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Introduction: The primary objective of this study was to identify variables that 
significantly influence the implementation of math Response to Intervention 
(RTI) at the school level, utilizing the ECLS-K: 2011 dataset.

Methods: Due to missing values in the original dataset, a Random Forest 
algorithm was employed for data imputation, generating a total of 10 imputed 
datasets. Elastic net logistic regression, combined with nested cross-validation, 
was applied to each imputed dataset, potentially resulting in 10 models with 
different variables. Variables for the models derived from the imputed datasets 
were selected using four methods, leading to four candidate models for final 
selection. These models were assessed based on their performance of prediction 
accuracy, culminating in the selection of the final model that outperformed the 
others.

Results and discussion: Method50 and Methodcoef emerged as the most effective, 
achieving a balanced accuracy of 0.852. The ultimate model selected relevant 
variables that effectively predicted RTI. The predictive accuracy of the final model 
was also demonstrated by the receiver operating characteristic (ROC) plot and 
the corresponding area under the curve (AUC) value, indicating its ability to 
accurately forecast math RTI implementation in schools for the following year.
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Introduction

Despite the well-known recommendations for practice regarding the use of response-to-
intervention (RTI; often, but not always, synonymous with multi-tiered systems of support; 
Burns et al., 2016) to prevent and intervene on academic difficulties, there remains surprisingly 
little evidence on what factors help understand schools’ adoption of RTI in math. Although 
there is inconclusive evidence on the effectiveness of RTI as a prevention and intervention 
system (particularly in reading, e.g., Balu et al., 2015), RTI (and tiered intervention models in 
general) is well-established in the best practices for making data-based decisions on 
intervention need and preventing school-wide academic difficulties (Lane et  al., 2019; 
McIntosh and Goodman, 2016; Schulte, 2016). Thus, it is necessary to better understand the 
conditions that predict schools’ adoption of RTI, especially in math, which has historically 
lagged reading in RTI research. In this study, we investigate the predictors of elementary 
schools’ adoption of math RTI using school-level data and school personnel surveys from a 
large, United States national dataset (Early Childhood Longitudinal Study: Kindergarten 
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Cohort 2010-11; ECLS-K: 2011). Our study uses novel machine 
learning and cross-validation methods to identify the most prominent 
predictors of schools’ RTI adoption.

What is RTI?

Response to intervention is a tiered model of intervention service 
delivery for academic skills. The prototypical RTI model encompasses 
three tiers of services, where Tier 1 (universal supports) refers to the 
general education curriculum that all students receive, Tier 2 refers to 
supplemental intensified interventions that support Tier 1 learning 
(e.g., small group reading interventions twice a week), and Tier 3 
refers to intensive individualized and frequent (4–5 times a week) 
intervention designed to remediate substantial learning difficulties 
(Mellard et al., 2010). Together, RTI’s approach to implementation, 
prevention, and intervention is heavily rooted in public health 
prevention models (Schulte, 2016). RTI has been frequently contrasted 
with “wait-to-fail” models of service delivery where intensive 
intervention might not be provided until a student is referred for 
special education for a learning disability (though RTI has historically 
demonstrated its own shortcomings; Reynolds and Shaywitz, 2009). 
To this end, in addition to the multiple tiers of RTI providing a 
continuum of supports for all students, RTI also provides a mechanism 
to identify students that do not respond to the general supports 
available, which may open the potential for special education 
evaluation for a specific learning disability (Burns et al., 2016). RTI is 
typically applied in reading, math, and writing subject areas, and more 
recent conceptualizations of RTI integrate this approach with tiered 
social–emotional-behavioral supports (Lane et al., 2019; McIntosh 
and Goodman, 2016).

The nature of RTI warrants a school-wide implementation 
approach to build systems capacity for tiered service provision, 
including data collection (e.g., screening and progress monitoring), 
intervention material development/curation, implementation, and 
sustainment. Thus, while specific interventions within RTI may 
be implemented for small groups (e.g., Tier 2) or individuals (e.g., Tier 
3), the overall model operates as a school-wide effort of data-based 
decision making based on screening and progress monitoring 
(including entry and exit criteria for intervention), intervention 
planning, development, and provision. Moreover, the public health 
approach that emphasizes population-wide “inoculation” mechanisms 
at tier 1 to increase the efficiency and efficacy of more intensive 
interventions intends to promote school effectiveness and achievement 
on a broad scale to mitigate the incidence of compounding academic 
difficulties (Mellard et al., 2010).

Limitations of current math RTI 
implementation research

Despite the systems-level focus of RTI and the popularity of this 
model as a prevention system in K-12 schools, there is a dearth of 
research on the factors that relate to whether schools use 
RTI. Specifically, this is the case with math, as reading has traditionally 
predominated in schools’ RTI practices. Although there are some case 
studies and qualitative inquiry into the implementation of math RTI 
models (Bouck and Cosby, 2019; Donovan and Shepherd, 2013; 
Mason et  al., 2019) as well as limited empirical investigation 

(Schumacher et al., 2017), the empirical research on factors predicting 
the use of RTI is lacking. This is a significant limitation in 
understanding the systematic factors that may determine whether 
schools choose to adopt an RTI model for prevention and intervention 
in math. The system capacity to adopt parallel RTI models for math 
may be limited if schools are already devoting substantial resources to 
other programs and initiatives (Mason et al., 2019). However, other 
contextual factors may play a part in the adoption of math RTI, 
including school resources, community contextual factors, and 
personnel factors (e.g., staff training background; Mason et al., 2019).

Identifying predictors

With seemingly innumerable factors that could possibly relate to 
whether schools use math RTI, a priori selection of specific predictive 
factors may induce bias in predictions or unintentionally limit the 
scope of predictive factors. Compounding the identification of 
relevant predictors is the limited research base on school factors 
associated with math RTI implementation, aside from factors that 
would likely be  related to the time and resources schools have 
available to conduct math RTI (e.g., economic conditions, community 
context, and student-related issues that guide service priorities). 
Consequently, narrowing the scope of predictors is an exploratory 
task at this stage.

Due to the large number of predictors and the relatively small 
sample size, elastic net logistic regression with nested cross-validation 
(nested CV) is a viable method to address the issues of predictor 
selection. This choice was motivated by the potential for overfitting 
when using traditional logistic regression (Hastie et al., 2006). The 
elastic net logistic regression can effectively address this risk by 
imposing penalties on the predictors, effectively reducing their 
number. This strategy not only alleviates concerns related to overfitting 
but also enhances the model’s predictive accuracy (Hans, 2011; Zou 
and Hastie, 2005). Therefore, determining the appropriate penalties is 
crucial when using elastic net regression. The most commonly used 
method to select these penalties is cross-validation, with K-fold cross-
validation (CV) being particularly popular. However, Vabalas et al. 
(2019) showed that K-fold CV would inflate the accuracy of a 
regularized logistic regression with feature selection, especially when 
the sample size was small. Hence, they recommended using nested CV 
which could produce an accurate misclassification rate, even with a 
small sample size.

