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Operational environments are characterized by a range of psycho-physiological 
constraints that can degrade combatants’ performance and impact on their long-
term health. Neurofeedback training (NFT), a non-invasive, safe and effective means 
of regulating brain activity, has been shown to be effective for mental disorders, 
as well as for cognitive and motor capacities and aiding sports performance 
in healthy individuals. Its value in helping soldiers in operational condition or 
suffering from post-traumatic stress (PTSD) is undeniable, but relatively unexplored. 
The aim of this narrative review is to show the applicability of NFT to enhance 
cognitive performance and to treat (or manage) PTSD symptoms in the military 
context. It provides an overview of NFT use cases before, during or after military 
operations, and in the treatment of soldiers suffering from PTSD. The position of 
NFT within the broad spectrum of performance enhancement techniques, as well 
as several key factors influencing the effectiveness of NFT are discussed. Finally, 
suggestions for the use of NFT in the military context (pre-training environments, 
and during and post-deployments to combat zones or field operations), future 
research directions, recommendations and caveats (e.g., on transfer to operational 
situations, inter-individual variability in responsiveness) are offered. This review is 
thus expected to draw clear perspectives for both researchers and armed forces 
regarding NFT for cognitive performance enhancement and PTSD treatment 
related to the military context.
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1 The cognitive demands of the military in the 
operational environment

During sustained operations, deployments to combat zones, and basic training, the soldier, 
regardless of his service, Army - Air Force - Navy, may be exposed to a range of operational, 
environmental and physiological constraints likely to impair their operational capability, 
degrade their health and, ultimately, increase the risk of Posttraumatic stress disorder (PTSD). 
He/she may be exposed to extreme demanding operational tasks (physical and/or cognitive 
load using robotics, information technologies, artificial intelligence, for example) with high 
levels of anxiety and stress, and possibly severe environmental conditions with limited rest 
time to recover and limited sleep, and this with unpredictability (Trousselard et al., 2009; 
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Sauvet et al., 2014; Good et al., 2020; Beckner et al., 2023). Operational 
deployments generally involve international travel, and Air force pilots 
or Navy submariners for example, may cross several time zones during 
the course of a single mission, which can also impact operational 
performance (Rabinowitz et al., 2009; Guo et al., 2020). Aircraft pilots 
in particular, and even Air Force « Drone » operators for several years 
now, are required to carry out multiple tasks, which can considerably 
increase their mental workload (Svensson et al., 1997; Bryant-Lees 
et al., 2021). For military personnel, the consequences of exposure to 
operational stresses go beyond a reduction in physical performance 
and translate into cognitive fatigue, which is subjectively associated 
with an increased sense of fatigue, reduced motivation, and a 
perceived lack of energy (Weeks et al., 2010; Miller et al., 2011; Main 
et  al., 2023). Similarly, military units belonging to specific global 
intelligence organizations, such as the U.S. Air Force Distributed 
Common Ground Station (DGCS) which provides real-time 
situational awareness through the visual and technical intelligence 
needed to make strategic, operational, and tactical decisions on the 
battlefield. These units may be subject to higher levels of emotional 
exhaustion and psychological distress than those estimated for other 
military communities (Chappelle et al., 2019). This is how armies 
defined the concept of multi-domain operations: soldiers will operate 
at the nexus of a myriad of real-time data and information sources and 
face increasing pressure to multitask, prioritize, assess, decide, and act 
as opportunities and threats arise (U.S. Army Training and Doctrine 
Command, 2018; Herlihy, 2022). In addition, the weapons systems of 
the future will induce an excessively high cognitive load, requiring the 
cognitive abilities needed to manage several devices at once or to 
interact with brain-machine interfaces. Soldiers will have to process 
and adapt to large amounts of information, identify threats and 
respond to them, often in noise and with alterations of the normal 
wake/sleep cycle or sleep deprivation. It is therefore essential for 
military personnel to maintain effective cognitive performance in 
tasks that require sustained attention or concentration, as well as rapid 
information processing (Brunyé et al., 2020, 2022). In such a military 
context, leaders have a decisive impact on setting up and planning 
missions, promoting adequate preparation of combatants at strategic, 
operational, and tactical levels, improving sleep and fatigue 
management, and optimizing cognitive human potential on the 
battlefield (Billing et al., 2021; Teyhen et al., 2021).

The cognitive impairments described in laboratory scenarios of 
sustained military operations or during extended military training 
concern simple reaction time, vigilance, working memory, and 
reasoning (Lieberman et al., 2006, 2009; Vrijkotte et al., 2016; Beckner 
et  al., 2021; Tait et  al., 2024). Lieberman et  al. (2006, 2009) 
demonstrated that cognitive function declined more extensively and 
rapidly than physical performance in U.S. Army officers from an elite 
unit during simulated combat with multiple stressors, with substantial 
degradation in visual vigilance, choice reaction time, and short-term 
memory, comparable to those in a field study conducted for an 
equivalent period of time in uncontrolled conditions. In addition, 
there is interindividual variability in the deterioration of cognitive 
functioning as a result of exposure to extreme environments which 
depends on the military task demands and the performance level 
(Paulus et al., 2009). The military tasks may involve storing, retaining, 
recalling, recognizing, and manipulating information, as well as 
planning, problem-solving or following goal-directed behavior. The 
degree of cognitive deterioration may also be affected by variables 

such as acclimatization to the environment, level of personal arousal 
and motivation (Martin et al., 2019).

