 2 top). We also compared the performance in the chromatic

vs the achromatic version of the datasets (Table 2-bottom). In all

the cases the null hypothesis was rejected (all p-values < 0.001),

meaning that all the differences are significant. It is important

to note that comparisons can be made only within each training

environment because, as stated in themodel definition, each dataset

has a different number of classes and intrinsic difficulty.

3.2 Tolerance to illuminant change in
segmentation networks

To test the tolerance to illuminant changes we evaluate the

segmentation performance of the different networks (trained with

the three different types of images and the two types of architecture)

with the color-shifted scenes. We do the evaluation 300 times with

subsets of the test images, following the same procedure we did to

obtain the results in Table 1. We compare the performance of the

models with images with spectral changes along the hue-saturation

plane with regard to their results on their training set from Table 1.

Then, we can define the tolerance/invariance region of a model as

the hue and saturation combinations where the results change less

than a certain threshold.

Figures 5, 6 show the variation of the segmentation

performance as a function of the change of saturation and hue

of the illuminant for the different architectures and the different

environments considered. It also shows the corresponding

tolerance regions for 3%, 5%, and 10% changes in performance with

regard to the training situation. Finally, Figures 5, 6 also show the

corresponding regions in the 1931 CIE xy diagram.

The gray level in the first row (zero saturation) of the saturation-

hue planes represents the IoU performance of the segmentation

network in the original scenes. The values of Table 1 are taken as

reference in each case. Then, darker or lighter values for other

illuminants correspond to lower or higher performance in the

image segmentation task with regard to its reference. In particular,

the curves in purple, orange, and green, represent variations of the

performance of 3%, 5%, and 10%, respectively, with regard to their

reference. Therefore, these curves also represent tolerance regions

in the chromatic diagram where the performance departs from the

original reference less than a certain threshold.

The specific size of the tolerance regions of course depends on

the (arbitrarily) selected threshold for the departure with respect

to the reference value. However, the fact that, given a threshold,

the scale of the region is fundamentally different for the different

environments is certainly relevant. Moreover, the (non-circular)

shape and orientation of the regions indicate that the segmentation

function learnt in a certain environment may imply anisotropies

of the robustness of the (artificial) visual system under changes of

illumination.

Chromatic diagrams in Figures 5, 6 display the root mean

square error (RMSE) distance (in chromatic coordinates) between

the mean 3% tolerance regions over the 300 iterations in the

artificial systems and the corresponding color discrimination

MacAdam ellipse in humans. For this comparison, the tolerance

region in humans for that specific chromatic location was obtained

by interpolating the parameters of the three closer ellipses out of

the 25 regions measured inMacAdam (1942). In the corresponding

(human and artificial) regions we took 20 points at uniformly

distributed angles and we computed the average distance between
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TABLE 2 Significance of the di�erences in segmentation performance: Mann-Whitney U-test statistic and p-values for the di�erent comparisons:

models (top), and achrom/color tests (bottom).

Training env. Color natural illum. Underwater illum. Achrom. images

Test env. Color Achro Color Achro Color

MW-stat (no-DN vs. DN) 0.70 0.9998 0.73 0.76 0.82

p-val (no-DN vs. DN) 1.1 · 10−16 1.2 · 10−99 1.7 · 10−22 4.4 · 10−29 5.9 · 10−43

Training env. Natural Illum. Achro illum.

Model U-Net U-Net+DN U-Net U-Net+DN

MW-stat (Achrom. vs. Color) 1.0 0.9998 0.90 0.99

p-val (Achrom. vs. Color) 1.1 · 10−99 1.3 · 10−99 1.1 · 10−65 2.9 · 10−99

FIGURE 5

Tolerance of segmentation performance to illuminant change for di�erent environments (regular U-Nets). The results of the natural, underwater, and

achromatic environments are represented in the top, middle, and bottom rows respectively. Gray level represents the segmentation performance

under di�erent illuminations with regard to the reference performance obtained for the original scenes. Darker values represent lower performance.

The curves in purple, orange and green, represent variations of the performance of 3%, 5%, and 10%, respectively. These curves define tolerance

regions for performance in the chromatic diagram. The RMSE values represent the distance between the average of these tolerance regions in the

artificial system and the corresponding tolerance ellipse in humans.
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FIGURE 6

Tolerance of segmentation performance to illuminant change for di�erent environments (U-Nets with Divisive Normalization). Same results as in

Figure 5, but for the architecture with Divisive Normalization.

the corresponding points at those angles, leading to the reported

RMSE value (in chromatic coordinates).

