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Video presentation has become ubiquitous in paradigms investigating the

neural and behavioral responses to observed actions. In spite of the great

interest in uncovering the processing of observed bodily movements and

actions in neuroscience and cognitive science, at present, no standardized

set of video stimuli for action observation research in neuroimaging settings

exists. To facilitate future action observation research, we developed an

open-access database of 135 high-definition videos of a male actor performing

object-oriented actions. Actions from 3 categories: kinematically natural

and goal-intact (Normal), kinematically unnatural and goal-intact (How), or

kinematically natural and goal-violating (What), directed toward 15 di�erent

objects were filmed from 3 angles. Psychometric evaluation of the database

revealed high video recognition accuracy (Mean accuracy = 88.61 %) and

substantial inter-rater agreement (Fleiss’ Kappa = 0.702), establishing excellent

validity and reliability. Videos’ exact timing of motion onset was identified using a

custom motion detection frame-di�erencing procedure. Based on its outcome,

the videos were edited to assure that motion begins at the second frame of

each video. The videos’ timing of category recognition was also identified using

a novel behavioral up-down staircase procedure. The identified timings can

be incorporated in future experimental designs to counteract jittered stimulus

onsets, thus vastly improving the sensitivity of neuroimaging experiments. All

videos, their psychometric evaluations, and the timing of their frame of category

recognition, as well as our custom programs for performing these evaluations

on our, or on other similar video databases, are available at the Open Science

Framework (https://osf.io/zexc4/).
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Introduction

In the past two decades, action observation research has

been facilitated by technological advancements which allow

researchers to easily record and present videos of biological

motion. This in turn allowed for the use of video stimuli

in controlled neuroimaging and psychophysics investigations

of the neural processing of the movements which make up

human naturalistic action. Consequently, experimental paradigms

involving presentation of pre-recorded videos of various types of

bodily motion have become ubiquitous in neuroscience, cognitive

science, and psychology. Such investigations have produced great

advances in the understanding of biobehavioral phenomena

ranging from the cellular to the cognitive level, such as the activity

of mirror neurons (Arnstein et al., 2011; Braadbaart et al., 2013;

Moriguchi et al., 2009), the Mu and Beta oscillations of the

sensorimotor cortex (Avanzini et al., 2012; Brunsdon et al., 2019;

Muthukumaraswamy and Johnson, 2004; Quandt and Marshall,

2014), motor affordances (Bach et al., 2011; Tipper et al., 2006),

action identification and discrimination (Orban et al., 2019; Urgen

and Orban, 2021; Vannuscorps and Caramazza, 2016), gesture

recognition (Beattie and Shovelton, 2002), observation learning

(Buccino et al., 2004; Malfait et al., 2010), theory of mind

(Caillaud et al., 2020; Saxe et al., 2004; Sylwester et al., 2012),

and empathy (Rosenthal-von der Pütten et al., 2014; Tholen et al.,

2020). To address these phenomena, typically, videos of an agent

performing a manual movement are presented to observers either

in blocked or in pseudo-random counterbalanced designs while

electrophysiological or hemodynamic measures of neural activity

are recorded. This approach allows for a resolute assessment of

the neurocognitive processing of observed actions, carried out

by bottom-up perceptual as well as top-down cognitive neuronal

mechanisms. Thus, the approach allows for the investigation of

the underpinnings of perception, comprehension, and acquisition

of complex action and intention in both neurotypical (Biagi et al.,

2016) and neurodivergent (Scott et al., 2020; Spengler et al.,

2010) populations.