Therefore, for several decades, a number of armed forces, most 
notably the U.S. Army, have been involved in research and 
development directly targeting cognitive performance enhancement, 
by seeking to improve attention and memory, situational awareness, 
decision-making and emotion regulation (Kelley et al., 2019; Brunyé 
et  al., 2020, 2022). In the context of military operability, 
neuroenhancement is essentially pharmacological and involves the 
non-medical use of several stimulants, including caffeine, 
amphetamines and modafinil. Several of these show promise for 
temporary arousal and alertness, and can improve cognitive 
performance in soldiers under conditions of sleep restriction and 
deprivation (Brunyé et  al., 2020). However, despite numerous 
publications and a high level of validation, the use of performance-
enhancing drugs has been known to contribute to dependence, abuse, 
individual variability, and side effects (Marazziti et al., 2014). Thus, 
over the last decade, research teams have focused on studies regarding 
the effectiveness of neurofeedback training (NFT) to regulate brain 
activity and thereby to modify cognitive performance and behavior in 
healthy adults, and to help treat symptoms in PTSD patients 
(Gruzelier, 2014a; Navarro Gil et al., 2018; Yeh et al., 2021; Hong and 
Park, 2022; Uslu and Vögele, 2023). Neurofeedback training has been 
particularly studied for sports performance (Gong et al., 2021; Rydzik 
et al., 2023). The aim of this narrative review is to demonstrate the 
relevance of NFT for cognitive performance in the military context 
(pre-training environments, and during and post-deployments to 
combat zones or operations) and the related-PTSD risk.

2 Neurofeedback training for health 
and performance

2.1 NFT definition

Neurofeedback training (NFT) is a special case of brain-computer 
interface (BCI) providing real-time feedback on which individuals 
train to gain voluntary control of their brain activity through operant 
conditioning. Thus, individuals can learn to modify their brain activity 
through trial and error (Nowlis and Kamiya, 1970). This is a 
non-invasive, non-pharmacological method that records the electrical 
activity of an individual’s brain, measured by electroencephalography 
(EEG). It is an inexpensive and practical technique for training, 
conditioning and/or learning the self-regulation of brain waves (i.e., 
alpha, beta, alpha/theta, delta, gamma, and theta; Hammond, 2011). 
NFT is based on a closed-loop paradigm composed of four steps: (1) 
acquisition of neural data via EEG (typically 2 or 4 electrodes), (2) real 
time analysis of EEG signal to extract features of interest such as 
frequency or power from the frequency range (alpha, beta, delta, 
theta, and gamma) or a combination (a ratio) of these, (3) sensory 
feedback (on a visual, auditory or/and tactile modality) sent to the 
subject, depending on the fluctuation of the trained EEG parameter, 
(4) subject’s attempt to voluntarily take control of the sensory feedback 
(Sitaram et al., 2017). As an example, an interesting brain parameter 
(see section 2.2 for further discussion of the different brain 
parameters) is Sensory Motor Rhythm (SMR, ~12–15 Hz over the 
sensorimotor cortex), which is known to be related to states of calm 
and focused attention and has been used to improve shooting 
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performance (Gong et  al., 2020). A typical closed-loop paradigm 
would be  an image whose contrast levels are modulated by SMR 
amplitude (steps 1–3), with higher contrasts displayed as SMR 
amplitude increases. The subject’s objective is to find a mental strategy 
(step 4) to maintain the higher contrast level, reflecting an increase in 
SMR amplitude (for more details on closed-loop methods: 
Bagdasaryan and Le Van Quyen, 2013; Marzbani et  al., 2016; 
Enriquez-Geppert et al., 2017; Omejc et al., 2019).

Strategies can be very varied and depend on a number of factors. 
They obviously depend on the individual, but also on the EEG 
parameter to be neurofeedback-trained. For example, when training 
with SMR neurofeedback (frequency range 12 to 15 Hz), motor 
imagery can be suggested to the subject. Similarly, to decrease alpha 
waves (8–12 Hz), a state of relaxation is recommended, and conversely, 
to increase alpha waves, positive emotions are suggested.

By trying different strategies, a positive reinforcement or 
punishment stimulus is provided by the feedback and allows the 
subject to adapt (Sakurai and Song, 2016). For example, if the aim of 
EEG-neurofeedback is to increase the upper alpha amplitude and the 
subject adopts a strategy that allows him/her to have an amplitude 
above threshold, a positive reward is sent to the subject in the form of 
a pleasant sound (i.e., auditory feedback) or a clearer image (i.e., visual 
feedback). This reward can be delivered by different modalities, the 
most commonly used being visual, but also auditory and tactile as well 
as multimodal feedback (Gong et al., 2020; Omejc et al., 2019; Fleury 
et  al., 2020). Conversely, if the subject does not find strategy, a 
punishment is sent in the form of an unpleasant sound, or visually 
(e.g., a square on a screen which turns red rather than green). 
Multimodal approaches have been shown to offer greater benefits than 
single-modality feedback, but the selection of an optimal modality 
remains a key topic of discussion in the literature, with specific 
modality choices adaptable to various brain parameters (Enriquez-
Geppert et al., 2017; Vernon et al., 2003). Recent research efforts have 
focused on developing feedback modalities designed to enhance user 
motivation and improve learning outcomes beyond what is achievable 
with conventional 2D feedback. For example, multisensory animated 
scenarios (Cohen et al., 2016) and immersive virtual environments 
(Berger et  al., 2022) have been shown to significantly facilitate 
learning processes.

