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A framework for modeling
performers’ beat-to-beat heart
intervals using music features
and Interpretation Maps

Mateusz Soliński1,2*†, Courtney N. Reed1,2 and Elaine Chew1,2†

1School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine,
King’s College London, London, United Kingdom, 2Engineering Department, Faculty of Natural,
Mathematical and Engineering Sciences, King’s College London, London, United Kingdom

Objective: Music strongly modulates our autonomic nervous system. This
modulation is evident in musicians’ beat-to-beat heart (RR) intervals, a marker of
heart rate variability (HRV), and can be related to music features and structures.
We present a novel approach to modeling musicians’ RR interval variations,
analyzing detailed components within amusic piece to extract continuousmusic
features and annotations of musicians’ performance decisions.

Methods: A professional ensemble (violinist, cellist, and pianist) performs
Schubert’s Trio No. 2, Op. 100, Andante con moto nine times during rehearsals.
RR interval series are collected from each musician using wireless ECG sensors.
Linear mixed models are used to predict their RR intervals based on music
features (tempo, loudness, note density), interpretive choices (Interpretation
Map), and a starting factor.

Results: Themodels explain approximately half of the variability of the RR interval
series for all musicians, with R-squared = 0.606 (violinist), 0.494 (cellist), and 0.540
(pianist). The features with the strongest predictive values were loudness, climax,
moment of concern, and starting factor.

Conclusions: The method revealed the relative e�ects of di�erent music
features on autonomic response. For the first time, we show a strong link
between an interpretation map and RR interval changes. Modeling autonomic
response to music stimuli is important for developing medical and non-medical
interventions. Our models can serve as a framework for estimating performers’
physiological reactions using only music information that could also apply to
listeners.

KEYWORDS

RR intervals, heart rate variability, cardiac modeling, music performance, Interpretation

Map, music features

1 Introduction

Live music provides a unique context to study cardiac and other physiological

responses in ecological and engaging settings. For both listeners and musicians, music

is an auditory and mental stimulus affecting the rest of the body through the autonomic

nervous system (Grewe et al., 2007; Purwins et al., 2008; Ellis and Thayer, 2010). Music

elicits emotions (Yang et al., 2021) and strongly modulates autonomic responses (Labbé

et al., 2007), which can be measured through physiological reactions; for example, heart

and respiratory rate changes (Bernardi, 2005; Bernardi et al., 2009; Hilz et al., 2014),

goosebumps, shivers, and chills (Grewe et al., 2007).
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However, musicians must engage in physical activity and

mental coordination while performing. Compared to music

listening, performing modulates autonomic response more

strongly (Nakahara et al., 2011). One of the most relevant

measures of physiological response to music stimuli is the

time distances between R-peaks, the most obvious part of the

electrocardiograph (ECG) signal, called RR intervals, which

correspond to depolarization and contraction of the ventricles. The

length of the intervals and their variation in time are modulated

by the autonomic nervous system (ANS), which consists of two

branches: parasympathetic, which increases RR intervals (decreases

heart rate) and increases total heart rate variability (HRV), and

sympathetic, which does the inverse (Sloan et al., 1994). HRV is

indicative of the body’s ability to cope with mental and physical

stress and environmental factors (Nishime, 2000; Pierpont et al.,

2000; Pierpont and Voth, 2004; Cammarota and Curione, 2011;

Michael et al., 2017; Pokhachevsky and Lapkin, 2017). Healthy

individuals have higher HRV, while lower variability can indicate

poor sympathovagal balance and resultant cardiovascular disease

(van Ravenswaaij-Arts, 1993).

Studies on how music affects the ANS have been performed

mostly on listeners’ heart rate (HR), HRV, and cardio-respiratory

functions due to music-related arousal and relaxation (Chlan, 2000;

Bernardi, 2005; Bernardi et al., 2009; Bringman et al., 2009; Nomura

et al., 2013; Hilz et al., 2014). Existing studies examined music

features like music genre (Bernardi, 2005; Hilz et al., 2014), the

complexity of the rhythm (Bernardi, 2005), and tempo (Bernardi,

2005; Nomura et al., 2013), and music structures such as vocal and

orchestral crescendos, and musical phrases and emphasis (Bernardi

et al., 2009).