To effectively capture the neural correlates of the detection

and comprehension of the nuanced movements which comprise

complex naturalistic action, however, the presented video stimuli

must be constructed in accordance with the highest psychometric

standards. Duration, frame rate, pixel resolution, color palette,

luminosity, filming angle, depicted body segments, gender and

handedness of the actor, familiarity with the action and the actor,

and recognizability of the action have all been controlled for, at

least to a certain extent, in many individual action observation

studies. Yet, across studies, there is substantial heterogeneity

in the presented video stimuli, with some authors presenting

videos depicting only the hand, others presenting videos depicting

the entire upper body of the actor; some authors presenting

videos from a first-person perspective, others from a third-person

perspective; and some authors presenting videos in black and

white, others in color. With the advancement of video recording

equipment, the overall quality of the video stimuli increases and

novel tools have been developed for monitoring changes across

video recordings, including nuanced changes in posture (Zouba

et al., 2008) or motion kinematics (Trettenbrein and Zaccarella,

2021) of the actor across videos. Still, standardized sets of high-

quality stimuli, made specifically for action observation research in

neuroimaging settings, which could be used across experiments and

laboratories, are scarce, andmost investigators in the field construct

their own stimuli or rely on non-dedicated freely-available videos

from the internet. The reliance on such stimuli which likely

differ in either technical properties (e.g., pixel resolution and

frame rate) or higher-order characteristics of motion (e.g., goal-

directedness and intention relation) prevents the comparison of

results across experiments, complicates the conduction of robust

and reliable meta-analyses, and hence negatively impacts the

reproducibility of action observation research. More recently,

open-access multipurpose databases of video stimuli have been

developed (Cipriano et al., 2023; Di Crosta et al., 2020; Umla-Runge

et al., 2012; Urgen et al., 2022), however, videos therein feature

only kinematically correct natural actions, which does not allow

for investigations of observation and comprehension of bodily

motion with a varying degree of kinematic and goal accuracy.

In addition, in spite of the high quality of the videos in these

databases, the motion depicted therein was not characterized in

terms of when within the video the action begins and when a

human observer would actually recognize the action as intended

by the experimenter. The absence of a marker indicating when

the desired evoked electrophysiological or hemodynamic neural

response is likely to occur complicates the use of these databases

in neuroimaging settings.

An initial challenge of the serial presentation of a large number

of videos in neuroimaging settings is that differences in the timing

of movement onset can exist across videos, even among the

videos of a carefully constructed stimulus set where all videos are

controlled for duration and frame rate. Although some authors

have identified and reported the timing of motion onset of their

stimuli (e.g., Platonov and Orban, 2016), this practice is often

overlooked or underreported in the literature. This is especially

an issue for electrophysiological neuroimaging experiments since

these typically require averaging of neural responses evoked by a

large number of videos (Huettel, 2012), and both time domain

and time-frequency domain analyses have to be precisely timed

to video onset. In that setting, seemingly small differences in the

actual visual detection of movement across videos are likely to

contaminate the contrasts between the experimental conditions.

For instance, if an onset trigger is sent at the very first frame

of each video stimulus’ presentation, a discrepancy in movement

onset across videos of as little as 3 frames at 60Hz translates

to a jitter of 50ms. Such jitter can substantially impact the

shape and timing of the observed evoked neural responses,

resulting in noisier and flattened out averaged neural responses and

hence, difficulties in detecting differences between experimental

conditions. In hemodynamic neuroimaging, the negative impact

of discrepancies between video onset and actual movement onset

also exists, although it may be smaller due to the slow nature of the

blood-oxygen-level-dependent (BOLD) signal.

In an analogous fashion, the issue of timing and triggering

also concerns the timing of the actual conscious recognition of

the higher-order properties of movement, such as the degree

of integrity of movement kinematics, goal, or intention across

different videos, which are the central manipulation of numerous
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studies addressing the neural and cognitive representations of

normal and abnormal movement (e.g., Stapel et al., 2010; Cheng

et al., 2017). Such studies often imply presentation of videos that

either depict natural or unnatural actions with varying degrees

of goal integrity. The videos of natural actions typically comprise

kinematically correct movements, as would normally be performed

and observed in everyday settings, whereas the videos of unnatural

actions comprise kinematically incorrect odd movements, which

are unlikely to be performed or observed in everyday settings.

However, the motor redundancy and abundance of any complex

human action (Gera et al., 2010; Steen et al., 2011) suggest that

it is highly likely that the kinematic nature and goal integrity of

the actions in different videos are recognized at very different time

points. Once again, averaging neural responses with jittered onsets

will impact the shape and timing of the observed evoked neural

responses and hence, severely contaminate any contrast between

natural and unnatural, and between goal-intact and goal-violating

action categories.

Therefore, determining when within a video stimulus

movement onset and kinematic and goal category are actually

perceived is crucial for effective experimental design. Although

precise motion characterization of videos can be obtained with

complex artificial intelligence computer vision algorithms (Vrigkas

et al., 2015), such algorithms are not always freely available and

require advanced expertise in deep learning. With respect to

motion onset detection, more user-friendly motion detection

systems based on the frame-differencing method have been

widely applied on video recordings within the field of counseling

psychology (Paxton and Dale, 2013; Ramseyer and Tschacher,

2011), however, no such methodology has yet been applied

for characterizing videos used as stimuli in action observation

research. We propose that such a system can successfully be

applied for identifying the first frame of motion onset within

video stimuli, so that all video stimuli can subsequently be edited

to start exactly at the identified frames. With respect to the

recognition of higher-level properties of categories of videos

with different kinematics and goal-integrity, no accessible and

user-friendly systematic stimulus evaluation procedure exists.