The current study

In this study, we used data from Grades 1 (2011–2012) and 2 
(2012–2013) of the ECLS-K: 2011 to investigate the school-level 
factors in school year (SY) 2011–2012 that predicted elementary 
schools’ adoption of math RTI based on school administrator reports 
in SY2012-2013. Our primary research question was the following: 
What are the prominent predictors of schools’ math RTI 
implementation in the subsequent year? We hypothesized that factors 
related to school resources, achievement, and school personnel (e.g., 
training) would predominate as math RTI implementation predictors, 
as prior research has suggested that resource (e.g., staff training) and 
logistical factors (e.g., available time for implementation) are relevant 
to the adoption and implementation of math RTI (Choi et al., 2022; 
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Mason et al., 2019). We used regularized regression techniques with 
nested CV to identify the most robust predictors. Due to missing 
values in this dataset, we initially used the Random Forest algorithm 
to create different imputed datasets. Subsequently, we applied elastic 
net logistic regression with nested CV to build prediction models for 
each imputed dataset. Since the penalties in elastic net logistic 
regression were evaluated separately in each dataset, this resulted in 
different penalties across the datasets, leading to variations in the 

logistic regression models. To address this, we employed four variable 
selection methods to identify the most robust predictors across the 
various elastic net logistic regression models from different imputed 
datasets, forming four candidate models. Then, four candidate models 
were evaluated using an independent dataset. The candidate model 
that exhibited the best performance among the four was selected as 
the final model. The flow chart of the data analysis procedure for this 
study is depicted in Figure 1.

FIGURE 1

Data analysis procedure.
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TABLE 1 Covariates domains considered for RTI prediction.

Covariate block Covariate description

School demographic factors School-level sociodemographic factors, including funding mechanisms (Title 1 and 3), poverty, geographic locale (rural, suburban, etc.), 

changes in enrollment/funding/staffing/class sizes, school-level race/ethnicity, and language status

Policy or procedural features School policies and procedures for behavioral and academic intervention (e.g., implementation of other tiered systems for behavior and 

writing, staff procedures for implementing interventions and using data to make decisions, and professional development of staff)

Staffing and administration General school policies related to staffing and administrative procedures (e.g., academic standards, resource allocation, staffing, school-level 

procedures for teaching such as using achievement groupings)

Areas of concern for school Student problems at school (e.g., reports of whether the school has problems with weapons, theft, classroom disorder, and absenteeism)

Community engagement Community engagement with the school (e.g., before and after-school care, having parent teacher conferences, community support)

Methods

Participating schools

The ECLS-K: 2011 is a multi-stage stratified nationally 
representative sample of United States students from kindergarten 
through fifth grade. The study initially samples base-year students 
in kindergarten, and students are followed through fifth grade with 
procedures to ensure the national representativeness of the student 
samples at each grade level. In addition, kindergarten schools are 
sampled to be nationally representative; all schools in the following 
years are representative of the students in the sample attending 
those schools (rather than being intrinsically nationally 
representative like the base year). We limit our sample of schools to 
public schools present in both the Grades 1 and 2 Spring data 
collection rounds. These grades represent the first period in the 
dataset in which RTI implementation data is collected from schools, 
so we choose these grades to avoid additional temporal dependency 
in the measurement of RTI in grades 3–5. In addition, given the 
potential increase in the use of RTI over time (or changes in the 
uses of RTI over time), using data from earlier years (2012–2013) 
represents an earlier stage in the uptake of RTI practices and thus 
includes potentially more variability in how/why schools chose to 
use math RTI.

Measures

Outcome

School administrator report of RTI implementation
The outcome of our study is the school administrator’s report of 

whether their school implemented math RTI in the Spring of 2012–
2013 (the Grade 2 round of data collection at the child level). This 
data were collected as part of the school administrator survey 
portion of the ECLS-K: 2011. Responses were recorded as “not 
applicable” (e.g., schools in which RTI would not have been 
implemented), “no,” “partially implemented,” or “fully implemented.” 
We collapse partial and full implementation into a single category, 
resulting in a binary 0 (no)/1 (yes) indicator of RTI. It is unclear 
what exactly would differentiate “partial” vs. “full” implementation 
in this survey, so we focus on the presence of any math RTI practices 
rather than a gradient of implementation (e.g., different forms of 
partial implementation could exist but there is no way to determine 
this, which reduces the practical value of differentiating 
the responses).

Predictors
We selected a thorough set of predictors that represented 

contextual (e.g., economic, community), student (e.g., enrollment, 
reports of safety issues), personnel factors (e.g., teacher training), and 
implementation factors (e.g., previous implementation of behavior and 
writing RTI) to cover the reasonable potential range of reasons schools 
may adopt math RTI. A sample of the predictors is displayed in Table 1. 
All predictors are from the Spring semester of Grade 1 and have been 
aggregated at the school level. The mean was utilized for continuous 
variables for aggregation purposes, while the mode (we focus on the 
most frequent category within a school) was employed for categorical 
variables. The mean was chosen for aggregating continuous variables 
because it is the most commonly used measure to describe central 
tendency in continuous data (Clowes and Duke, 2022). This method is 
also widely utilized in applied research for aggregating such variables 
(e.g., Geronimus and Bound, 1998; Jacob et al., 2014; Moineddin and 
Urquia, 2014). For categorical variables, the mode was selected because 
it is often the most appropriate, and sometimes the only, method to 
effectively describe the central tendency for nominal variables (Clowes 
and Duke, 2022). The outliers in our dataset may not pose a problem, 
as most continuous variables we used are at the school level, meaning 
that students within the same school share the same value. However, 
one variable, X4SESL_I, which is the continuous Socioeconomic Status 
(SES) index, may have potential outliers. Therefore, we checked for 
outliers in X4SESL_I using Z-scores for each school with at least 10 
observations. If a Z-score exceeded 3, the observation was identified as 
an outlier. The results showed that only one school (id = 1,816) had a 
single outlier, while other schools did not have any outliers.

Procedure

Public-use ECLS-K: 2011 data were downloaded from the 
National Center for Education Statistics website. Data cleaning and 
analysis took place in Stata 17 (StataCorp, 2021) and R (R Core Team, 
2021). To be specific, elastic net logistic regression with nested CV was 
conducted by using nestcv package in R (Lewis et  al., 2023). In 
addition, missing value imputation carried out with the missForest 
package in R (Stekhoven and Bühlmann, 2012; Stekhoven, 2013).