On the other hand, studies of musicians’ autonomic response

have focused mainly on stress and the effect of the performance

context rather than the impact of the music itself. Prior studies

considered changes in mean physiological signal parameters

with factors such as ecological setting—rehearsal vs. public

performances of pieces by Strauss, Mozart, Rachmaninov, and

Tchaikovsky by the BBC Orchestra (Mulcahy et al., 1990); a

selection of easy and strenuous classical pieces (Harmat and

Theorell, 2009), auditioning with and without audience playing

Bach’s Allemandes (BWV1004 or BWV1013; Chanwimalueang

et al., 2017), onstage and offstage stress of the opera singers

performing Mieczys Weinberg’s The Passenger (Cui et al., 2021)—

piece difficulty (Mulcahy et al., 1990; Harmat and Theorell, 2009),

music genre—classic rock, hard rock, Western Contemporary

Christian (Vellers et al., 2015)—musicians’ flow states (Horwitz

et al., 2021), and intensity of physical effort on different instruments

as measured by a maximum theoretical heart rate (Iñesta

et al., 2008). Musical action goes beyond physical effort. Hatten

describes "effort" in music with respect to planning and action

required to overcome environmental and physical forces to

achieve musical intention (Hatten, 2017). Musicians must maintain

careful interplay between their intention, effort, and restraint

to control their technique, stay within the bounds of their

instruments and bodies, and execute their intended articulation

and expression (Tanaka, 2015). Considering the time frame of

performance, music affects musicians in all three time domains:

the present (the currently played music), the past (recovering

from previous playing), and the future (anticipating the next

action).

There is a lack of work analyzing musicians’ autonomic

responses in relation to detailed components of the music piece

on a continuous scale rather than taking average measurements

under different physical conditions and stress levels. An example

of analysis in the continuous scale was shown in the study

by Williamon et al., which examined RR intervals and HRV

parameters collected from a pianist (Williamon et al., 2013). It

analyzed the stress level while performing Bach’s English Suite in A

minor (BWV807) for a large audience compared with one in the lab

using defined stress markers: mean RR intervals, HRV frequency

parameters, and sample entropy. The results suggested that

autonomic responses are more powerful in live, ecological settings.

The analysis also combined the basic performer’s annotations of

challenge during play (the first and third movements were marked

as the most challenging) and changes in stress levels as measured

physiologically.

In this study, we bridge this gap by examining three

collaboratingmusicians (violin, cello, and piano) playing Schubert’s

Trio No. 2, Op. 100, andante con moto, measuring their ECG

signals and predicting their RR intervals based on continuously

measured music features (loudness, tempo, and note density) and

musicians’ annotations serving as a trace of their interpretation

of the piece. The features annotated were selected as potentially

important to physiological response during performance. Loudness

and tempo have previously been found as independent factors that

can elicit emotional states (valence/arousal) or cardiac response in

listeners (Bernardi, 2005; Yang et al., 2021). It is expected that they

may also be important in the autonomic response of musicians.

Note density was selected as an indirect measure of the effort

associated with playing intensity.

We selected RR intervals—the inverse of the heart rate—as the

continuous measure of physiological response to playing music.

This approach allowed us to model the instantaneous reactions to

specific music structures and to changes in the music signals. We

opted not to use HRV measures because they require a moving

window from 10 s to a few minutes long, depending on the HRV

parameter, which can be problematic when analyzing relatively

short pieces, some of which may be only 2–3 min long, as was

the case in our dataset. While in ultra-short HRV analysis, the

smallest time window can be as short as 10 s (e.g., for RMSSD

during cognitive task, Salahuddin et al., 2007), the values calculated

in this way are highly sensitive to outliers, producing unsatisfactory

results, especially for RR time intervals during music playing which

are far from stationary. Hence, we chose to focus on RR intervals

which allows our framework to be applied to shorter and highly

variable music pieces.

We present the framework formodeling physiological reactions

using regression mixed models that take as input a novel

representation, which we call the Interpretation Map. We

hypothesize that such maps can provide step improvement to

models of individual beat-to-beat heart intervals. This is the first

time, to our knowledge, that such a method has been used to

describe beat-to-beat changes of RR intervals in musicians. Such

information about music-derived physiological responses could be

used to inform future training and therapeutic applications.
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2 Methods

2.1 Participants

The study participants were a trio of professional musicians

(over 20 years of performance experience, more than 10 years

playing together).We asked themusicians to get at least 7 h of sleep,

avoid caffeinated and alcoholic beverages for 8 h, and eat for 1 h

prior to the agreed rehearsal time.

2.2 Music selection

The trio performed Schubert’s Trio No. 2, Op. 100, Andante

con moto (henceforth, "the Schubert"). The piece offered a balance

between varied musical features and clear musical structures.