We propose that a straightforward psychophysics approach

based on the classic up-down staircase methods (Levitt, 1971;

Kaernbach, 1991; Wetherill and Levitt, 1965) can be applied for

identifying the first frame at which a video can be categorized

(i.e., recognition of the movement as kinematically correct or

incorrect and goal-intact or goal-violating). Namely, if a video

is played up until a given number of frames, then paused,

and an observer is asked whether the motion depicted in the

video was kinematically correct or not, and goal-intact or not,

their response can be used for adjusting the number of frames

played on the subsequent presentation of the same video to

another observer. With enough between-subject iterations, an

asymmetric staircase procedure governed by two simple rules:

(1) If the category of motion has been correctly detected within

the played segment, the number of played frames decreases on

the subsequent presentation and (2) If the category of motion

has not been detected within the played segment, the number

of played frames increases on the subsequent presentation;

should converge on the frame where the category of the video

becomes discernible for naïve human observers. The identified

frames can be used for implementing precise triggering for the

identification of brain or behavioral responses to action kinematics

and goal integrity.

Aspiring to improve the feasibility of action observation

research, we introduce a large psychometrically evaluated open-

access database of videos tailored to the demands of neuroimaging

experiments. More precisely, we present 135 videos depicting a

goal-directed action that is either kinematically correct or not, and

goal-intact or not, filmed from a third-person perspective from

3 angles (portrait, left profile, and top). These videos should be

useful for future investigations of the neural mechanisms of action

and goal perception and comprehension. Moreover, we provide

an easy to implement, open-source frame-differencing motion

detection system for identifying the frame of motion onset within

each video and a straightforward procedure for editing the videos

based on their motion onset. We also provide a straightforward

open-source up-down staircase procedure for identifying the frame

on which kinematics and goal-integrity are recognized within

each video. Both procedures are purposefully designed in a way

that would allow any reader to easily implement them on our,

or another set of similar video stimuli that depict motion of a

single agent.

Methods

Participants

Fifty-one adults (27 Female, Mean ± SD age: 28.47 ±

7.16 years) provided ratings for psychometric evaluation of the

videos. A different sample of 17 adults (8 Female, Mean ± SD

age: 25.82 ± 4.6 years) participated in the up-down staircase

category recognition procedure. Participants were recruited

from the Université Libre de Bruxelles (Brussels, Belgium).

All participants were healthy, with no known neurological or

psychiatric disorders, had normal or corrected-to-normal vision,

and gave their written consent for participation in the study.

The protocols were approved by the local ethics committee and

the study was conducted in accordance with the Declaration

of Helsinki.

Stimuli

A database of videos was created specifically for the demands

of subsequent action observation experiments. The database

consists of high-resolution video recordings filmed in 4K (at

60 frames/second with a 12-megapixel Apple iPhone 12 camera

in portrait orientation, positioned on a stationary tripod) and

subsequently resized to 720 × 1,280 pixels. The videos depict

a male actor (Caucasian, Age = 22 years) seated in front of

a table and performing a goal-directed action with a common

easy to manipulate everyday object (calculator; cap; coffee jar;

comb; computer mouse; cup; fork; glasses; hat; headphones;

hourglass; pen; pencil case; ruler; scissors). Each object from

this set is expected to be highly familiar to human observers
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and the kinematics of past manual interactions with each object

(and therefore the motor affordances recalled at the sight of

the object) are expected to show a high degree of convergence

across participants. Hence at action observation, neuroimaging

results are less likely to be contaminated by inability to recognize

the target object or the kinematics and goals of the performed

actions. With respect to the kinematic and goal integrity, actions

from 3 categories were filmed: Normal (i.e., the object was

used in the most kinematically natural way and for its intended

goal; e.g., a calculator was placed on the table and typed on

with the tip of the index finger; Figure 1A), How (i.e., the

object was used in a kinematically unnatural way and for its

intended goal; e.g., a calculator was placed on the table and

typed on with the knuckle of the index finger; Figure 1B), and

What (i.e., the object was used in a kinematically natural way

but not for its intended goal; e.g., a calculator was lifted off

the table and used as a fan; Figure 1C). The three categories

of actions were conceptualized such that they would allow

for electrophysiological or hemodynamic contrast experiments

isolating the neural processing of action kinematics (Normal—

How) and action goals (Normal—What). Inspired by Iacoboni

et al. (2005) and following the recommendations of Sonkusare

et al. (2019), all actions were filmed in living settings, providing a

static naturalistic background and hence increasing the ecological

validity of the stimuli. Each action was filmed from a third-person

point of view from 3 angles: portrait, left profile, and top (Figure 2),

corresponding to the typical perspectives from which actions of a

conspecific are observed in daily life and allowing investigators to

better define the extent to which an observer’s perspective affects

action recognition, action embodiment and affordance recall. In

total, 15 actions were filmed in each category and from each

filming angle resulting in 135 videos, each with a duration of 3–

6 s. All videos in .m4v and .mat format can be found in folder

“Video Database” at the Open Science Framework: https://osf.io/

zexc4.