Data analysis

Multiple imputation for missing data
In this study, the percentage of missing values is 16.4%. Little and 

Rubin (2019) described three missing data mechanisms: Missing 
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Completely at Random (MCAR), Missing at Random (MAR), and 
Missing Not at Random (MNAR). MCAR situations are characterized 
by missing values that do not correlate with either observed or 
unobserved variables. MAR, on the other hand, describes instances 
where missing values are linked to observed variables but not to 
unobserved ones. MNAR pertains to cases where missing values are 
related to unobserved variables. We assume that the missingness 
present among school-level variables in this dataset is MCAR or 
MAR given that much of the data comes from administrative 
information about schools or information that is aggregated to the 
school level. We  would not expect missing data to be  related to 
endogenous, unobserved factors about the schools themselves 
(MNAR). Rather, we expect that missing responses would be due to 
random survey nonresponse or non-response related to other 
systematic factors for which we have information (e.g., other school 
and teacher characteristics).

Given MAR data, it was necessary to employ an imputation 
method to address these missing values (Little and Rubin, 2019). 
We  employed the Random Forest (RF) algorithm for multiple 
imputation. This choice was made because the RF algorithm (1) is well-
suited for data missing at random, (2) can effectively handle both 
continuous and categorical variables, and most importantly, (3) does 
not require parametric forms and can effectively account for any 
non-linear relationships, complex interactions, and high dimensionality 
in the imputation model (Stekhoven and Bühlmann, 2012).

The last advantage of RF is theoretically shared by other 
nonparametric machine-learning methods. We selected RF based on 
existing comparisons of RF against other parametric and 
nonparametric machine-learning imputation methods. Pantanowitz 
and Marwala (2009) conducted an analysis using empirical data to 
compare five imputation methods: RF, Autoassociative Neural 
Network, Autoassociative Adaptive Neuro-Fuzzy Inference System, a 
hybrid of Random Forest and Autoassociative Neural Network, and a 
hybrid of Autoassociative Neural Network and Random Forest. Their 
findings revealed that Random Forest outperforms the other methods 
in terms of both accuracy and computational efficiency. Similarly, 
Stekhoven and Bühlmann (2012) explored four different imputation 
techniques: RF, k-Nearest Neighbors algorithm, Missingness Pattern 
Alternating Imputation and l1-penalty algorithm, and Multivariate 
Imputation by Chained Equations, across various empirical datasets. 
Their findings also revealed that RF had better performance than the 
other methods generally, particularly in datasets containing both 
continuous and categorical variables. Tang and Ishwaran (2017) 
conducted a simulation study to evaluate the performance of various 
Random Forest (RF) algorithms under three missing data 
mechanisms. Their findings revealed that RF algorithms generally 
performed well when data were MCAR or MAR, and the proportion 
of missing data was low to moderate.

Furthermore, RF managed to maintain acceptable performance in 
MNAR conditions when the variables were highly correlated (Tang 
and Ishwaran, 2017). To maximize the information contained in the 
datasets and to capture possible relationships between missing values 
and other variables, all variables were used for imputation. This 
further makes the imputation model robust to account for variables 
responsible for missingness. Additionally, an independent complete 
dataset was utilized to evaluate the generalizability of the models, 
which also served as a sensitivity analysis for missing data imputation.

The RF imputation process was carried out 10 times, resulting in 
a total of 10 datasets (Musoro et al., 2014; Rubin, 1987; Musoro et al., 

2014; Zahid et al., 2020). Generally, the RF imputation employed in 
this study involves modeling each variable with missing values as a 
function of all other available variables, with the missing values being 
predicted using a fitted random forest model. Specifically, an initial 
guess for the missing values, such as the mean, is made. Variables are 
then sorted by their percentage of missing values, and the one with the 
fewest missing values is imputed first. This imputed variable is treated 
as the response variable, with the others serving as predictors. An RF 
model is constructed to predict the missing values of this variable, and 
these missing values are updated by the RF-model-based predicted 
values. Then, the variable having the next fewest missing data is 
imputed based on the already imputed variable and others, following 
the same procedure until the stopping criteria are met. The stopping 
criteria involve observing an increase in the difference between the 
newly imputed values and the previously imputed values across 
observations for the first time, at which point the RF algorithm is 
stopped. Importantly, this increase should be observed across all types 
of variables. This non-parametric method, detailed by Stekhoven and 
Bühlmann (2012), is effective regardless of whether the missing values 
occur in independent or outcome variables.

When conducting the RF imputation, missing values in the two 
variables “W4C4P_4TSTR” and “W4C4P_4TPSU” were not imputed, 
as they represent the strata and primary sampling units (PSU) from 
the complex survey design. Due to their nature, these variables were 
not suitable for imputation using the RF algorithm like the other 
variables. To address missing values of these two variables while 
retaining as many observations as possible, a value of 0 was assigned 
to indicate “not specified” for both variables. Although 
“W4C4P_4TSTR” and “W4C4P_4TPSU” cannot be directly imputed 
by the RF algorithm, they were included in the RF imputation process 
to facilitate the imputation of other variables. We chose to include 
these sampling variables in the RF algorithm because including them 
in the model allows for control over the sampling design for the 
ECLS-K dataset (Stapleton and Kang, 2018).

Elastic net logistic regression with nested 
cross-validation under four methods of variable 
selection

After completing the imputation phase, we conducted elastic net 
logistic regression analyses using nested CV with 5-fold on each 
imputed dataset. The elastic net regression was proposed by Zou and 
Hastie (2005), which is expressed as:
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=  −  , the logarithm of the odds ratio of RTI 
implementation to no RTI implementation (or the logit).

Here, 1β  is the sum of absolute values of the coefficients for the 
predictors, which is also called 1l penalty, and 

2
2β  is the sum of 

squared coefficients for the predictors, which is also called 2l  penalty. 
In addition, λ controls the overall strength of regularization, while α 
balances between LASSO and Ridge regression penalties. When α=1, 
elastic net regression transforms to LASSO regression, and when α=0, 
it becomes Ridge regression. The factor 1/2 before the l2 penalty is 
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included for mathematical optimization convenience and does not 
alter the fundamental behavior of elastic net regression. Both LASSO 
and Ridge regressions have limitations with highly correlated 
predictors: Ridge regression tends to retain both variables but 
produces similar coefficient estimates for these predictors, whereas 
LASSO typically selects one predictor and discards the other. However, 
elastic net regression strikes a balance between LASSO and Ridge. 
This allows elastic net regression not only to retain both correlated 
predictors but also to generate stable coefficient estimates. Therefore, 
elastic net regression is chosen because it combines the advantages of 
both LASSO and Ridge regressions (Zou and Hastie, 2005).

Elastic net regression selects variables by imposing two penalties 
on variable coefficients; therefore, choosing the appropriate values for 
λ  and α is crucial. In this study, these penalty parameters were 
chosen via nested CV because Vabalas et al. (2019) have demonstrated 
that nested CV is an effective cross-validation method, especially 
when the sample size is small. The procedure for nested CV is 
presented in Figure 2. A 5-fold nested CV is used in this study as an 
example. The standard nested CV is conducted in six steps:

 1. The entire dataset is divided into several folds; for example, into 
5-fold. These serve as the outer folds of the nested CV. Each 
outer fold is further split into an outer testing set and an outer 
training set.