Results show an interesting alignment of the anisotropy of

artificial systems with human anisotropy but only for natural

scenes under daylight illumination. The counter-examples with

unusual color statistics lead to non-human tolerance regions

and anisotropies. In both counter-example environments, the

performance is more insensitive to the changes in illumination,

and this is particularly true for the architectures trained on images

with flat spectral reflectance (achromatic images). As a result, the

tolerance regions are substantially bigger for the same thresholds,

and the insensitivity is more isotropic.

There may be two causes for this effect. On the one hand,

the underwater scenes seem to have a wider color gamut with a

smaller peak in the probability of colors around the mean (see

scatter plots in the diagrams of Figure 1 and the corresponding

ellipses representing the covariance matrices). This wider spread

of colors (wider than in scenes in daylight illumination) would

explain the bigger tolerance to color change of the systems

trained in this unusual environment. On the other hand, the

segmentation systems trained on images of flat spectral radiance

may be insensitive to color just because (by construction of the

training set) their ability for segmentation has to be based on non-

chromatic features. Therefore, substantial changes of color should

not affect much their performance, leading to big (and isotropic)

tolerance regions.

The effect of the considered architectures in the size and

orientation of the sensitivity regions is secondary: although the

absolute performance of the networks equipped with Divisive

Normalization is better (see Table 1 and slightly bigger areas of
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FIGURE 7

Distances to MacAdam ellipses: Histograms of the RMSE errors

comparing the human MacAdam ellipses and the tolerance region

of the models for 300 realizations with test subsets.

the insensitivity regions), this has low impact on the anisotropy

depending on saturation and hue. The differences in the shape of

the tolerance regions depend more strongly on the different image

statistics rather than on the considered architectures.

To confirm the statistical significance of the results

mentioned above we display the distributions of errors with

the human discrimination ellipse and we perform non-parametric

Kolmogorov-Smirnov tests to check if these samples of errors come

from the same distribution or not. Figure 7 shows the histograms

of the RMSE between the tolerance region of the models and the

human MacAdam ellipse for the 300 realizations performed in the

evaluation.

The distances between the histograms of errors confirm that

the environment is the major factor in getting human-like ellipses,

and it is way more important than the explored variants of the

architecture. Of course, the 2-sample non-parametric Kolmogorov-

Smirnov tests also confirm that these big differences (basically

non-overlapping histograms for the different environments) are

significant, with p < 0.001, (see the test statistics and the p-vaues in

Table 3). The results of different architectures only introduce slight

shifts in the histograms, so this is clearly a secondary (less relevant

factor). In fact, the KS-tests reveal that differences in architecture

are not significant in the non-natural cases (underwater images

and achromatic images, in black and cyan, p > 0.001), but they

are for the natural images (in red, p < 0.001). The histograms

reveal that the significance of the difference between no-DN and

DN networks according to the KS-test for natural images does

not modify the fact that the environment is way more important

than the architecture to get human-like results. Interestingly, the

significance of the difference between the errors in the DN vs. no-

DN case for natural images means that in the ecologically sensible

situation, DN is important to increase alignment with humans, as

expected from the rationale suggested in Hernández-Cámara et al.

(2023b, 2024).

4 Discussion and conclusions

4.1 Summary of results

Artificial networks trained for image segmentation develop

human-like tolerance to changes in illumination (around the

white) when they are trained on natural images under daylight

illumination. Similarly to humans, these networks are more

tolerant to variations in the yellow-blue direction rather than in

the red-green direction: see the similarity between two-minima the

curve in the colored saturation-hue panel of Figure 2 and the shape

of the performance surfaces in the top panels of Figures 5, 6. This

anisotropy occurs both for regular U-Net architectures, Figure 5-

top row, and with architectures augmented with the biologically-

inspired Divisive Normalization, Figure 6-top row.

However, alternative environments with markedly different

image statistics (e.g., underwater scenes and achromatic scenes)

lead to systems in which the tolerance to color changes is not

aligned with human color discrimination (substantially bigger

insensitivity with lower anisotropy), Figures 5, 6-middle and

bottom rows.

4.2 Function, architecture, or just image
statistics?

The reported emergence of a human-like anisotropy in the

tolerance to color changes in artificial systems trained in a

natural environment with natural illumination means that image

segmentation (which is, at least partially, based on color) could be

the principle behind the development of the anisotropy observed in

humans for color discrimination.