It has also been suggested that learning ability in alpha 
neurofeedback training is predicted by resting alpha amplitude 
measured before training (Wan et al., 2014). In general, it has been 
suggested that NFT could be used to improve attentional processing 
through brain plasticity (Egner and Gruzelier, 2001; Ros et al., 2010; 
Davelaar et al., 2018). As the neural mechanisms underlying successful 
neurofeedback training still remain unexplained, Davelaar et  al. 
(2018) demonstrated, through a theorical approach using 
computational methods from neuroscience, that it is precisely the 
striatal-thalamic and thalamo-cortical pathways that undergo synaptic 
modification governing the topographical and frequency specificity of 
learning. This theorical approach of neurofeedback learning also 
involves interoceptive homeostasis which may aid/reinforce learning 
though a probable interaction between the insula and the 
dopaminergic area of the midbrain.

However, despite the increasingly widespread use of 
neurofeedback technique, and although the choice of EEG frequency 
band and selection site for the EEG recording are well established, 
certain aspects of NFT methodology are not standardized, such as the 

feedback modality (auditory and/or visual), and the training 
conditions in terms of number of sessions, duration of a session or 
number of training blocks, and spread of sessions over time 
(Hammond, 2011; Marzbani et al., 2016; Mirifar et al., 2017). All these 
conditions also depend on the subject of interest, either for therapeutic 
purposes for defined pathologies, or for athlete or military 
performance. What’s more, whatever the success of NFT, in many 
cases its effectiveness often varies according to the individual, with a 
significant proportion of subjects being unable to control brain 
metrics even after multiple training sessions (responder/
non-responder notion). These subjects are generally considered 
“non-learners,” as opposed to “learners” (Alkoby et al., 2018). So, in 
2020, neurofeedback researchers proposed a consensus-derived 
checklist that aims to improve reporting and experimental design 
standards in the field (Ros et al., 2020).

2.2 Areas of NFT application

Kamiya’s NFT experiment in the late 1960s, which first described 
a person’s ability to learn to control the electrical activities of the brain 
by voluntarily increasing the amplitude of EEG alpha band oscillations 
(8–12 Hz), revealed a positive psychophysiological impact as subjects 
reported states of relaxation and pleasant feelings (Kamiya, 1969). 
Thereafter, several studies developed the connection between alpha 
oscillation and cognitive processes, notably attention and inhibitory 
control and timing (Klimesch, 1999, 2012; Klimesch et al., 2007). At 
the same time, the use of different NFT protocols (sensory motor 
rhythm, SMR; alpha amplitude; alpha/theta ratio) has been shown to 
reduce stress and anxiety in healthcare professionals such as 
ophthalmic surgeons practicing surgical techniques in simulation 
conditions (Ros et al., 2009), as well to improve the performance of 
sports and arts professionals (Gruzelier, 2014a, 2014b, 2014c). In this 
sense, a single session of SMR NFT has been shown to benefit anxiety 
(using psychometric measures of mood) and salivary cortisol levels 
(Gadea et al., 2020). Regarding NFT based on EEG alpha activity, 
Ossadtchi et  al. (2017) demonstrated that the alpha power rose 
because of an increase in the incidence rate of alpha episodes, whereas 
the amplitude and the duration of alpha oscillations remained 
unchanged. These authors called for more investigation into discrete 
EEG features as an approach to improve neurofeedback efficiency and 
explore and quantify the neurofeedback-induced effects.

Some previous data in the literature have suggested that NF could 
be a promising alternative or complementary therapeutic option to 
stimulant treatment for the symptoms of Attention Deficit 
Hyperactivity Disorder (ADHD), but this still remains a matter of 
debate (Riesco-Matías et al., 2021; Chiu et al., 2022; Rahmani et al., 
2022). In a recent meta-analysis, Chiu et al. (2022) indicated that 
surface electroencephalographic neurofeedback has beneficial effect 
on sustained attention in ADHD, with limited effect on selective 
attention, and superior effect of beta wave enhancement than of theta/
beta ratio reduction or modulation of slow cortical potential. On the 
basis of some published work showing the effectiveness of NFT in 
stabilizing or even increasing attentional performance in ADHD 
patients (Deiber et al., 2020; Chiu et al., 2022), the idea has been 
floated of using it to improve peak performance in healthy subjects.