The alternating sections marked by the musical themes enabled

comparisons between similar and repeated musical features. The

tempo of the piece (about 88 BPM) resembles a typical human

HR, which allows us to align musical features to physiological data

without over sampling the signals. The musicians had not practiced

the Schubert together before the first recording.

2.3 Recording equipment

We use the Polar H10 (Polar Electro Oy, Kempele, Finland)

heart rate sensor to measure the ECG signal in each performance.

The Polar unit registers a one-channel ECG signal with a sampling

frequency of 130 Hz, but it detects QRS complexes to create

RR interval series at a higher sampling frequency of 1000 Hz.

Data samples from the Polar straps are collected via Bluetooth on

three iPhones (Apple, Cupertino, CA, USA) running the HeartFM

mobile app on iOS 16.1.2 or higher. We use a Zoom H5 (Zoom,

Tokyo, Japan) handheld recorder for audio recording.

2.4 Procedure

The Polar straps (Figure 1) are moistened and worn across

each musician’s sternum. The musicians are seated in a typical

trio configuration. The Zoom recorder is placed ∼2 m from the

musicians. The three iOS devices and Zoom are synchronized with

a clapper for later alignment of the signals. The Schubert is recorded

nine times over 5 different days. The musicians performed the

piece as written, after which the data recordings were stopped. The

Schubert was rehearsed and recorded nine times over 5 different

days.

2.5 Score annotation

On a separate date following the recordings, the musicians

collaborate to annotate themusic score on the right side of Figure 1,

developing a novel set of categories reflecting their negotiated

roles and collective actions. We refer to this representation as

the Interpretation Map. The Interpretation Map captures the

musicians’ experienced cognitive and physical load, expressive

choices, and how they negotiated a path through the music.

The trace of the musicians’ intention, immersion and reflection

embedded in this Interpretation Map represent key components

of the performances that likely affected their heart rates. The

Interpretation Map consisted of seven salient categories of musical

action: (1) melodic interest (main melody), (2) melodic interaction

(e.g., melody and counter-melody together), (3) dialogue (e.g.,

asynchronous call and answer), (4) significant accompaniment

(as opposed to accompaniment that is background), (5) climax

(usually preceded by a build-up into the climax, like a crescendo),

(6) return / repose (however, it was not used in the model due

to low occurrence), and (7) moment of concern (during which

musicians need to manage greater risk). These particular "moments

of concern" were moments that were persistently concerning across

repetitions. Thus, the musicians needed to manage greater risk at

these parts of the piece across performance numbers.

The final annotated score, agreed upon collaboratively by the

trio, reflects the role of each instrument in the piece, with the piano

supplying the accompaniment more often than the cello or violin.

In working with the trio, we presumed a level of musical expertise in

the study, namely, music theory knowledge, the ability to read and

interpret musical scores and markings (e.g., dynamics, bowings,

and articulations), harmonic awareness, focus and concentration,

technical proficiency on respective instruments (e.g., control of

tempo, pitch, and rhythm), and proficiency in performing with

others in amusic ensemble. The annotationsmade by themusicians

in this study depend on their collective musical expertise and

awareness of the music genre. They are not representative of all

possible interpretations by other musicians but are relevant to this

particular trio and the performances examined here.

2.6 Data preparation

2.6.1 Score-time domain
To focus on musically salient features and their effect on

physiological data across multiple performances, we synchronize

the RR interval time series and performance audio to score-time

(Chew and Callender, 2013)—i.e., with musical beats instead of

seconds as time axis—to match them to the performers’ score

annotations. Other continuous time signals were adjusted to

the annotated beats using linear interpolation. The conversion

to score-time also matches the physiological signals to music

features extracted from the score and makes the signals from all

performances comparable.We use the half-beat and the eighth note

pulse in the 2/4m as a unit for the 848 eighth note beats in Schubert.

2.6.2 Physiological data
The RR interval series generated by Polar’s automatic QRS

complex detection are reviewed for inaccurate beat detection

and premature beats; premature atrial and ventricular beats are

removed. In each performance, the series of normal beats were

normalized to the performer separately. The normalization of

the RR intervals allowed us to compare the effect of the music

structures annotated in the Interpretation Map between the
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FIGURE 1

Data collection: the trio perform the Schubert nine times while wearing Polar straps (a) to collect ECG data. A Zoom recorder gathers audio data
from each performance (b). Players annotate categories of performed structures in the music score (c).

musicians. Since the musical parameters extracted from the score

are common for each performance, we wanted to assess their effects

independent of the baseline RR interval value.

2.6.3 Music features
We compute three music features related to the musicians’

physical effort while playing: note density, loudness, and tempo.