 2. Each outer training set is further divided into several inner 
folds. These inner folds consist of their own training and testing 
sets, referred to as the inner training fold and inner testing fold, 
respectively. These are used for feature selection, 
hyperparameter tuning, and model building. The best model 
for each inner fold is selected based on the smallest discrepancy 
in performance between the inner training and testing sets, 
indicating minimal overfitting.

 3. The best model from an inner fold (for example, the model 
from the third inner fold, highlighted in yellow) is then tested 
using the corresponding outer testing set (in this case, outer 
test fold 1, also highlighted in yellow).

 4. Steps 2 and 3 are repeated for each outer fold, with each outer 
fold producing a model.

 5. The best features and tuning parameters are chosen from the 
model associated with the outer fold that shows the least 
overfitting. These are then used to train a model on the entire 
dataset to create the final model.

 6. The final model is applied to an independent dataset to validate 
its generalizability.

All predictors were standardized before conducting elastic net 
logistic regression. While elastic net logistic regression offers benefits, 
it can potentially yield 10 distinct models corresponding to the 10 
imputation datasets. This diversity presents a challenge in 
synthesizing an overarching model from the 10 distinct versions. 
Consequently, upon obtaining these 10 models, we employed four 
distinct methods to select the final candidate models, resulting in 
four separate candidate models. Each method yields its own model 
for consideration in the final selection process. Four methods of 
selecting the candidate models were comprehensively described in 
the next section. To determine the final model, the candidate models 
were subsequently assessed in an independent dataset to evaluate 
their generalizability. All candidate models used predictors from the 
independent dataset to generate predictions for math 
RTI. Subsequently, the balanced accuracy between these predicted 
math RTI values and the observed math RTI from the independent 
dataset was calculated. The balanced accuracy is calculated as 
( ) / 2sensitivity specificity+ , where in our case sensitivity is the rate 
of correctly labeling schools as implementing RTI and specificity is 

FIGURE 2

An illustration of nested CV.
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the rate of correctly labeling schools as not implementing RTI 
(Chicco et al., 2021; García et al., 2009).

Because the predicted math RTI from the model is expressed as a 
percentage, we  utilized the optimal threshold to categorize the 
predicted math RTI into two distinct categories. The optimal threshold 
applied in this study is widely recognized in research for maximizing 
both sensitivity and specificity (Coffin and Sukhatme, 1997; Perkins 
and Schisterman, 2006; Unal, 2017). This approach is also called the 
“closest-top-left-corner” method. This method utilizes the receiver 
operating characteristic (ROC) plot, a graphical representation that 
maps the True Positive Rate (Sensitivity) against the False Positive Rate 
(1—Specificity) for various threshold values. Typically, the x-axis 
denotes 1-Specificity, while the y-axis corresponds to Sensitivity. 
Ideally, the best classifier would achieve 100% Sensitivity and 0% False 
Positive Rate, which would be represented by the point (0, 1) on the 
ROC plot, situated at the top-left corner of the graph. However, 
attaining this perfect point is nearly impossible in practical scenarios. 
Therefore, the “closest-top-left-corner” method selects the point on 
the ROC curve that is nearest to (0, 1) as the optimal threshold, 
representing the most effective balance between Sensitivity and 
Specificity based on the available data. Beyond determining the 
optimal threshold, the ROC plot is also utilized to calculate the Area 
Under the Curve (AUC), which quantifies the area beneath the ROC 
curve. An AUC of 1 indicates that the elastic net logistic regression 
model is an ideal classifier, perfectly distinguishing schools by their 
math RTI status. Conversely, an AUC of 0.5 suggests that the model 
lacks discriminative ability (Fan et al., 2006; Obuchowski and Bullen, 
2018). The final model which exhibited the best performance was 
chosen.1

Considering the necessity for an independent dataset to assess 
generalizability, we divided the dataset into two parts: one for model 
building, which includes training and validating the model, and 
another to serve as an independent dataset for conducting the 
generalizability check of the model. In addition, to ensure the validity 
of the generalizability assessment, we employed complete cases from 
the original dataset, which were free from missing values, to serve as 
the independent dataset. This independent dataset consisted of 127 
schools. The rest of the cases were used for training and validating the 
elastic net logistic regression model.

Given the prevalence of Likert scale items in our data, we faced 
the challenge of potentially expanding the number of predictors 
significantly if each were to be treated categorically. To address this 
and streamline the modeling process, we  adopted the guidance 
provided by Harpe (2015), treating ordinal variables with five or 
more categories as continuous, while those with four or fewer 
categories were handled as categorical variables. This decision was 
made to balance the granularity of the Likert-scale responses with 
the practical considerations of model complexity 
and interpretability.

The second consideration is related to the sampling design. Again, 
we applied the same strategy to control for the sampling design as 
we  did in the missing value imputation stage. We  included 

1 The final model was selected based on having the highest balanced 

accuracy. In cases where two candidate models exhibit identical balanced 

accuracy, the model with the larger Area Under the Curve (AUC) was chosen.

“W4C4P_4TSTR” and “W4C4P_4TPSU,” representing strata and PSU, 
to account for the sampling design. Consequently, these two variables 
were included in the elastic net logistic regression analysis without 
undergoing variable selection. The variables “W4C4P_4TSTR” and 
“W4C4P_4TPSU” are inherently categorical and would typically 
necessitate the creation of dummy variables. Upon thorough 
examination of the cross-tabulations between “W4C4P_4TSTR” and 
the response variable “math RTI,” as well as “W4C4P_4TPSU” and 
“math RTI,” we  identified many cells with zero observations. The 
details of these cross-tabulations are presented in Tables 2, 3. Such a 
distribution poses a risk of the complete separation or quasi-complete 
separation problem in logistic regression (Devika et al., 2016). To 
mitigate this issue, we strategically combined certain categories within 
“W4C4P_4TSTR” and “W4C4P_4TPSU.” This not only resolved the 
separation problem but also curbed the risk of overfitting in the 
final model.

Based on these two cross-tabulations, the re-categorization of 
“W4C4P_4TSTR” and “W4C4P_4TPSU” is primarily determined by 
the category of the response variable where math RTI equals 0, given 
the majority of zero observations occur when math RTI is 0. 
Additionally, the recategorization was implemented to balance the 
sample sizes between the math RTI = 0 group and the math RTI = 1 
group. This recategorization of “W4C4P_4TSTR” and 
“W4C4P_4TPSU” was conducted at the school level. For 
“W4C4P_4TSTR,” excluding those with missing values (NAs), schools 
were categorized based on the math RTI sample size. Schools with 
math RTI cell values of 14 or fewer were grouped together into the first 
category and assigned a code of 1. Schools with math RTI cell values 
in the range [15, 20) were grouped into the second category and coded 
as 2, and those with math RTI cell values are equal to or greater than 
20 were grouped into the third category and coded as 3. In addition, 
those who have NAs were coded as 0. Regarding “W4C4P_4TPSU,” 
except for those who have NAs, the original categories 1 and 2 were 
retained due to the substantial number of values present in the math 
RTI cell, as they provided a sufficient sample size for both the math 
RTI = 0 group and the math RTI = 1 group. The rest of the categories 
were combined together and coded as 3. Also, those who have NAs 
were coded as 0.