Psychometric evaluation

The participants were instructed that they would be asked

to evaluate a number of videos in terms of their kinematic and

goal integrity category. The three categories of videos, along

with their labels (Normal, How, or What) were explained to the

participants. Normal videos were defined as: “. . . actions depicting

the natural and correct use of an object for its intended purpose

in normal everyday settings”, the How videos were defined as: “. . .

actions depicting an unnatural use of the object for its intended

purpose”, and the What videos were defined as: “. . . natural use

of an object outside of its intended purpose in normal everyday

settings”. After having received the instructions the participants

were allowed to ask for further clarification if necessary. The

participants were then seated in front of a 17-inch computer

monitor and were sequentially presented with the 135 videos

in a pseudo-random order (multiple presentations of the same

video were not allowed). After the end of each video, participants

were prompted to classify it as “Normal”, “How”, or “What”

by pressing a corresponding key on the keyboard. The entire

rating procedure was completed in a single session, with no

time constraint.

Identification of the frame of motion onset

All videos were passed as input to a sensitive custom-made

motion detection system based on the OpenCV library (Bradski

and Kaehler, 2008) in Python 3 (Python Software Foundation,

Wilmington, DE). This system was made such that it detected

and reported the presence of motion per each frame of the input

video object (Figure 3). To this end, each frame of a video was

captured, converted to grayscale, and compared to the static initial

frame of the respective video using a frame-differencing algorithm

(Ramseyer, 2020).

Differences between the two frames were highlighted with

a binary threshold method, setting pixels that were at least 10

% different on the grayscale to black and the rest to white.

Subsequently, the contours of the resulting binary frame were

extracted using a standard border following algorithm (Suzuki and

Abe, 1985) and used to perform box detection of motion. To avoid

detecting background noise as motion, a threshold on the minimal

box area was set to 400 pixels and restricted in the Y dimension

to the area corresponding to the location of the actor, thus assuring

the detection of onlymeaningful biological motion of the actor. The

first frame on which the system registered a difference between the

two frames is reported as the frame of motion onset. For each video,

the outcome of the frame-differencing procedure was inspected and

compared to the frame of motion onset identified by a human

observer (C. G.) during a frame-by-frame video presentation to

assure accurate identification and reporting of each video’s frame

of motion onset. In case of disagreement, a correction was applied

in favor of the judgment of the human observer. Video stimuli were

then edited to start at the frame preceding that of motion onset. The

Python scripts for performing the frame-differencing motion onset

detection on this or any other similar set of videos and the script for

breaking the videos into frames can be found in the folder “Motion

Onset Frame-Tracing Procedure” at https://osf.io/zexc4/.

Identification of the frame of category
recognition

Following-up the general video recognition procedure, we

implemented a novel approach for identifying the frame on which

videos became discernibly recognizable as Normal, How, or What

to human observers. The experimental settings and the instructions

given to the participants were identical to the ones for the

psychometric evaluation procedure, with the notable exception that

participants were told that the video will pause at a certain time

point and their task would be to infer whether it is “Normal”,

“How”, or “What” to the best of their ability. Each participant

completed a single iteration of an up-down staircase implemented

by a custom-made MATLAB (Mathworks, Natick, MA) script. For

each iteration, all videos were played once in a pseudo-random

order, up to a specific frame. For the first iteration of the staircase,

performed by the first participant, each video was played up to the
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FIGURE 1

Representative frames extracted from a video depicting a Normal (A), How (B), and What (C) use of a calculator.

FIGURE 2

Representative frames extracted from videos depicting a Normal use of a cup from a portrait (A), profile (B), and a top angle (C).

FIGURE 3

Schematic illustration of the operation of the motion detection system.
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frame corresponding to the 50th percentile of the video’s frames

and then paused. After each video’s pause, the participant was

prompted to report whether, based solely on the played video

segment, they would classify the given video as “Normal”, “How”, or

“What” via mouse click. On each subsequent iteration, performed

by each subsequent participant, the number of frames that would

be played from each video was adjusted based on the response of

the participant in the previous iteration. A correct classification of

a video resulted in a presentation of the given video with N frames

less on the next iteration of the staircase, while a failure led to

adding N frames more, where N decreased monotonously with the

iteration number (n) following the formula N = Nframe/2 × 2-

(n – 2)/2.5, where Nframe is the number of frames in the video.

Iterations of the staircase were performed until N was smaller than

1 and hence the magnitude of up-down reversals became smaller

than 1 frame, thus converging on that frame. The frame converged

upon by the final iteration was taken as the frame on which the

category (Normal, How, orWhat) becomes recognizable.