Behavioral positive effects of NFT (later called “transfer effect,” 
i.e., maximum transfer of information that increases neuronal 
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efficiency) in healthy subjects have been observed on vigilant attention 
and sustained attention with decreased reaction times on the 
Psychomotor Vigilance Task (PVT; through fNIRS-NFT; Pamplona 
et al., 2020) and on the Stroop’s test (through EEG-NFT on alpha 
power magnitude; Berger and Davelaar, 2018). Not only response 
speed (reaction times) can be  enhanced, but also the accuracy of 
information processing and executive control components of 
attentional capacities, as it has been shown at the Continuous 
Performance Task (CPT) measuring visual attention (through 
EEG-NFT on SMR activity; Vernon et al., 2003) and at the Attention 
Network Test (ANT) measuring the three attention networks, the 
alerting, orienting and executive components (through EEG-NFT on 
frontal-midline theta activity; Wang and Hsieh, 2013). Relative to 
NFT based on EEG alpha neuromodulation, studies evidenced 
positive effects of training on upper alpha frequency amplitude for 
several cognitive capacities (Zoefel et al., 2011; Enriquez-Geppert 
et al., 2017; Li et al., 2023). After five sessions of NFT over 1 week, 
Zoefel et al. (2011) showed enhanced performance in two tests of 
mental rotation performance which illustrated different stages of 
spatial thinking [the perceptual stages (perceptual processing, 
identification and discrimination of stimuli, identification of 
orientation)], the rotation process itself (mental rotation, judgement 
of parity), and decision processing stages (response selection, 
execution). A single session of individual upper alpha enhancement 
(25 min) improved performance in a mental rotation task, as it did in 
sham-controlled subjects, but the improvement was more marked for 
the NF group (Escolano et al., 2011). In a recent study, Li et al. (2023) 
showed improved performance in a mental rotation test and the 
N-Back working memory test after 2 days of NFT based on Individual 
Alpha Frequency (IAF) in both the neurofeedback and sham groups, 
however, the improvement in the neurofeedback group was more 
pronounced and correlated with the upregulation of IAFs. Even more 
recently, a long period (4 weeks) of auditory alpha NFT successfully 
induced alpha wave and improved short-term memory of healthy 
subjects (Takabatake et al., 2021).

In sports training, unlike traditional training which aims to 
strengthen endurance and speed, NFT mainly focuses on the mental 
state. Thus, a properly planned and carried out NFT by athletes has 
been shown to improve many variables and their sports performance 
(reduction in stress and anxiety levels, increase in the ability to self-
control physiological factors, improvement in behavioral efficiency 
and improvement in reaction time and decision-making; Mirifar et al., 
2017; Brito et  al., 2022; Rydzik et  al., 2023). The various athletes 
concerned were soccer goalkeepers, archers, golfers for visual and 
spatial attention performances, elite swimmers for anxiety, etc. In 
2020, Gong et al. evidenced a significant improvement in the shooting 
performance after SMR NFT (6 sessions of 25 min over 3 weeks) 
whereas there was a decrease after EEG alpha NFT in non-professional 
shooters. Thereafter, from the perspective of user experience, the same 
author summarizes NFT’s concept, process, and research methods and 
puts forward an SP–NFT classification method for improving sports 
performance (Gong et al., 2021).

2.3 NFT vs. other technologies

Achieving the best athletic/military operational performances 
depends not only on highest physical fitness level (strength, 

endurance) and the corresponding specific training, but also on the 
improvement of the speed and accuracy of decision-making abilities. 
Research into cognitive enhancement for military purposes is not new, 
and numerous studies have explored different approaches, from the 
more invasive, using psychoactive stimulants for example, to 
non-invasive brain stimulation (NIBS) systems, including transcranial 
direct current stimulation (tDCS) and transcranial magnetic 

stimulation (TMS), to the more natural methods of self-improvement, 
such as meditation or cardiac coherence (Kelley et al., 2019; Figure 1).

In contrast, only a few studies, cited later in this review, have 
investigated the interest of NFT for improving cognitive performance 
in the military operational context. NFT is based on brain monitoring 
devices, enabling users to receive (sensory) feedback on their own 
neural activities in real-time. These devices are very minimally 
invasive, of the same order as NIBS, and halfway with natural self-
improvement techniques.

As with NIBS, whose use was primarily for therapeutic purposes 
aimed at restoring impaired brain function, there is a growing body of 
scientific literature on the use of NFT for self-improvement and 
performance. Nevertheless, there are crucial differences between NFT 
and NIBS. Firstly, the main difference lies in the involvement of 
subjects in the use of the technique. NIBS relies on passive brain 
stimulation to alter neural firing (TMS) or excitability (TES, tDCS). 
Although NIBS are effortless and painless and have an exciting 
potential role in modulating brain activities to increase cognitive 
function in a military context, consent, and acceptance to receive 
magnetic or electrical stimulation remains a major ethical issue 
(Feltman et al., 2020). On the contrary, NFT requires participants’ 
voluntary effort to control their own brain activity by interacting with 
playful video or audio games. This offers an important advantage over 
NIBS by avoiding problems of consent, as the user’s agency is 
necessary to effectively practice NFT. Secondly, NIBS are expensive 
(especially TMS), currently non-portable and require expertise, and 

FIGURE 1

Efficiency-invasiveness relationship of different brain training 
technics. The efficacy-invasiveness relationship for several cognitive 
training technologies and methods described in the literature.

https://doi.org/10.3389/fpsyg.2024.1412289
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Jacques et al. 10.3389/fpsyg.2024.1412289

Frontiers in Psychology 05 frontiersin.org

the question of transferability of favorable cognitive effects from the 
lab to real-world tasks is still open (Feltman et al., 2020). In contrast, 
NFT devices based on EEG and near-infrared spectroscopy (NIRS) 
have a great portability for use in the field or at home, and 
competitively priced for potential mass distribution to armed forces.