It is important to note that this category consolidation was 
uniquely applied to “W4C4P_4TSTR” and “W4C4P_4TPSU.” The 
rationale behind this selective approach is twofold: First, other 
categorical variables were subjected to the selection process of the 
elastic net logistic regression, which inherently manages the separation 
problem (Friedman et  al., 2010; Münch et  al., 2021). Second, 
“W4C4P_4TSTR” (49 categories) and “W4C4P_4TPSU” (12 
categories) contain too many categories. After dummy coding these 
variables, the number of predictors increases dramatically, potentially 
leading to overfitting in the final model. This issue arises because 
“W4C4P_4TSTR” and “W4C4P_4TPSU” are integral to accounting 
for the sampling design and were retained without penalties. 
Moreover, these two variables were not the central focus of our study, 
further justifying their fixed inclusion in the model without the 
application of elastic net penalties.

Four methods of aggregating results from 
multiple imputation

As previously discussed, the process could yield 10 distinct 
models, each corresponding to one of the 10 imputation datasets. 
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Consequently, the crucial challenge lies in determining the candidate 
models for the final selection, especially considering that these models 
may contain feature-varying variables. Some studies have discussed 
the variable selection of regularized linear regression (Musoro et al., 
2014; Gunn et al., 2023; Zahid et al., 2020). Although the studies by 
Gunn et  al. (2023), Zahid et  al. (2020), and Musoro et  al. (2014) 
primarily utilized LASSO regression, the methodologies they explored 
can be adaptable to elastic net regression. Consequently, we extended 
their approaches to our elastic net framework, corresponding to 
Method50, Methodcoef, and Methodadj, respectively. Furthermore, 
we proposed a new method to select the candidate model from 10 
distinct models based on the generalizability (Methodgen).

Method50

Method50 initially performs elastic net logistic regression 
separately on each imputed dataset, retaining variables selected in 

more than 50% of the cases. The variables “W4C4P_4TSTR” and 
“W4C4P_4TPSU” were not selected because they were consistently 
retained in the model. Average the coefficients of the selected 
variables across the 10 models derived from imputed data to 
construct the final candidate model. Then, the final candidate 
model was fitted to independent data to evaluate its 
generalizability. This method was selected based on empirical 
evidence from Gunn et al. (2023), which demonstrated its superior 
performance compared to two other variable selection methods. 
The first alternative method involves using stacked datasets, 
where training and testing datasets from multiple imputed 
datasets are combined into a single stacked training dataset and a 
corresponding stacked testing dataset. A regularized regression 
model is then developed using the stacked training dataset and 
validated using the stacked testing dataset. The second method 
employs a group penalty approach,2 where the group penalty 
parameter is calculated jointly across the training datasets for each 
imputed dataset. This approach ensures that models derived from 
multiple imputed datasets incorporate consistent variables, with 
each model’s performance evaluated against its respective testing 
dataset before aggregating the final performance metrics across 
all models.

2 The calculation of group penalty parameter, λ , as jointly determined using 

all training datasets (Chen and Wang, 2013) is
2

2
0

1 1 1 1 1
min

p pM N M
mi m mj mij mj

m i j j m
y xβ β λ β

= = = = =

  
  − + +     

∑ ∑ ∑ ∑ ∑
  where M  is the 

number of imputed datasets, N  is the sample size, p  is the number of 

predictors.

TABLE 2 Cross-tabulation between “W4C4P_4TSTR” and “math RTI” based on school level.

W4C4P_4TSTR

0 1 2 3 4 5 6 7 8 9 10 11 12

Math RTI
0 34 0 0 0 1 0 1 0 3 4 1 0 0

1 185 7 1 3 1 7 11 14 15 4 6 8 2

W4C4P_4TSTR

14 15 16 19 20 21 22 23 24 26 28 29 33

Math RTI
0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 8 4 2 1 3 1 1 2 2 2 1 1 2

W4C4P_4TSTR

35 36 37 38 39 40 41 42 43 44 45 46 47

Math RTI
0 2 1 7 0 0 1 0 0 4 1 5 2 2

1 10 15 9 15 14 6 16 10 16 8 16 10 13

W4C4P_4TSTR

48 49 50 51 52 53 54 55 56 57 58 59 60

Math RTI
0 2 0 1 2 0 2 1 1 1 2 0 1 2

1 17 19 18 30 19 21 14 24 8 12 10 13 7

W4C4P_4TSTR

61 62 63 64 65 66 67 68 69

Math RTI
0 0 0 1 6 0 0 0 0 1

1 6 20 7 14 9 8 16 14 21

W4C4P_4TSTR: sampling strata; Math RTI: whether math RTI is implemented.

TABLE 3 Cross-tabulation between “W4C4P_4TPSU” and “math RTI” 
based on school level.

W4C4P_4TPSU

0 1 2 3 4 5 6 7 8

Math 

RTI

0 34 24 24 3 0 1 2 2 0

1 185 221 262 60 12 6 11 6 4

W4C4P_4TPSU

9 10 15 18 19

Math 

RTI

0 2 0 1 0 0

1 5 4 0 1 2

W4C4P_4TPSU: sampling PSU; Math RTI: whether math RTI is implemented.
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Methodcoef

Methodcoef, proposed by Zahid et  al. (2020), begins by 
independently conducting elastic net logistic regression on each 
imputed dataset. It retains variables that meet specific criteria of 1 / p, 
where p is the number of predictors. Notably, the variables 
“W4C4P_4TSTR” and “W4C4P_4TPSU” were excluded because they 
were consistently retained in the model. To be  more specific, the 
criteria for choosing variables are:

 1. For continuous variable jX  associated with a parameter ,j mβ , 
indicating the jth ( 1, ,j p= … ) predictor within the mth 
( 1, ,m M= … ) imputed dataset. The criterion for retaining the 
variable is as follows:
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 2. For a categorical variable jX  with 1K +  categories, K  dummy 
variables are required. Each dummy variable is associated with 
a parameter ,jk mβ , which represents the kth ( 1, , jk K= … ) 
dummy variable for the jth ( 1, ,j p= … ) predictor within the 
mth ( 1, ,m M= … ) imputed dataset. The criterion for retaining 
the variable is as follows:
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Then, average the coefficients of the selected variables across the 
10 models derived from imputed data, and fit the final candidate 
model to independent data to evaluate its generalizability.