Statistical analyses

R 4.1.1 (R Core Team, 2021) was used for all statistical analyses.

Participants’ ratings from the psychometric evaluation procedure

were used for calculating validity (expressed as recognition

accuracy in number and percentage of correctly classified videos)

and inter-rater reliability (expressed as Fleiss’ Kappa; Fleiss, 1971).

We performed an exploratory analysis investigating differences in

recognition accuracy of videos from different categories (Normal,

How, and What) and filming angles (portrait, left profile, and top)

with 2-way within-subjects ANOVA.

Following the up-down staircase procedure, we investigated

potential undesirable systematic effects of categories (Normal,How,

and What) and angles (portrait, left profile, and top) on motion

onset and timing of classification of videos, respectively with

separate 2-way ANOVAs. This was deemed necessary as, although

general differences in video properties across videos are expected,

systematic differences between different groups of videos need to

be brought to light so that future researchers can take them into

account when designing experiments.

For all within-subjects ANOVAs, a Greenhouse-Geisser

correction was applied when the Mauchly test indicated a

significant departure from sphericity. Significant interactions were

further analyzed by breaking down the main ANOVA into one-way

ANOVAs, and simple effects were followed by post-hoc Tukey

pairwise comparisons. The R script for performing all analyses can

be found in the folder “All Data and Analyses” at https://osf.io/

zexc4/.

Results

Validity and reliability

Figure 4A presents participants’ overall category (Normal,How,

or What) classification accuracy, which ranged between 85 and

135 videos (Mean = 119.63, SD = 10.41), corresponding to 63

% and 100 % accuracy respectively (Mean = 88.61 %, SD = 7.71

%). The average accuracy was significantly higher than that of 45

videos expected purely by chance (t50 = 51.18, p < 0.0001, 95%

CI [116.69, 122.56], d = 7.17). Figure 4B presents the confusion

matrix for classifications of Normal, How, and What videos. It

indicates that most misclassifications involved reporting How or

What videos as Normal, and What videos as How. Zooming in

on these misclassifications by inspecting the confusion matrices

for each video revealed that the differences are largely stimulus

specific and stem from misclassifications of few individual videos.

The confusion matrices for each video can be found in folder “All

Data and Analyses” at https://osf.io/zexc4/. All in all, even for those

select few videos the proportion ofmisclassification was, quite small

compared to the proportion of correct classifications, therefore

establishing good validity of the present dataset.

The ANOVA investigating the extent to which the classification

accuracy depended on videos’ category and filming angle revealed

a significant effect of category (F2,98 = 9.39, p < 0.001, partial

η2 = 0.158), no effect of filming angle (F2,95 = 0.55, p = 0.571,

partial η
2
= 0.011), and a significant category × filming angle

interaction (F4,185 = 3.08, p = 0.020, partial η
2
= 0.058). To

disentangle the interaction, we performed simple effects analyses

of the factor category for each level of filming angle with one-way

ANOVAs. These analyses revealed a significant effect of category

on the classification accuracy for videos filmed from portrait angle

(F2,98 = 6.23, p = 0.003, η2
= 0.111), profile angle (F2,94 = 12.11,

p < 0.001, η
2
= 0.195), and top angle (F2,100 = 6.83, p = 0.002,

η
2
= 0.120). Figure 5 presents the outcome of post-hoc Tukey tests

for each filming angle. A significant difference was found between

Normal and What videos for all 3 angles, between Normal and

How videos only within the top angle, and between How andWhat

videos only within the profile angle. Considering all angles together,

classification accuracy was marginally higher forNormal compared

to How (t50 = 2.39, p = 0.052), significantly higher for Normal

compared toWhat (t50 = 4.08, p = 0.0005), and marginally higher

forHow compared toWhat (t50 = 2.1, p= 0.099) videos. Although

some statistically significant differences were found, it should be

noted that values of classification accuracy were very high across

all categories and angles, with mean accuracy ranging from 12.37

out of 15 for the What videos in profile view to 14.09 out of 15 for

the Normal videos in profile view.

Motion onset detection

As expected, even with the strict detection parameters we

specified, the motion detection system reported differences in the

onset of motion across the videos, with motion onset detected in

the range 2–18 frames (Mean = 2.5, SD = 1.79), corresponding to

time 0.03–0.3 s (Mean = 0.04 s, SD = 0.03 s). The 2-way ANOVA

investigating for differences in motion onset between videos from

different category and filming angle revealed no effect of category

(F2,126 = 0.54, p = 0.583, partial η
2
= 0.009), a significant effect

of filming angle (F2,126 = 4.4, p = 0.014, partial η
2
= 0.065), and

no category × filming angle interaction (F4,126 = 1.06, p = 0.38,

partial η2
= 0.032). Post-hocTukey tests revealed that in the portrait

and top videos, motion was identified earlier than in the left profile

videos (t126 = −2.65, p = 0.024 and t126 = −2.47, p = 0.039,
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FIGURE 4

Video recognition accuracy of the whole sample (A) and recognition confusion matrix (B). In (A) the red line indicates the mean recognition accuracy

of 119.63 (88.61%) videos.