A plausible rationale of the added value of NFT over natural self-
improvement methods (meditation), is the lack of feedback and 
meta-feedback during the learning process of the latter. Indeed, the 
NFT principle relies on the occurrence of real-time feedback, 
reflecting the on-going brain signal fluctuations and by extension the 
user’s instantaneous performance in his or her ability to voluntarily 
modulate this neural activity. In addition, meta-feedback are given 
throughout a NFT session, divided into short blocks of active 
training, informing about user’s progression. At the opposite of 
meditation-like technics, these features of NFT make it possible to 
objectify and accelerate the learning process of voluntary modulation 
of neural activity. As a result, in recent years, there has been growing 
interest in the use of NFT to increase cognitive capacities, primarily 
in the field of expert sports performance, but also for military 
operational readiness.

3 NFT: interest for the military 
performance and health

3.1 Interest for performance in the 
operational environment

Three non-exclusive objectives are sought when considering a 
person’s ability to achieve his or her goal, whether in sporting 
competitions or military operations: maintain/improve performance, 
strengthen resilience in the face of adversity, and optimize recovery of 
cognitive processes. As mentioned in the previous sections, there are 
many cognitive functions trainable with neurofeedback which are of 
interest insofar as they are limiting factors for performing a huge 
number of complex (military) tasks, including attentional capacities, 
inhibition, working memory, emotion regulation and stress/anxiety 
management (Blacker et al., 2019). The literature is fairly broad in 
considering that NFT is beneficial for several components of 
attentional function (Gruzelier, 2014a, 2014b, 2014c), while there is 
no certainty about efficacy on executive function abilities (Gordon 
et al., 2020; Viviani and Vallesi, 2021).

In recent years, we  have seen the emergence in the military 
context not only of a human-human team, but also of human-machine 
cooperation, which has rapidly evolved into a new mode of combat 
(Stowers et al., 2021). Such a hybrid team provides a combination of 
human decision making and machine information sharing chain, with 
a high degree of cognitive demand. Of note, cooperative behaviors 
between several persons to achieve shared objectives are correlated 
with a neurophysiological phenomenon described as inter-brain 
synchrony (IBS). IBS reflects a higher coherence between brain 
electrical activities in a specific frequency range and is thought to 
underlie higher group performance during a complex task such as 
landing an aircraft or in-flight refueling (Toppi et al., 2016). In a recent 
review, Lu et al. (2022) evidenced beneficial effects of transcranial 
electrical stimulation for military pilots to improve their teamwork. 
To date, no studies using NFT have been conducted on group 
performance, although it has been shown that IBS can be achieved 

with neurofeedback (Müller et al., 2021). These converging results 
make NFT a very promising tool for military skills requiring a higher 
level of cognitive functioning. When it comes to any type of training 
(cognitive in this case), the notion of transfer to performance in more 
ecological (or operational) situations is crucial and still the subject of 
debate (Blacker et al., 2019), although there is a growing literature on 
the transfer of NFT to sports performance (Mirifar et al., 2017; Rydzik 
et  al., 2023), or to ecological situations such as driving (Balconi 
et al., 2019).

To our knowledge, there are no studies on the effects of NFT on 
soldiers’ cognitive performance for military-specific task performance 
or during operational settings, although it is a technique they could 
theoretically use at various stages of their military activities to improve 
operational efficiency. The operational settings include, but are not 
limited to, training environments, field operations, and deployment to 
combat zones (Kelley et al., 2019). Thus, the aim of this section is to 
propose a conceptual framework for the use of NFT in the Armed 
forces (Figure 2).