Loudness and tempo signals were calculated based on the

recordings of the trio’s combined performance. We decided to

process the full recording instead of recording each musician

playing separately to capture the real-life situation of the musicians

playing together as an ensemble.

We manually annotate the eighth note pulse in the recorded

performance audio using Sonic Visualizer (Cannam et al., 2010);

the annotations are corrected to note onsets using the TapSnap

algorithm of the CHARM Mazurka Project1. We calculate note

density, the number of note events per beat, using the notedensity

function in theMatlabMIDI Toolbox (Eerola and Toiviainen, 2004;

Toiviainen and Eerola, 2016) as a measure of technical complexity.

This time series was calculated separately for each musician based

on the score. Perceptual loudness in sones was derived using the

Music Analysis Matlab Toolbox (Pampalk, 2004). The tempo was

computed from the beat annotations in beats per minute (BPM).

Tempo and loudness from each performance are normalized, and

loudness is filtered with a low-pass Butterworth filter with order

N = 3 and Wn = 0.125 (cutoff frequency parameter in butter

function in Python).

2.6.4 Score annotations
The musicians’ score annotations are transformed into signal

inputs for the models. A length L binary vector (where L = 848,

the number of eighth note samples) is created for each annotated

category, with 1 indicating the occurrence of an annotation (0

otherwise). From these binary vectors, we generate the reference

for the input signals, which are the sum of Gaussian kernel density

estimation functions (Silverman, 2018). When the i-th element of

1 http://mazurka.org.uk/cgi-bin/tapsnap

the binary vector is 1, a Gaussian function (standardized to sum

= 1) centered at index i + 16th (four bars) with SD = 16/2 (two

bars) is added to the final vector. These parameters relate to the 2/4

m of the Schubert.

2.6.5 Starting factor
The musicians’ physiological responses are observed to be

different at the beginning of playing due to individual activation of

autonomic mechanisms underlying cardiovascular reactivity rather

than any specific physical or musical features. The first part of

Schubert is not physically challenging (low loudness, simple piano

accompaniment, and calm introduction of the cello theme); the

decline in RR intervals is relatively pronounced through the first

20 bars of music. The initial stress reaction to mental tasks caused

by the process of switching from rest to stimulation has been

associated with the disruption of baseline homeostasis (Kelsey et al.,

1999; Hughes et al., 2011, 2018; Widjaja et al., 2013). We model

this initial physiological reaction by introducing a starting factor,

tailored to the Schubert, expressed as a time series based on the

formula:

{

tb1∗m(t)+b2∗a(t) when t ∈ [ 0, 80 ]

0, when t > 80,
(1)

where t is the score-time, m(t) and a(t) terms are binary

indicators of whether the musician plays a melody or

accompaniment (or significant accompaniment) at score-

time t, and b1 = −0.2364 and b2 = −0.0871, mean values

of the exponents obtained by fitting tb to each musician’s

first 80 RR intervals (in score-time) from the cellist (b1) and

pianist (b2) over all performances. Thus, for the cellist, who

plays the opening melody, the factor equals t−0.2364, and for

the pianist, t−0.0871, where t ∈ [ 0, 80 ], and 0 otherwise. Note

that the violin does not play during the first 20 bars, and her

starting RR intervals were like the baseline; hence, the starting

factor for the violinist has a rectangular shape and equals

tb1∗0+b2∗0 = 1.
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2.7 Statistical analysis

Linear mixed models are used to predict the musicians’ RR

intervals. Three models with differing complexity are created for

each musician:

Model Set 1: Considers only loudness and tempo extracted

from the recorded audio files for the full ensemble.

Model Set 2: Includes tempo, loudness, and the factors

calculated individually for each musician: note density and the

Interpretation Map, which consists of annotations of melodic

interest, dialogue, accompaniment, significant accompaniment,

climax, and moments of concern.

Model Set 3: Includes tempo, loudness, note density, the

Interpretation Map, and the starting factor time series.

The features in Model Sets 1–3 were considered as fixed effects.

The performance number, 1–9, was added to the models as a

random effect (random intercept). Thus, we progressively observe

the model’s performance as its complexity increases.

The model coefficients of the LME models are calculated using

the bootstrapping method—sampling with replacement from the

original dataset 1,000 times (Haukoos, 2005). In the bootstrapping

method, the p-values are estimated by generating distributions for

the coefficients with mean 0 using coefficient and mean values

extracted from the original data, i.e., distributions for the null

hypothesis that the feature has no effect in the model. Then, we

calculate the probability, considering a two-tailed hypothesis, that

the mean is significantly different from zero. If the probability is

<0.05, we reject the null hypothesis that the feature has no effect

in the model. The backward stepwise method based on the Akaike

Information Criterion (AIC) was used to eliminate insignificant

variables in all models. The R2 (coefficient of determination) was

used to estimate the variation in the dependent variable explained

by the independent variables.