FIGURE 5

Distributions of the number of correctly recognized videos per category (Normal, How, and What) and filming angle (Portrait, Profile, and Top). Red

lines indicate the respective means. P-values correspond to Turkey tests.

respectively), with no difference in onset between portrait and top

videos (t126 =−0.18, p= 0.982).

When comparing the output of the frame-differencing

procedure to the motion onset frames identified by a human

observer, we found a large degree of convergence with the exact

same motion onset frame identified by the two for 113 (83.7

%) videos. A close inspection of the motion onset detection in

the remaining 22 videos revealed that the discrepancy was as

a result of instances of oversensitivity of the frame-differencing

procedure which resulted in detection of small shadows, wrinkles

in clothing, or eye movements of the actor. To circumvent this

issue, as well as the discovered undesirable systematic differences

in motion onset, we decided to edit all videos by cropping

out the excessive still frames in the beginning and assuring

that humanly perceptible motion onset begins exactly at frame

2 for every video. The success of this editing was verified by

passing the videos to the frame-differencing algorithm and a visual

inspection for the second time, which were in agreement for all

135 videos. The scripts for performing the edits of the videos

are made available. The edited videos in .m4v and .mat format

can be found in the folder “Video Database” at https://osf.io/

zexc4/.
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Category recognition

In just 17 between-subject iterations, the staircase procedure

converged on a single frame within each video of the original

database. The convergence frame was in the range 31–259 frames

(Mean = 81, SD = 35.73), corresponding to time 0.52–4.32 s

(Mean = 1.35 s, SD = 0.6 s). The 2-way ANOVA investigating for

differences in the timing of category recognition between videos

from different category and filming angle revealed a significant

effect of category (F2,126 = 5.01, p = 0.008, partial η
2
= 0.074),

no effect of filming angle (F2,126 = 0.95, p = 0.39, partial η
2
=

0.015) and no category× filming angle interaction (F2,126 = 0.41, p

= 0.799, partial η
2
= 0.013; Figure 6A). Figure 6B presents post-

hoc Tukey tests on the factor category. These tests revealed that

Normal videos were recognized on average 22.9 frames earlier than

the What videos, with no significant difference between Normal

and How and How andWhat videos.

This entire analysis investigating for differences in the timing

of category recognition was repeated after the videos were edited to

be equated for motion onset. The results of this analysis revealed a

pattern of results identical to the one for the original video database.

Each video’s frame of category recognition, before and after editing

is presented in Appendix A.

Discussion

The present article introduces a novel database of 135 video

stimuli for action observation research in neuroimaging settings.

It includes high definition videos of a male actor performing

object-oriented actions from three categories: kinematically natural

and goal-intact Normal actions, kinematically unnatural and goal-

intact How actions, and kinematically natural and goal-violating

What actions. This publicly available dataset will facilitate the

investigation of both bottom-up and top-down neural processing

of the characteristics of observed human actions.

Psychometric evaluation of the videos indicated high video

classification accuracy and inter-rater agreement, conceptually

translating to good validity and substantial reliability of the video

categories. Although classification accuracy was very high for

videos from all categories, we identified that classification accuracy

was consistently higher for Normal compared to What videos in

the portrait, profile, and top filming angles. While statistically

significant, this difference consisted of, on average, one additional

video in 15 in the What category not being correctly classified,

compared to the near perfect classification of Normal videos.

Therefore, we refrain from interpreting it as a mental phenomenon

of importance, or as a serious methodological challenge inherent

in the use of our database. Instead, in line with the goal of the

publication of our database, these findings could be the object of

future psychophysics and neuroimaging investigations aimed at

elucidating the recognition of different types of actions.

Subsequent to the psychometric evaluation, every video’s exact

frame of motion onset was identified with a custom-made motion

detection system. Some undesirable differences in motion onset

of the original video database as well as slight inaccuracies in the

frame-tracing procedure were discovered, therefore we re-edited all

videos to assure that perceptiblemotion begins at exactly the second

frame in each video. This assures that the Normal, How, andWhat

videos in each filming angle are equivalent in terms ofmotion onset,

which facilitates their presentation in neuroimaging experiments

and circumvents the issue of jittered triggering altogether.