Zahid et  al. (2020) explored the influence of the number of 
predictors (40,80,200,500) and proportions of missingness 
(0.05,0.1,0.2,0.3) on Methodcoef with a small sample size (100). The 
results revealed that Methodcoef can relatively balance the trade-off 
between selecting relevant and irrelevant variables. Typically, selecting 
more relevant variables tends to also increase the selection of irrelevant 
variables. In addition, Methodcoef can be used when the number of 
predictors exceeds the sample size, a scenario where the method using 
group penalty fails to select variables.

Methodadj

Methodadj, proposed by Musoro et al. (2014), differs from previous 
methods. While the earlier methods finalize the model through 
variable selection, this method does not engage in selecting variables. 
Instead, its aim is to adjust the parameter estimates of the final model. 
The procedure for Methodadj is outlined as follows:

 1. Run elastic net logistic regression independently for each 
imputed dataset.

 2. Disregard the variable distinctions among each model and 
compute the average coefficients for all parameters across the 
10 models, fin jjY Xα β= + 

  , where jβ  is the coefficient for 
the predictor ( )1, ,j j p= … .

 3. Use bootstrapping to obtain the calibration parameters for the 
parameter adjustment of the final model. Here is the procedure 
of bootstrapping:

 a.  For a bootstrap run, the same observations were selected 
across 10 imputed datasets ( iimp , where 1, ,10i = … ) to 
obtain corresponding bootstrapping datasets, iimp∗  
( 1, ,10i = … ).

 b.  Rebuild the elastic net logistic regression model based on 
the bootstrapping datasets, iimp∗.

 c. Repeat a and b 100 times.

 4. Aggregate each variable in the imputed datasets into a long-
stacked dataset, so that the size of the stacked dataset is 10 
times that of the original dataset. For each bootstrap run, the 
predicted response variable is calculated using the coefficients 
derived from the elastic net regression model built on the 
bootstrap sample. Specifically, the predicted response variable 
is computed by multiplying the elastic net regression 
coefficients with the predictors in the stacked dataset. For 
predictors not selected by the elastic net regression, their 
coefficients are set to zero. Subsequently, calibration parameters 
are computed by regressing the response variable in the stacked 
dataset against the predicted response variable. The predicted 
response variable from bootstrapping is calculated using the 
final model from step  3 and predictors from the stacked 
dataset. This relationship is 
symbolized as impimp adj adjY Yα β ∗= +  .

 5. Then, compute the average of adjα  and adjβ  over these 100 
bootstrap iterations to obtain adjα  and adjβ . Finally, adjust the 
final model for intercepts and all coefficients from the 
imputed datasets by using the 
equation adj adj jj Xα β α β

 
+ + 

 



 .

 6. Fit the final model to the independent data to assess 
the generalizability.

Methodgen

The final method, Methodgen, is a novel approach introduced by 
this study. Methodgen initially conducts elastic net logistic regression 
independently on each imputed dataset. Each model is then fitted to 
independent data, with the final candidate model being selected based 
on achieving the highest balanced accuracy.

Evaluation criteria for the model performance
Given that the response variable math RTI is binary, accuracy 

serves as a suitable metric to assess the model performance. 
However, the response variable, math RTI, in this study is 
imbalanced. Sun et al. (2009) claimed that standard classifiers, 
such as the logistic regression and decision tree, tended to ignore 
the rare cases, potentially compromising the accuracy of the 
model’s predictions. Given the presence of an imbalanced 
response variable in the dataset, weights were computed for each 
observation. These weights were then applied to the regularized 
logistic regression to ensure a balanced 50:50 weight ratio across 
the two categories. Also, as we focus on the prediction accuracy 
for both implementing and not implementing RTI, balanced 
accuracy is a more precise metric as compared to regular 
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accuracy. Furthermore, we  also used the receiver operating 
characteristic (ROC) plot and the corresponding area under the 
curve (AUC) to delineate the performance of the elastic net 
logistic regression.

Results

Descriptive statistics

The total sample size at the individual level was 6,647. After 
aggregating variables to the school level, the sample size was reduced 
to 1,130. Since math RTI was investigated at the school level, the 
final sample size should be 1,130. Within the selected data, there 
were 37 continuous predictors and 54 categorical ones. Upon 
creating dummy variables for categorical variables, the analysis 
included a total of 160 predictors. Across the 10 imputed datasets, 
the count of cases where math RTI was not implemented ranged 
from 94 to 97. Conversely, for cases where math RTI was 
implemented, the count lied between 1,033 and 1,036. This data 
suggest that the majority of schools have adopted math 
RTI. However, due to the large number of predictors, descriptive 
statistics of predictors were omitted.

Four methods of variable selection and the 
final model

Table  4 displays the candidate models derived from four 
methods. Except for variables of the sampling design, 
W4C4P_4TSTR and W4C4P_4TPSU, we  found Methodgen, 
Method50, and Methodcoef selected the same variables. Methodadj does 
not select variables from the 10 models derived from imputed data. 
Instead, it retains all variables from these 10 models and adjusts 
their coefficients. As a result, Methodadj includes all variables 
produced by the imputed data, resulting in a slightly larger 
variable count.

Table 5 presents the balanced accuracy and AUC values associated 
with the four methods. Method50 and Methodcoef achieved the highest 
balanced accuracy, both equal to 0.852, and also demonstrated the 
highest AUC values. In contrast, Methodgen also showed commendable 
balanced accuracy at 0.829, while Methodadj recorded the lowest 
balanced accuracy of 0.491 among the four methods. Given the 
superior performance of Method50 and Methodcoef, the final model is 
based on these methods, as they produced identical results. Therefore, 
the final model is defined by the following logistic regression model: 

( )
( )

1
log .186 .038 4 4 4 .1 .166 4 4 4 .2

1 1

.310 4 4 .3 .799 4 4 4 .1 .112 4 4 4 .2

.102 4 4 4 .3 1.072 4 .2.

 =
= − × _ + × _  − = 

− × _ + × _ + × _

− × _ − ×

P Y
W C P TPSU W C P TPSU

P Y

W CP TPSU W C P TSTR W C P TSTR
W C P TSTR S RTLMTH

 

Figure 3 is the ROC plot for the final model derived from Method50 
and Methodcoef. Based on the balanced accuracy and the ROC plot, it 
is concluded that the final model effectively classifies math RTI.  
Table  6 presents the tuning parameters for the 10 imputed  
datasets.

Discussion

Response to intervention has been prominent in research for 
several decades, and since the early 2000s, it has become much more 
prominent in practice both through individual districts’ uptake of the 
practice as well as through recommendations in federal and state 
policies (Jimerson et al., 2016). The overall process, typically involving 
a three-tiered system to classify the intensity of students’ academic 
needs, involves many moving components, including implementation 
of assessment practices like screening and progress monitoring, 
managing data-based decisions based on screening and monitoring 
data, and selecting appropriate curricula and interventions to 
implement at each tier. Each component of RTI requires substantial 
human, material, and financial resources, and there is substantial 
between-school variability in the capacity to allocate resources and 
sustain implementation. However, little is known about the factors 
that relate to schools’ decisions to use and sustain RTI, though it is 
reasonable to assume economic and human resources would be a 
primary driver.