Additionally, the correlation coefficients between aggregated

input variables from all performances—time series from audio

signals, note density, the Gaussian Kernel Functions, and the

Starting Factor—were calculated to check for strong pairwise

associations. The variance inflation factor (VIF) and Cohen’s f 2

effect sizes were also computed for each variable and Model Set.

3 Results

The results of the LMEs considering all independent variables

(in Model Sets 1–3) for each musician are shown in Table 1. The

correlation matrices for all musical parameters (loudness, tempo,

note density, and the Gaussian Kernel Functions for categories

from the Interpretation Map) are presented in Figure 2. Although

most coefficients were significantly different from zero (which

may have been due to the relatively large sample size), we do not

observe strong correlations (|r| < 0.50) between these parameters

for any musicians’ results. The VIF values are presented in Table 1.

The VIF for all variables is between 1.13 and 5.17 (mean 2.04),

which suggests low multicollinearity, except for the Violinist’s

Melody in Model Set 3, where VIF is larger than 5, suggesting high

collinearity.

Observe that the models with collective music audio features,

the Interpretation Map, the individually calculated note density

values, and the starting factor (Model Set 3) explained more than

half of the variability of the musicians’ RR interval time series for

the violinist and the pianist and almost half for the cellist. Based on

the R2 values, the greatest improvement in explaining the variability

in the RR intervals is observed after adding the Interpretation Map

(Model Set 2); adding the starting factor (Model Set 3) further

boosted the results.

R2 increased with model complexity for all musicians and

all groups of models (Model Sets 1–3). Model Set 1 (only audio

parameters loudness and tempo) explained 29.3, 7.2, and 23.7%

of the RR interval variability for the violinist, cellist, and pianist,

respectively. Adding the Interpretation Map in Model Set 2

increased the R2 values to 54.0, 48.5, and 44.6%, respectively.

The most complex Model Set 3, adding the starting factor,

obtained the highest R2: 60.6, 49.4, and 54.0%, respectively. Figure 3

shows the original and predicted RR interval series from an

example performance, together with the musicians’ annotations

and loudness and tempo signals in the score-time domain for all

musicians. Observe that the reconstructed RR intervals fromModel

Set 3 follow the trends in the original data for all musicians. Their

standard deviations also follow those in the original series, although

the values are usually smaller.

We observe in Table 1 that most of the coefficients are negative,

meaning that the musicians’ RR intervals tend to decrease with

the chosen features, but they vary in value. The results in the

final Model Set 3 show that the components with the largest

absolute values of weights are loudness (−0.495), climax (−0.330),

and initialization factor (0.300) for the violinist; climax (−0.712),

moment of concern (−0.506), and loudness (−0.246) for the

cellist; climax (−0.495), loudness (−0.431), and initialization factor

(0.327) for the pianist. Climax was the strongest common factor

among all features for all musicians. We observe the largest

simultaneous decrease in RR intervals at the beginning of climatic

parts: from bar 67 (268 eighth notes in score time), from bar

115 (460 eighth notes in score time; the musicians’ response in

that part is a combined effect of climax, melodic interaction,

and moments of concern) and from bar 158 (632 eighth notes

in score time). A moment of concern is a type of stress. It

has the lowest coefficient value for the cellist (−0.506). This is

probably associated with a solo passage of 16th notes in bars

119–121 (476–484 eighth notes in into the piece). The coefficient

of the moment of concern was slightly negative for the pianist

(−0.151) but slightly positive for the violinist (0.166). However,

the violinist labeled only one short segment of the piece (only

three bars) as a moment of concern, which may be insufficient

information to obtain a representative coefficient for this category.

The rest of the annotations, including melody, dialogue, significant

accompaniment, and accompaniment, have larger coefficient values

(> −0.2), the singular exception being the pianist’s annotation of

the dialogue (−0.228), which for that instrument occurs largely

with the climax.

Loudness and tempo have limited value for explaining the

musicians’ physiological response. Between the two, loudness

has a stronger effect than tempo. Its coefficient has a larger

absolute value for all musicians (based on the final Model
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TABLE 1 Parameters used to model musicians’ RR intervals whilst they performed the Schubert for the three model sets.