However, not all the explanations can be attributed to the

specific segmentation function. First, lower-level functions that

involve local equalization of the color manifold, such as error

minimization and information maximization (Laparra et al., 2012;

Laparra and Malo, 2015; da Fonseca and Samengo, 2016, 2018),

also lead to this kind of asymmetry. See that the ellipses from the

local-PCA in Figure 1-left and middle (good for local equalization)

have qualitatively similar properties as the tolerance regions

that emerge in the segmentation networks. Second, more than

the function, it is the data distribution that may lead to the

observed asymmetry in the behaviour of the networks. In fact,

statistical analysis (Figure 7 and associated Kolmogorov-Smirnov

tests) shows that a natural color distribution is the major factor

in getting human-like ellipses. The following example connects a

strong physical constraint with a major asymmetry in the color data

that may explain differences in performance and discrimination.

If the spectrum of the sunlight at different times of the day can

be approximated by a black-body radiator (Malo and Jiménez,

2011; Jiménez and Malo, 2014) the manifold of natural colors

will be elongated along the Planckian locus in the 1931 CIE xy

diagram. This locus, for the white (Wyszecki and Stiles, 2000),

approximately has the orientation of the ellipse in Figure 1-left,

and the regions of Figures 5, 6 Top. This makes sense because

the natural dataset will have multiple examples of similar objects

with different illuminations along that (yellow-blue) direction. As
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TABLE 3 Significance of the di�erences of RMSE errors.

Natural illum. Underwater Achromatic

No DN DN No DN DN No DN DN

Natural illum. No DN - 0.79 0.9998 0.9992 1.0 1.0

DN - 1.0 1.0 1.0 1.0

Underwater No DN - 0.56 0.998 0.998

DN - 1.0 1.0

Achromatic No DN - 0.52

DN -

Natural illum. Underwater Achromatic

No DN DN No DN DN No DN DN

Natural Illum. No DN - 4.2 · 10−35 1.3 · 10−99 2.2 · 10−99 1.9 · 10−111 1.1 · 10−113

DN - 1.1 · 10−99 1.1 · 10−99 1.9 · 10−111 1.9 · 10−113

Underwater No DN - 0.01 8.2 · 10−111 4.4 · 10−113

DN - 1.9 · 10−111 1.1 · 10−113

Achromatic No DN - 8.9 · 10−5

DN -

a result, in order to obtain good segmentation performance, the

networks (of whatever architecture) have to be more invariant

to changes of illumination in that direction. Third, the counter-

examples of markedly different color statistics imply that the same

functional goal leads to very different tolerance regions.

Finally, the architecture selected to perform the image

segmentation does not seem to have a big impact on the

alignment of the asymmetries of humans and networks (see

histograms in Figure 7). In fact, the functions related to

information maximization and error minimization reduce to local

PCA (Laparra et al., 2012), and hence they are independent

of the architecture. In Figure 1 we see that local PCA leads to

regions which are similar to the tolerance regions found in the

different image segmentation networks when trained in similar

environments, see Figures 5, 6. However, there is a small, but

statistically significant difference (histograms in red in Figure 7

with hypothesis-zero rejected by KS-test with p < 0.001) that

suggests that the Divisive Normalization is important to improve

the alignment with humans in color discrimination in the

ecologically significant case. This is consistent with the suggestions

done in Hernández-Cámara et al. (2023b, 2024).

4.3 Conclusions

Artificial networks for image segmentation trained in natural

environments with natural illumination exhibit human-like

tolerance to changes in illuminant, aligning with human color

discrimination. This is the first report on the emergence of the

alignment of image segmentation networks with human color

discrimination. However, in environments with markedly different

image statistics, the tolerance to color changes in these artificial

systems deviates from human color discrimination. This suggests

that the regularities of the environment are much more significant

in shaping the behaviour for color discrimination than the

architecture of the image segmentation network. This is in contrast

with other chromatic properties, e.g., color induction (Gomez-

Villa et al., 2020) or color CSFs (Li et al., 2022), where the

architecture strongly modifies the human-machine similarities.

In fact, in the discrimination case considered here, alternative

functional principles such as error minimization or information

maximization (Laparra et al., 2012; Laparra and Malo, 2015;

da Fonseca and Samengo, 2016, 2018) which only depend on the

data (e.g., local PCA), also lead to tolerance regions of human-like

orientation if applied in the proper environment. In conclusion,

the anisotropy in human color discrimination is also present

in segmentation neural networks. This is probably due to the

adaptation of (both natural and artificial) neural networks to the

color data distribution.
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