The simplest use case to consider for NFT might be  in the 
operational training phase of soldiers, including the training of young 
recruits, bearing in mind the notion of motor performance. A recent 
meta-analysis indicated that there is a dose–response gradient 
between NFT and improved motor performance, and that NFT of 
more than 1 week and more than 125 min of cumulative training time 
would be recommended to improve motor performance (Onagawa 
et al., 2023). Thus, one study reported that an SMR NFT protocol, 
fifteen 60-min sessions over the course of 5 weeks with three sessions 
per week, improves rifle shooters’ performances (Rostami et al., 2012). 
Another study also reported enhancement of the level of attention 
after 20 NFT sessions oriented towards strengthening the beta 
frequency, in students at the Military University of Technology, who 
are professional soldiers (Mikicin et  al., 2018). When it comes to 
preparing soldiers, this phase is also conducive to the development of 
resilience, i.e., a person’s ability to maintain integrity and performance 
in face of adversity. Thus, in a recent study, Keynan et  al. (2019) 
developed an NFT program modulating amygdala activity and aimed 
at improving stress regulation in a large cohort of healthy soldiers 
undergoing stressful military training. They found greater emotional 
recognition and better performances at the emotional Stroop, which 
indicates that NFT participants were more able to deal with stress 
relative to control non-NF. In a follow-up fMRI (functional magnetic 
resonance imaging)-NF, they also evidenced greater amygdala blood-
oxygen-level-dependent downregulation and amygdala–ventromedial 
prefrontal cortex functional connectivity following the amygdala 
neurofeedback training relative to control non-NF. This study paves 
the way for the use of NFT to improve soldier resilience, as its findings 
suggest that trained soldiers faced with adverse events during 
operations will cope better with stress, limiting the decline in their 
operational performance on the battlefield. Finally, these authors 
suggest that their NFT of the amygdala could prevent soldiers from 
developing trauma-related psychopathologies, in the hope of reducing 
the incidence of PTSD. This has been followed by a proof-of-concept 
NFT study aimed at down-regulating limbic activity in non-military 
PTSD patients, leading to immediate clinical improvement 
(Fruchtman-Steinbok et al., 2021).

When considering the training phase, it is obviously necessary 
to achieve the highest, most robust operational performance at the 
end of this phase, but also to optimize it, as this is a crucial step 
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in guaranteeing the availability of prepared soldiers in a context 
of potentially low renewal capacity. In this respect, it is worth 
introducing NFT to improve attention, working memory as well 
as stress regulation, in order to speed up the process of learning 
military skills. A more tricky use of neurofeedback principle (i.e., 
self-control of brain oscillations based on a sensory feedback) 
could be concomitantly with an ongoing specific military task to 
increase and/or to maintain task-related performances. It has thus 
been demonstrated that an NFT intervention during concomitant 
physical training sessions in swimmers can optimize psychomotor 
activities (Mikicin et al., 2020). The pioneering work of Faller and 
colleagues demonstrated the feasibility of a real-time modulation 
of arousal via neurofeedback during a simulated aerial navigation 
(boundary avoidance task) in virtual reality (Faller et al., 2019). 
After identifying EEG correlates of stress-related over-activation 
of anterior cingulate cortex (ACC), which is associated with 
hyper-arousal and poorer performances, the authors asked healthy 
subjects to moderate ACC activity (via an auditory feedback) 
when it exceeds a threshold during the boundary avoidance task. 
They found an increase in performance (more time spent on 
flight) for subjects who managed to voluntarily modulate ACC 
activity while doing the task, suggesting that (i) self-control of 
brain activities is feasible simultaneously with a cognitively-
demanding task, (ii) the dual task (neurofeedback + boundary 
avoidance task) does not decrease behavioral performances and 
(iii) this strategy should be further explored with more ecological 
situations or operational tasks. In a recent study, a cognitive 

training coupled with neurofeedback using NIRS (CT-NF) led to 
increased activity in the dorsolateral prefrontal cortex and has 
higher beneficial effects on episodic memory, working memory 
and attention compared to cognitive training salone (CT) and 
active control (ACT; Nouchi et al., 2021). A few years ago, Blacker 
et al. (2019) reported that neurofeedback combined with cognitive 
training could boost performance in a number of military-
relevant scenarios (Blacker et al., 2019).

At the opposite of hyper-arousal, one of the main constraint 
faced by military in operation is mental fatigue, mainly due to a 
poor sleep quality/quantity leading to sleep debt (sleepiness). A 
previous study of our lab detected low-vigilance states during real 
flights in military French pilots, using a miniaturized single EEG 
channel recording device associated to an automatic algorithm 
(Sauvet et al., 2014). Interestingly, a preliminary study has designed 
a NFT based on the modulation of (alpha + theta)/beta ratio that 
can reduce daytime drowsiness (Monseigne et al., 2019). Another 
approach could be  to improve and optimize soldiers’ sleep, thus 
reducing risks of sleepiness during their operations. NFT 
interventions to enhance sleep of healthy participants revealed very 
few benefits (mainly on sleep spindles quantity and subsequent 
memory consolidation capacities; Berner et al., 2006; Hoedlmoser 
et al., 2008), suggesting little to no impact of NFT on normal sleep. 
However, the extensive literature on the positive effects of NFT on 
sleep parameters in patients with insomnia or ADHD (Hammer 
et al., 2011; Arns and Kenemans, 2014) leaves room for possible 
improvements in degraded sleep situations, with further work on 

FIGURE 2

Neurofeedback training use-cases and intended effects as a function of operational context. Ops: military operation. Neurofeedback training use cases 
and expected effects according to the military operational (Ops) context (i.e., pre-, during, and post-).
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the use of NFT to improve soldiers’ sleep in operational 
environments needed.

Finally, in the military context, NFT might be not only used before 
(training environments) and during military operations but should 
also be  considered after a mission for recovery purposes. In this 
respect, NFT targeting stress after a military operation seems 
particularly interesting because of its ability to improve emotion 
regulation (Keynan et al., 2019) and to decrease anxiety and cortisol 
levels (Gadea et al., 2020).