In this study, we  investigated the predictors of schools’ 
implementation of math RTI in Grade 2 using predictors from the 
prior year. There is a dearth of research examining the factors that 
relate to schools’ decision to use RTI in math. Historically, large-scale 
studies of reading RTI and its implementation have predominated the 

TABLE 4 Candidate models from four methods.

Methods Variables

Methodgen

W4C4P_4TSTR.1, W4C4P_4TSTR.2, W4C4P_4TSTR.3, 

W4C4P_4TPSU.1, W4C4P_4TPSU.2, W4C4P_4TPSU.3, 

S4RTLMTH.2

Method50

W4C4P_4TSTR.1, W4C4P_4TSTR.2, W4C4P_4TSTR.3, 

W4C4P_4TPSU.1, W4C4P_4TPSU.2, W4C4P_4TPSU.3, 

S4RTLMTH.2

Methodcoef

W4C4P_4TSTR.1, W4C4P_4TSTR.2, W4C4P_4TSTR.3, 

W4C4P_4TPSU.1, W4C4P_4TPSU.2, W4C4P_4TPSU.3, 

S4RTLMTH.2

Methodadj

W4C4P_4TSTR.1, W4C4P_4TSTR.2, W4C4P_4TSTR.3, 

W4C4P_4TPSU.1, W4C4P_4TPSU.2, W4C4P_4TPSU.3, 

S4RTLMTH.2, S4RTLSOC.2

Variables beginning with S4 are administrator-reported; variables beginning with A4 are 
teacher-reported; variables beginning with X4 are data collected by/reported to the ECLS-K. 
W4C4P_4TSTR: sampling strata, W4C4P_4TPSU: sampling PSU, S4RTLMTH: whether 
math RTI is implemented in Grade 1, S4RTLSOC: whether behavior/social RTI is 
implemented in Grade 1. Variables with numbers indicate those are dummy variables for 
corresponding categorical variables. For dummy variables with “RTL” (which indicates the 
variable measuring administrator-reported RTI implementation), the baseline represents full 
implementation. A value of “2” denotes no implementation, while “1” is partial 
implementation.

TABLE 5 Generalizability of candidate models from four methods using 
the independent dataset.

Balanced accuracy AUC

Methodgen 0.829 0.855

Method50 0.852 0.883

Methodcoef 0.852 0.883

Methodadj 0.491 0.329
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literature (e.g., Balu et al., 2015), and the decisions to implement math 
RTI in addition to other initiatives in place (Mason et al., 2019) may 
be  unique relative to decisions guiding implementation of other 
prevention and intervention systems. Thus, it is important to establish 
an empirical basis for the factors that relate to schools’ uptake of an 
initiative like math RTI, which is both complex in terms of the school 
system dynamics needed to sustain its implementation and resource-
demanding (Choi et al., 2022; Mason et al., 2019).

Results of our analyses indicate that three of the four methods 
evaluated for selecting predictors were equivalent in model balanced 
accuracy. Of these three methods, Method50 and Methodcoef equally 
demonstrated the strongest performance based on the AUC and 
balanced accuracy. All models demonstrated that previous math RTI 

implementation was a predictor of future math RTI implementation. 
Additionally, RTI implementation for social/behavioral skills in Grade 
1 emerged as a potential predictor for math RTI implementation, as it 
was included in several elastic net regression models. This finding is 
further supported by the correlation analysis, which showed that RTI 
implementation for math and social/behavioral skills in Grade 1 were 
the top two variables most strongly correlated with math RTI 
implementation in Grade 2. Specifically, the correlation for math RTI 
implementation in Grade 1 was 0.602, while the correlation for RTI 
implementation for social/behavioral skills in Grade 1 was 0.224. 
Notably, RTI implementation for math in Grade 1 exhibited a 
significantly higher correlation with math RTI implementation in 
Grade 2 compared to other variables. This could suggest that 
concurrent RTI infrastructure may be a determinant of math RTI 
implementation, though this may not be as robust of a predictor given 
the inconsistency of its selection into the models. Given that this is the 
first study to employ these methods for predicting RTI 
implementation, it is essential to conduct additional research 
examining the school-level and contextual factors relating to schools’ 
math RTI implementation decisions. Qualitative reports of math RTI 
implementation indicate student economic conditions, teacher 
professional development, and other implementation priorities are 
relevant factors in the math RTI implementation process (Mason 
et al., 2019).

Different methods of variable selection

In this paper, we  used four methods, Methodgen, Method50, 
Methodcoef, and Methodadj, to select candidate models from 10 distinct 

FIGURE 3

The ROC plot for the final model.

TABLE 6 Tuning parameters of 10 elastic net logistic regression models.

λ α

Imputed dataset 1 0.235 0.500

Imputed dataset 2 0.102 0.800

Imputed dataset 3 0.136 1.00

Imputed dataset 4 0.160 1.00

Imputed dataset 5 0.109 0.600

Imputed dataset 6 0.133 1.00

Imputed dataset 7 0.131 1.00

Imputed dataset 8 0.133 1.00

Imputed dataset 9 0.137 0.600

Imputed dataset 10 0.135 0.800
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models derived from 10 imputed datasets. Then, four candidate 
models were evaluated in the independent dataset and the final model 
was determined based on the best performance. From Tables 4, 5, 
we could observe that Method50, and Methodcoef selected the same 
variables and exhibited identical balanced accuracy and AUC in the 
independent dataset. This consistency is due to the robustness of the 
RF imputation method used in our study against multiple 
imputations. To further confirm this robustness, we generated an 
additional 30 imputed datasets, bringing the total to 40. Among these, 
only two yielded elastic net regressions with different variables, while 
the remainder produced identical elastic net regressions, albeit with 
varying parameter estimates. This consistency ensures that both 
Method50 and Methodcoef select the same variables across multiple 
imputations. Moreover, the variable S4RTLMTH.2, which is included 
in the final model, consistently appears in all elastic net models. 
Consequently, the average coefficient for S4RTLMTH.2 was 
calculated across the multiple imputed datasets, resulting in the same 
final model being produced by both Method50 and Methodcoef.

In contrast, although Methodgen selected the same variables as 
Method50 and Methodcoef, it achieved different balanced accuracy and 
AUC on independent data. This variation arises because Methodgen 
selects only one model from the candidate models based solely on 
AUC, without averaging the coefficients of the selected variables 
across these models. Consequently, the parameter estimates in the 
final model of Methodgen differ from those in Method50 and Methodcoef. 
In scenarios where the outcome is imbalanced, the AUC can provide 
an overly optimistic view of a model’s performance, particularly 
favoring the majority class. Therefore, when the outcome is 
imbalanced, balanced accuracy is a more appropriate index than AUC, 
because balanced accuracy takes this imbalance into consideration. 
Given the similar performance observed with Methodgen, Method50, 
and Methodcoef, researchers are encouraged to employ all these 
approaches in future studies. Doing so can allow these methods to 
complement one another, providing a more comprehensive 
understanding of the study. However, Methodadj is not recommended 
as it underperformed compared to the other three methods and 
potentially includes too many variables, which may lead to overfitting.