Moreover, the frame on which each video becomes discernibly

recognizable as Normal, How, or What was also identified with

a novel up-down staircase procedure. We identified significant

differences in timing of category recognition between the Normal,

How, and What videos with the Normal actions recognized 20–25

frames (or 0.33 s−0.42 s) earlier than the How and What actions.

Across videos, there were differences of up to ∼220 frames (or

3.7 s) in the timing of action category recognition. These results

further highlight the importance of incorporating video motion

characterization procedures into future experimental designs.

Identifying the respective onset frames allows for counteracting the

described differences by incorporating appropriately timed triggers.

For instance, in addition to sending a trigger at the moment

of presentation of each video on the screen, the experimenters

will be able to send a second trigger corresponding to the exact

moment of recognition of each video as identified by the staircase

procedures. As a cautionary note, given the discovered difference

in recognition timing between Normal and What videos, this

second trigger will tend to come on average 0.38 s later for the

What videos. This implies that experimenters should carefully

consider the length of their epoch to assure that their offset is

within the presented video’s duration for each condition. This way

contrasts between Normal and What videos will be performed

under identical action observation conditions without potential

contamination from the video ending and the interstimulus

interval. Although epoch length selection depends on the specific

research question, commonly used time periods of 1 to 2.5 s can

successfully be epoched following a category recognition trigger

from each video from our database. This approach would then

allow for more precise grand averaging of epochs, precisely timed

to the actual onset of the characteristic of interest. It is expected

that such an approach will improve the sensitivity of event-related

neuroimaging experiments. For this reason, the video database, the

psychometric and motion evaluations, and the scripts required for

performing these evaluations are made freely available for future

scientific use. Moreover, our two motion evaluation procedures are

well suited for characterizations of other already existing (Cipriano

et al., 2023; Di Crosta et al., 2020; Umla-Runge et al., 2012; Urgen

et al., 2022) or to-be-developed sets of video stimuli. Furthermore,

any additional evaluations of the videos such as collection of arousal

and valence ratings, object familiarity ratings, imaginability ratings,

normative validation in special populations, or collection of eye-

tracking data are also greatly encouraged. Motor neuroscience

studies of motor resonance or embodiment should particularly

focus on characterizing the videos’ imaginability, whereas cognitive

neuroscience studies should focus on characterizing the videos for

arousal and valence. Determining the extent to which participants

are familiar with the depicted objects is equally relevant for both

motor and cognitive experiments, especially with non-western

participants. For a successful experimental design any potential

differences along these dimensions should be controlled for.

Another fruitful direction for future research is a validation of
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FIGURE 6

Distributions of the frames on which videos were recognized as Normal, How, or What for each category and filming angle (A) and Turkey tests for

factor category (B). Red lines indicate the respective means. In (B), the outcome of Turkey tests comparing filming categories across filming angles is

indicated above the violins.

the results of our motion onset frame-differencing algorithm and

our category recognition up-down staircase with more advanced

artificial intelligence and marker less motion capture methods to

assure their precision of capturing nuanced human movements.

A noteworthy limitation of our database is that our videos

depict only a male actor. It is conceivable that nuanced gender

effects could be present in investigations of motor resonance and

embodiment, therefore, depending on the experimental design,

future researchers may need to compare their outcome variable

between male and female observers and if necessary supplement

the video database with videos depicting a female actor. A

further limitation is that in our videos filmed from profile

orientation the actor is wearing different attire. This was done

to provide better contrast between the actor and the background,

however, it could potentially cause differences in the perception

of these videos compared to the ones from the other angles. In

spite of these limitations, our open-access video database greatly

facilitates the process of stimulus preparation for subsequent

action observation experiments. By relying on the present set

of videos, researchers can design controlled investigations of the

perception and comprehension of the kinematics of goal-directed

human motion without investing resources into filming videos

or depending on haphazard videos gleaned from the internet.

Indeed, the reliance on standardized videos across experiments

reduces the likelihood of introducing undesired variability into

the experimental manipulation due to differences of stimuli.

Therefore, reliance on the present set of videos could improve

the comparability and replicability of action observation research

within motor and cognitive neuroscience.