Although NFB can be  performed using fMRI or fNIRS, 
EEG-based systems are clearly most suitable for operational use in the 
field. Consumer-grade EEG wearables are becoming more and more 
numerous and of better quality, with the advantage of requiring little 
expertise thanks to the advent of dry electrodes. EEG recordings can 
be made with laptops or even smartphones, leaving great opportunities 
to provide real-time feedback outside of the laboratory. Some work 
has provided interesting information on the combination of EEG-NFB 
and the use of Virtual Reality (VR) headsets (Faller et al., 2019; Berger 
and Davelaar, 2018; Berger et al., 2022), increasing the portability and 
immersive capabilities of neurofeedback training. However, given the 
practical aspects of NFB training, further work is needed to better 
specify the NFB protocols to follow, in terms of intensity, duration and 
number of training sessions, in based on desired outcomes (whether 
optimal performance or symptom improvement).

3.2 Interest in the treatment of 
pathologies-related to the military context

Numerous studies have shown that the stressful environment 
surrounding the military, mainly that of combat operations, is 
negatively associated with the performance of relevant military skills, 
and increased risk of brain disorders. Posttraumatic stress disorder 
(PTSD), mild traumatic brain injury (mTBI), chronic pain, and the 
associated sleep disturbances, are highly prevalent in military 
personnel and veterans (Moore et al., 2020; Oberman et al., 2020; 
Saguin et al., 2021). In the military operational context, the increased 
risk of TBI can be due to falls, car accidents or violent impacts, and 
can be  caused by shock waves induced by explosive weapons, 
including improvised explosive devices (IED) and heavy munitions 
firing, the majority of TBI being classified as mild (mTBI; Kim et al., 
2023). All these brain disorders linked to military operations can have 
a negative impact on military performance. Indeed, people with mTBI 
often report acute symptoms such as dizziness, nausea, difficulty 
sleeping, diminished attention, amnesia, or headaches, as well as other 
cognitive deficits such as memory acquisition, slowed processing 
speed, multitasking problems, loss of train of thought and overall 
cognitive functioning (Oberman et al., 2020). On the other hand, 
PTSD, a debilitating psychiatric disorder that can develop after 
exposure to trauma, involves alterations in cognition and mood 
(negative beliefs and expectations, difficulty concentrating and 
inability to experience positive emotions), as well as alterations in 
arousal and reactivity (aggression, destructive behaviour, 
hypervigilance, and sleep disturbances; American Psychiatric 
Association, 2013).

Several studies have shown that NFT can be useful for patients with 
PTSD (Gray, 2017; Nicholson et al., 2020; Hong and Park, 2022; Askovic 
et  al., 2023) and TBI (Reiter et  al., 2016), resulting in symptom 

improvement and, when studied, normalizing aberrant neural dynamics, 
but results specifically for military sufferers are limited. With respect to 
brain activity among persons with PTSD, alpha-rhythm reductions have 
been associated with PTSD symptoms, particularly those of chronic 
hyperarousal (Ros et al., 2014; Nicholson et al., 2020). In a preliminary 
double-blind sham-controlled randomized trial, Nicholson et al. (2020) 
demonstrated for the first time that EEG-NFB based on the alpha-
rhythm over 20 weeks led to reductions on PTSD severity scores as well 
as increased rates of PTSD remission. Furthermore, they showed that the 
aberrant patterns of default-mode network (DMN) and salient networks 
(SN) connectivity detected in PTSD patients at baseline (compared to 
healthy controls) tended to normalize after NFB treatment. In a second 
study, Nicholson et al. (2023) confirmed these preliminary findings and 
further showed that at the three-month follow-up assessment, 60.0% of 
participants in the NFB experimental group no longer met the diagnostic 
criteria for PTSD. In the military population, as early as Peniston and 
Kulkosky (1991) evidenced that alpha-theta NF (8 sessions of 30 min) 
therapy significantly reduced anxiety-induced traumatic recurring 
nightmares/flashbacks in Vietnam theater veterans with combat-related 
PTSD and reduced the psychotropic medications. Zotev et al. (2018) 
showed that real-time fMRI training of amygdala reduces the PTSD 
severity scale, and symptoms of avoidance and hyperarousal in veterans 
with combat-related PTSD. The NFT results for PTSD therapy, some of 
which were cited above and targeted at the soldier, prompted a Comment 
from Young (2019) on the specific interest for soldiers. A recent study 
including veterans and civilians with chronic PTSD showed that an 
amygdala-derived-EEG-fMRI-Neurofeedback training protocol 
improved clinical outcomes 3 months after terminating therapy 
(Fruchter et al., 2024).

PTSD and TBI often coexist because brain injuries are often 
sustained in traumatic experiences, and are often co-morbid with 
chronic pain, resulting in overlapping symptoms with each of these 
conditions (Bryant, 2011; Moore et al., 2020). Thus, after 3 months of 
mobile NFT (10 min, 4 times a week) on alpha activity, chosen 
because consistent with pain perception pathways, veterans, suffering 
from both PTSD and TBI, reported a decrease in pain intensity, pain 
interference, depression, PTSD symptoms, anger, sleep disturbance 
and suicidal ideation, with no serious adverse events reported 
(Elbogen et al., 2021).