Violinist Cellist Pianist

Model set 1

R2 0.293 0.072 0.237

AIC −6, 054 −4, 475 −5, 104

β f 2 VIF β f 2 VIF β f 2 VIF

Intercept 0.708 0.732
0.686 − − 0.805 0.827

0.783 − − 0.631 0.653
0.607 − −

Loudness −0.930−0.891
−0.971 0.243 1.17 −0.359−0.316

−0.399 0.008 1.17 −0.938−0.899
−0.974 0.229 1.17

Tempo −0.260−0.221
−0.301 0.038 1.16 −0.309−0.269

−0.347 0.041 1.16 −0.107−0.071
−0.146 0.007 1.16

Model set 2

R2 0.540 0.485 0.446

AIC −9, 255 −9, 092 −7, 592

β f 2 VIF β f 2 VIF β f 2 VIF

Intercept 0.826 0.848
0.803 − − 0.796 0.818

0.773 − − 0.633 0.658
0.605 − −

Loudness −0.508−0.475
−0.545 0.104 1.40 −0.176−0.143

−0.217 < 0.001 1.34 −0.649−0.611
−0.689 0.126 1.46

Tempo −0.147−0.108
−0.185 0.014 1.61 −0.159−0.128

−0.190 0.018 1.35 0.126 0.166
0.085 0.004 1.44

Note density −0.013−0.011
−0.015 0.024 1.24 −0.008−0.006

−0.009 0.012 1.16 non-sign. − −

Melody −0.306−0.291
−0.321 0.305 2.52 −0.137−0.122

−0.153 0.037 3.81 −0.155−0.141
−0.169 0.058 2.00

Dialogue −0.293−0.278
−0.308 0.296 2.33 −0.067−0.051

−0.083 0.010 3.09 −0.318−0.299
−0.337 0.122 4.27

Sig. Acc. −0.361−0.330
−0.391 0.084 1.57 0.048 0.066

0.031 0.002 2.74 −0.135−0.115
−0.153 0.025 3.38

Acc. −0.181−0.165
−0.197 0.076 1.56 0.083 0.101

0.067 0.009 2.10 −0.101−0.087
−0.114 0.023 2.05

Climax −0.587−0.559
−0.617 0.264 1.13 −0.636−0.612

−0.661 0.264 1.29 −0.649−0.623
−0.678 0.213 1.43

Mnt. Conc. 0.159 0.196
0.124 0.007 1.19 −0.435−0.404

−0.465 0.134 1.45 −0.296−0.266
−0.324 0.047 1.67

Model set 3

R2 0.606 0.494 0.540

AIC −10, 489 −9, 308 −9, 205

β f 2 VIF β f 2 VIF β f 2 VIF

Intercept 0.653 0.677
0.628 − − 0.868 0.886

0.850 − − 0.511 0.537
0.488 − −

Loudness −0.495−0.460
−0.532 0.118 1.40 −0.246−0.209

−0.278 < 0.001 1.40 −0.431−0.393
−0.470 0.078 1.54

Tempo −0.214−0.174
−0.254 0.029 1.62 −0.143−0.112

−0.178 0.018 1.35 0.094 0.130
0.057 0.004 1.44

Note density −0.004−0.002
−0.006 0.003 1.32 −0.008−0.006

−0.010 0.013 1.16 0.0004 0.0002
−0.0007 0.001 1.20

Melody −0.093−0.082
−0.105 0.015 5.17 −0.195−0.183

−0.206 0.053 4.57 −0.038−0.023
−0.052 0.003 2.41

Dialogue −0.083−0.072
−0.095 0.013 4.84 −0.138−0.125

−0.151 0.023 3.98 −0.228−0.209
−0.247 0.067 4.55

Sig. Acc. −0.052−0.023
−0.083 0.002 2.23 −0.030−0.016

−0.044 < 0.001 3.53 −0.027−0.009
−0.046 0.001 3.77

Acc. non-sign. − − non-sign. − − −0.093−0.080
−0.108 0.023 2.05

Climax −0.330−0.299
−0.361 0.070 1.55 −0.712−0.690

−0.735 0.285 1.45 −0.495−0.469
−0.524 0.136 1.53

Mnt. Conc. 0.166 0.204
0.132 0.008 1.19 −0.506−0.475

−0.536 0.154 1.62 −0.151−0.124
−0.181 0.012 1.79

Starting factor 0.300 0.315
0.284 0.167 3.01 −0.156−0.134

−0.179 0.017 1.52 0.327 0.346
0.311 0.206 1.36

Included are coefficients (and confidence intervals) that are significant, 95%CI in upper and lower scripts, as well as f 2 effect sizes and variance inflation factors (VIFs).

p < 0.01 for note density and significant accompaniment in the pianist’s model (in Model Set 3); otherwise, p < 0.001.