As it currently stands, the present dataset has a wide

applicability for action observation research within various fields of

inquiry. The videos were explicitly designed for application

in electrophysiological (e.g., Electroencephalography and

Magnetoencephalography), hemodynamic (functional Magnetic

Resonance Imaging, Functional Near-Infrared Spectroscopy and

Positron Emission Tomography), and transcranial stimulation

(Transcranial Magnetic Stimulation, transcranial Direct Current

Stimulation) studies of brain activity during action observation

(e.g., Arnstein et al., 2011; Avanzini et al., 2012; Brunsdon et al.,

2019; Dinomais et al., 2013; Nedelko et al., 2010). However, they

can also be utilized in investigations of the neural encoding of

the kinematics of observed action (Bourguignon et al., 2013;

Marty et al., 2018; Savaki et al., 2022), the goals and intentions

of observed actions (Hamilton and Grafton, 2006; Nicholson

et al., 2017), as well as the actions and goals afforded by objects

(Bach et al., 2011; Tipper et al., 2006). Since our videos are
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highly recognizable, they can also be used in investigations of all

above mentioned phenomena during action imitation and action

learning interventions for clinical populations with impaired action

comprehension such as autism spectrum disorder (Kaokhieo et al.,

2023) and schizophrenia (Enticott et al., 2008). Such interventions

are expected to strengthen the action perception–execution

association, facilitate action embodiment (Tschacher et al., 2017),

and lead to improved social cognition. In addition, the videos from

the Normal category can also serve as excellent training stimuli

for action observation therapy—a promising intervention for

motor recuperation in patients with movement disorders such as

stroke (Ertelt et al., 2007; Fu et al., 2017) or Parkinson’s disease

(Pelosin et al., 2010) and an equally promising intervention for

maintenance of motor ability and physical performance in healthy

elderly (Rizzolatti et al., 2021). The videos can also be used as

naturalistic visual stimuli for cognitive neuroscience experiments

investigating, among others, attention to and memorization of

human action, supplementing the frequently used static pictures

and non-naturalistic point-light displays (Gao et al., 2015; Lu et al.,

2016; Sifre et al., 2018). Further advances in all above-mentioned

fields of research are necessary for gaining a more comprehensive

understanding of the neural and cognitive processes which allow

for perception and comprehension of observed action and, in turn,

execution of appropriate corresponding motor reactions. Such

understanding could foster training protocols for timely initial

development and, in the case of acquired cognitive and motor

impairments, effective recovery of these abilities—both crucial for

the display of effective interpersonal behaviors within the cohesive

structure of a healthy society.

Conclusion

In closing, in hopes of facilitating action observation

research in neuroimaging settings and encouraging open

methodology, we provide a large open-access database of

psychometrically evaluated videos of an actor performing

movements explicitly designed to be kinematically correct or

incorrect and goal-intact or goal-violating. We also provide the

timing of action category recognition within each video for the

sake of maximizing the precision of the assessment of the neural

activity evoked by the observation of the different actions. The

precise characterization of the videos in terms of psychometric

properties and motion onset makes the present database a very

suitable stimulus set for experiments aimed at investigating the

neural correlates of perception, comprehension and acquisition of

observed action.
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Appendix

TABLE A1 Frame on which category is recognized for each video of the original database.

Normal How What

Portrait Profile Top Portrait Profile Top Portrait Profile Top

Calculator 31 40 31 35 31 34 99 93 45

Cap 108 100 81 113 51 84 85 42 96

Case 62 44 97 115 48 67 129 80 84

Coffee jar 47 42 39 44 49 41 51 52 42

Comb 87 99 94 117 111 109 114 96 103

Cup 43 43 41 34 48 259 84 105 145

Earphone 59 82 93 74 66 102 111 95 89

Fork 86 64 169 132 98 148 105 132 160

Glasses 64 63 102 77 55 52 88 71 126

Hat 78 80 67 81 75 129 56 82 43

Hourglass 47 38 44 95 83 97 68 76 83

Mouse 35 54 43 44 42 40 88 93 53

Pen 47 51 66 74 78 113 102 103 130

Ruler 68 109 131 74 189 78 102 128 66

Scissors 48 89 45 71 127 46 103 111 79

TABLE A2 Frame on which category is recognized for each video of the edited database.

Normal How What

Portrait Profile Top Portrait Profile Top Portrait Profile Top

Calculator 31 24 31 35 31 34 99 93 45

Cap 94 100 81 113 51 84 85 42 96

Case 62 44 97 115 48 67 129 80 84

Coffee jar 47 40 39 44 49 41 51 51 42

Comb 87 99 94 114 104 102 110 96 103

Cup 38 43 41 34 48 259 84 105 140

Earphone 59 82 86 74 66 102 111 95 89

Fork 86 64 150 132 98 136 105 126 160

Glasses 64 63 63 77 55 52 88 71 126

Hat 74 74 67 45 75 129 56 82 43

Hourglass 47 37 44 95 83 97 68 76 83

Mouse 35 50 43 44 42 40 87 93 53

Pen 47 51 60 74 73 106 102 95 114

Ruler 68 105 110 74 187 78 98 128 66

Scissors 48 89 45 71 115 46 89 111 79

Bold Italic indicates an edited video.
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