4 Considerations for the use of NFT in 
military personnel: physiological 
factors modulating NFT 
responsiveness

A large majority of the scientific literature reports a non-negligible 
proportion of subjects and/or patients (15–50%) who do not respond 
to the effects of NFT (non-responders) or prove unable to interact 
with a brain-machine interface, regardless of the protocol performed 
(Nan et al., 2015, 2018; Alkoby et al., 2018; Esteves et al., 2021). This 
inter-individual variability represents a major challenge for the 
development and implementation of a neurofeedback-based strategy 
to improve attentional skills, whether for the military or the athlete. A 
prerequisite for neurofeedback intervention could be  to identify 
potential non-responders, in order to offer them personalized 
countermeasures to improve the effectiveness of neurofeedback. In the 
literature, two main psycho-physiological factors have been identified 
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as influencing neurofeedback responsiveness: (1) the individual’s 
attentional capacities, dependent among other things on sleep debt, 
and (2) his or her level of motivation and mood to perform 
neurofeedback training (Kadosh and Staunton, 2019).

A third psycho-physiological factor determining the effectiveness 
of neurofeedback could be  the quality of body awareness. Body 
awareness refers to an individual’s ability to perceive changes in bodily 
information (Mehling et al., 2009). A high level of body awareness 
could provide support for learning to control one’s own brain activity. 
Conversely, non-responders could be characterized by a low level of 
body awareness. To test this hypothesis, it will be interesting to study 
the cardiac evoked potential, an electrophysiological marker of body 
awareness (Coll et al., 2021), and to assess its association with the 
efficacy of neurofeedback training. Interestingly, the level of body 
awareness is modifiable by training, notably through the practice of 
Mindfulness meditation (Treves et al., 2019), making it possible to 
envisage the use of a Mindfulness intervention (e.g., a Mindfulness-
Based Stress Reduction program) to improve the quality of body 
awareness in individuals identified as potentially non-responders. The 
use of Mindfulness meditation as a countermeasure to optimize the 
performance of neurofeedback training is supported by recent studies, 
which have shown its value in improving the performance of brain-
machine interface applications (Jiang et al., 2021).

Finally, inter-individual variability could be explored from the 
angle of polymorphisms in genes of interest, known to have an 
influence on brain activity and alpha rhythm in particular (Bowers 
et al., 2015; Roy et al., 2020; Tichelman et al., 2023). The recent study 
of Tichelman et al. (2023) showed that variation of the adenosine A2A 

receptor (ADORA2A) gene is related to inter-individual variation of 
oscillatory alpha power recorded during rested wakefulness as well as 
during REM sleep.

In conclusion, the inter-individual variability can be  at least 
partially explained in a multifactorial way: physiological (sleep–wake 
rhythm), biological (genetic polymorphisms), psychological (body 
awareness) and neurophysiological (characteristic features of brain 
activity; Figure 3). It is therefore conceivable that, depending on the 
professional characteristics of the soldier (pilot, sniper, etc.), the type 
of mission carried out (night, extreme environment, etc.) and the 
intrinsic properties of the individual (psychophysiology, genetics, etc.), 
appropriate, personalized neurofeedback training can be proposed to 
optimize and/or preserve the combatant’s cognitive capacities.

This inter-individual variability must therefore be  taken into 
account (i) to determine and understand its causes (methodological, 
intrinsic to the individual, etc.) with a view to (ii) proposing 
personalized training to operational staff and (iii) developing 
appropriate countermeasures to enable operational staff to make 
effective use of the brain-machine interfaces that will be increasingly 
integrated into complex weapons systems.

5 Conclusion

To our knowledge, this review presents the interest of NFT in the 
military context, which involves the operational environment and its 
possible deleterious effects on cognitive capacity, as well as on the 
increased risk of brain disorders that may occur in the short/medium 

FIGURE 3

Relationships between soldier’s operational performance, NFT efficacy and intra- inter-individual variability. NFT (lower right) is expected to enhance 
(blue sharp arrow) operational performances (lower left) and/or to alleviate (purple dashed blunt arrow) the effects of operational constraints (upper 
center). At the opposite, operational constraints and intra- inter-individual variability (upper center) are known to decrease operational performances 
and NFT efficacy (red blunt arrows). The relationship between soldier’s operational performance, NFT efficacy and intra-individual variability. NFT 
(bottom left) would improve (blue pointed arrow) operational performance (bottom right) through the so-called “transfer effect” and/or alleviate 
(purple dashed blunt arrow) the effects of operational constraints (top center). Conversely, operational constraints and intra-individual variability (top 
center) are known to decrease operational performances and NFT efficacy (blunt red arrows).
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or even long term. As several studies have shown that EEG activity in 
the Alpha frequency range is correlated with attentional and memory 
capacities (Brickwedde et al., 2019; Bagherzadeh et al., 2020), future 
research should validate an Alpha-based neurofeedback training 
method and evaluate it cognitively in the laboratory and in the field, 
taking inter-individual variability into account. Furthermore, as 
recent data from the literature clearly underline the interest of NFT 
based on Alpha in particular, for the treatment of brain disorders 
linked to the military context, its clinical interest appears important 
(Young, 2019).
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