The values of the R2 and AIC parameters for each model set and musician have been written in bold text.

Set 3): −0.495 (loudness) vs. −0.214 (tempo) for the violinist,

−0.246 vs. −0.143 for the cellist, and −0.431 vs. 0.094 for the

pianist.

Cohen’s f 2 effect sizes vary between musicians and Model Sets.

In Model Set 1, the effect size for loudness is much higher than for

tempo in the violinist’s and pianist’s models; in the cellist’s model,
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A B C

FIGURE 2

Correlation matrices for musical parameters calculated from audio signals (loudness and tempo), score (note density), and the Interpretation Map
(Gaussian Kernel Functions) for each musician [(A) Violinist, (B) Cellist, and (C) Pianist]. Most of the correlations were significant (although small), and
the non-significant correlation coe�cients (p > 0.05) were underscored.

f 2 is small for both loudness and tempo. In Model Set 2, the effect

size for loudness lessens due to the stronger influence of features

from the Interpretation Maps: Melody (f 2 = 0.305), Dialogue

(f 2 = 0.296) and Climax (f 2 = 0.264) in the violinist’s model;

and, Climax in the cellist’s (f 2 = 0.264) and pianist’s (f 2 = 0.213)

models. In Model Set 3, the effects of musical features in the models

for violinists and pianists are masked by the Starting Factor, which

models the RR intervals only at the beginning of the piece.

4 Discussion

The advantage of studying professional musicians is the ability

to map actions onto a timeline based on high musical awareness

and knowledge. The use of the Interpretation Maps in the models

provided an insightful characterization of RR interval changes

during music performance.

It is worth noting that the highest increase in R2 observed

between Model Sets 1 and 2 is not only due to the fact that

participant-specific predictors have been added but that these

predictors capture the musicians’ interpretative choices.

The music attains its greatest emphasis or most exciting

part at the climax. These parts are characterized by a high

degree of cohesion between the musicians. In a Time Delay

Stability analysis of the current dataset (Soliński et al., 2023),

climaxes were associated with the highest degree of physiological

coupling between the musicians’ RR intervals. The reaction

to a musical climax can correspond to muscular exertion

(Davidson, 2014) or emotional arousal (Bannister, 2018),

although it may not be mentally or physically demanding.

The highest heart rates (or lowest RR intervals) have

been found during musical climaxes in previous studies

on woodwind (clarinet) playing (Hahnengress and Böning,

2010).

The stronger effect of the loudness in comparison to tempo

suggests that playing louder tends to decrease RR intervals more

than playing faster for the Schubert. One exception is the positive

tempo coefficient for the pianist, meaning the RR intervals increase

with tempo, but the effect is relatively small. The positive effect

of tempo on heart rate was previously reported as a significant

factor in music playing (together with BMI and, to a lesser extent,

instrument type) (Iñesta et al., 2008). We initially hypothesized

that RR intervals would decrease with the number of notes per

bar due to an increasing rate of movement; however, note density

contributed only marginally to the model for all musicians.

Introducing the starting factor further improved model

performance. The starting factor captures the initial disruption of

homeostasis toward activation of the sympathetic nervous system.

The music-based features in Model Sets 1 and 2 insufficiently

accounted for the sharp decrease in RR intervals at the start of

playing – compare the results for the different models in Figure 3

during the first 80 samples. This is likely due to the music features

not encoding information that could predict such changes: there

were no large changes in loudness and tempo, and no climax

or moment of concern. The starting factor also depends on the

musician’s role during the initial bars. The largest reaction was

observed for the cellist, who plays the main melody with piano

accompaniment. Although the opening motif in the Schubert is

relatively simple and easy to play, we observed a disproportionate

drop in RR intervals at the start for the cellist, potentially boosted

by the activation of the sympathetic nervous system. A slower

decrease in RR intervals is observed for the pianist, who plays

an accompanying part. The initialization factor for the violinist is

constant, due to the silence during the first 80 eighth notes.

Simplicity is a strength of the models demonstrated here.

They use only music-based information to model RR intervals.