Methodadj is different from the other three methods because it 
retains all variables from 10 distinct models derived from 10 imputed 
datasets and adjusted model coefficients rather than selecting 
variables. This retention of all variables can result in an overly complex 
final model, prone to overfitting. The relatively poor performance of 
Methodadj may be  attributed to its approach of calculating the 
calibration parameters based on the stacked dataset of these 10 
imputed datasets. The 10 imputed datasets were used both for 
constructing the elastic net logistic regression model and for 
computing the calibration parameters. This repeated use of the same 
datasets may cause model overfitting, which could degrade 
performance and compromise generalizability. Another potential 
reason for Methodadj’s poor performance might be  that the 
bootstrapping datasets do not accurately represent the original dataset, 
due to the nature of bootstrapping involving repeated sampling from 
the original dataset with replacement. Given the significant imbalance 
in the outcome, the class distributions in the bootstrapping data could 
differ markedly. Moreover, since the RF imputation produced 
relatively stable imputed datasets, and Methodadj consistently selected 
the same observations across these imputed datasets for calibration in 
each run, this approach could cause all bootstrapping datasets in each 

run to differ significantly in outcome categories from the original 
dataset, potentially biasing the calibration parameters.

When selecting variables for regularized models with multiple 
imputations, there are generally two approaches to variable selection. 
The first involves fitting regularized models separately for each 
imputed dataset, which may result in distinct models, and then 
applying thresholds to select variables. The second approach aims to 
create a unified set of variables across all regularized models. Method50 
and Methodcoef adhere to the first approach. Initially, each method fits 
a regularized model separately for each imputed dataset. Variables are 
then selected based on specific thresholds: for Method50, variables 
with non-zero coefficients must appear in more than 50% of the cases, 
whereas for Methodcoef, the magnitude of the coefficients must 
be equal to or greater than 1 / p. The second approach can be achieved 
either by using a stacked dataset or by applying a group penalty, as 
described by Gunn et al. (2023) in their second and third methods. 
As previously mentioned, the stacked method combines multiple 
imputed datasets into a single stacked dataset, then applies regularized 
regression to this unified dataset. This approach can select unified 
variables because it ultimately chooses variables from one dataset. On 
the other hand, the method using a group penalty applies the group 
penalty across all imputed datasets, assuming that if a variable is 
important, it should be selected in all imputed datasets. This method 
produces unified variables by jointly fitting the group penalty to all 
imputed datasets. By adopting these two methods, researchers can 
bypass the need to select a threshold when formulating the 
final model.

No single variable selection method consistently outperforms 
others. Previous studies, such as Wood et al. (2008), have shown that 
the performance of methods using thresholds and stacked datasets is 
comparable. Du et  al. (2022) favored the method using a stacked 
dataset over the group penalty method for achieving better coefficient 
estimates and reduced computation time. Conversely, Gunn et al. 
(2023) observed that the stacked dataset method underperformed 
compared to methods using thresholds and the group penalty in an 
empirical dataset. Zahid et al. (2020) noted that while the method 
using the group penalty can correctly identify relevant variables, it also 
tends to select more non-informative variables. Moreover, this method 
fails to select variables when the number of predictors exceeds the 
sample size. Additionally, the efficacy of the method using the group 
penalty is highly dependent on the number of imputations. Du et al. 
(2022) made similar observations regarding the dependency on the 
number of imputations for the group penalty method, noting a more 
significant improvement with this approach compared to the stacked 
dataset method as the number of imputations increased. Previous 
studies have not reached a consensus on which method is definitively 
superior. Therefore, researchers are encouraged to employ multiple 
variable selection methods to assess the robustness of the 
selected variables.

Practical implications

The current results confirm practical assumptions that existing 
initiatives (previous social/behavioral RTI implementation) relate to 
RTI implementation. Although the first study to empirically 
demonstrate these relations, these findings are likely unsurprising to 
applied researchers and school personnel. The capacity and motives 
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to initiate math RTI implementation will be constrained by other 
existing priorities and competing resources for an added initiative 
(Mason et al., 2019). However, it is important to note that our results 
suggest that previous math RTI implementation is consistently 
selected as a predictor, suggesting strong stability in schools’ decisions 
to use math RTI over these two school years. In the absence of 
contextual and human resources predictors, it may be that initial 
uptake of RTI is a more idiosyncratic process rather than 
systematically attributable to specific, quantifiable factors. As a result, 
research and practice would benefit from additional mixed methods 
work to understand the experiential processes involved in RTI 
implementation and whether this relates to other systematic factors 
at the school level.

Limitations and future directions

One limitation of this study is the small size of the independent 
dataset. The limited sample size means that some categories of 
categorical variables cannot be validated in the independent dataset, as 
it lacks representation of those categories. For example, there were 
three categories of W4C4P_4TPSU when constructing the elastic net 
logistic regression model. However, in the independent dataset, only 
one category of W4C4P_4TPSU was present. Therefore, limited sample 
size of the independent dataset compromises the generalizability of the 
final model to some degree. The second limitation of this study lies in 
our comparison of four methods using empirical data. While the 
empirical results offer valuable insights, a thorough simulation study is 
necessary to comprehensively evaluate the four variable selection 
methods. Moreover, the finding of robustness of the RF imputation is 
also based on empirical data. A simulation study is needed to fully 
investigate the relationship between the RF imputation method and the 
number of imputations. Last, the reports of math RTI implementation 
in Grade 2, which we further collapsed into 0 = no implementation or 
1 = partial/full implementation are highly limited and may not 
accurately represent the presence of core components of math RTI 
implementation (Lembke et al., 2012). As a result, the nature of these 
schools implementing math RTI is unclear. More accurate criteria for 
differentiating math RTI implementation is essential in future studies 
to accurately capture the factors that go into schools’ uptake and 
implementation sustainment. Moreover, the use of school-level data in 
this case may not accurately represent actual school-level factors: 
teachers reports are not representative of all teachers within each 
school, nor are aggregated student-level data representative of all 
students in that grade and school. Finally, the current study cannot 
differentiate how “partial” and “full” RTI would have been interpreted. 
Future research should examine the predictors of different degrees of 
implementation in addition to the specific processes that 
are implemented.

Conclusion

Given the increasing uptake of tiered intervention systems in 
schools (Choi et al., 2022), such as RTI, there is a pressing need to 
identify the factors relating to schools’ implementation decisions. Our 
current study revealed that existing RTI systems were primary 

predictors of schools’ implementation. This is a first step in developing 
an empirical basis for predictors of school-wide math 
RTI implementation.
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