Another advantage is their explanatory value by evaluating the

impact of specific factors on RR. Future models can include other

physiological measures such as respiration, skin conductance, and

physical movement. Estimating cardiac response to music playing

using only information from the recorded performance—how

musicians modulate musical expression—and interpretation—the

musicians’ decisions and actions—provides a strong link between

the autonomic nervous system and music playing. This connection
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A B C

FIGURE 3

Distribution of tempo, loudness, Interpretation Map categories (melody, dialogue, significant accompaniment, accompaniment, climax, and moments
of concern; together with their percentage occurrence in the piece for each musician), Kernel Gaussian Functions based on the aforementioned
annotations, a time series introducing the starting factor (black dashed line), RR intervals, and standard deviation of RR intervals in score-time for
each of the three musicians. The RR intervals are predicted using Model Sets 1 (tempo, loudness), 2 (+ Interpretation Map), and 3 (+ starting factor).

demonstrates the potential and forms a basis for using active music

making in cardiovascular therapies.

5 Limitations

The model development has potential limitations. The results

obtained are specific to the particular trio involved in this study, the

selected music, and their current approach to performing the piece.

The data will, and the results may, be different for another trio,

another piece, and another period in their evolution as musicians.

The starting factor requires tailoring to each piece based on music

structures at the beginning of the piece and over time. The tailoring

of the starting factor could be omitted by predicting only the

RR intervals after the initial autonomic reaction. Note also that

some pairwise associations (Figure 2) and collinearity measures

(Table 1) suggest that caution should be exercised in interpreting

the contributions of individual factors.

We used only one piece of Western Classical music to assess

the impact of music features and performance decisions on

musicians’ RR intervals. Performing other pieces are expected

to require different interpretation approaches and decisions.

Applying the model to music outside the Western Classical

canon requires further research. Note that the Interpretation

Map can be created using the categories not defined in

this study. We have assumed a structural categorization and

organization of interpretive decisions common to Western

Classical music and a Classical piano trio. The model can be

applied to other pieces and ensemble configurations with some

adjustments.

The model was validated on signals measured during

rehearsals. Cardiac response to music playing in other performance

scenarios—individual practice, auditions, concerts in major venue

with large audience—will likely differ (Mulcahy et al., 1990;

Harmat and Theorell, 2009; Chanwimalueang et al., 2017). An

extension of the model to account for various performance

scenarios could add additional variables (fixed factors) related to

specific conditions.

The results may not be representative of those of other

populations, for example, non-professionals who may be grappling

with learning issues, or cardiac patients who may have other

physiological constraints. However, the methodology provides a

framework translatable to studies with other groups.

The annotations for the Interpretation Map were made

by the professional musicians themselves. The translatability

of the presented framework to medical applications

would require an evaluation of the robustness of the

annotations made by professional musicians other than

the performing trio and by non-professionals. Preliminary

findings comparing musicians and non-musicians show

that both groups select regions of interest similarly and

identified common prominent bass notes, in a performance

of Grieg’s “Solveig’s Song” and of Boulez’s “Fragments d’une

ébauche” (Bedoya Ramos, 2023). Future work will expand these

findings to consider categories marked here by professional

musicians.
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We did not track other physiological signals, such as

respiration, skin conductance, andmovement. Adding these factors

could help explain more of the variability in the RR intervals in

future models. For example, tracking movement could help explain

RR variability not directly related to the music (apart from random

effects). However, the main goal of this study was to use only music

features and to examine their effect on RR intervals relative to each

other, which we found to be one of the model’s strengths.

6 Conclusions

We have presented a novel framework for modeling the

autonomic response in terms of the changes in RR intervals

of musicians based on music features and the musicians’

interpretation of the piece. Notably, by using only music

information extracted from audio recordings or the music score,

the models were able to explain about half of the variability of the

RR interval series for all musicians (R2 = 0.540 for the pianist,

0.606 for the violinist and 0.494 for the cellist). We found loudness,

climaxes, and moments of concern to be the most significant

features. These features may be related to physical effort or mental

challenges while performing the most demanding and engaging

parts of a music piece. Another important feature was the starting

factor, indicating the importance of separately modeling the initial

physiological reaction to playing music.

To conclude, we have shown how instantaneous changes in

RR intervals rely on time-varying expressive music properties and

decisions and have created a framework for estimating performers’

physiological reactions using music-based information alone.

Active engagement in music-making is a fruitful area to explore

for cardiovascular variability. Because listeners receive the results

of these musical actions, the approach could also apply to modeling

listeners’ physiological responses to music and can be used to

develop new non-pharmacological therapies. Future studies could

be oriented toward comparing the autonomic response to music

stimuli between healthy players and those with cardiovascular

diseases. The analysis of differences between these groups of players

would help inmonitoring autonomic balance duringmusic playing.
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