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Psychometrics conceptualizes a person’s proficiency (or ability, or competence),

in a cognitive or educational domain, as a latent numerical quantity. Yet both

conceptual and empirical studies have shown that the assumption of quantitative

structure for such phenomena is unlikely to be tenable. A reason why most

applications of psychometrics nevertheless continue to treat them as if theywere

numerical quantities may be that quantification is thought to be necessary to

enablemeasurement. This is indeed true if one regards the task of measurement

as the location of a measurand at a point on the real number line (the viewpoint

adopted by, for example, the representational theory of measurement, the realist

theory of measurement as the discovery of ratios, and Rasch measurement

theory). But this is not the only philosophically respectable way of defining the

notion of measurement. This paper suggests that van Fraassen’s more expansive

view of measurement as, in general, location in a logical space (which could

be the real continuum, as in metrological applications in the physical sciences,

but could be a di�erent mathematical structure), provides a more appropriate

conceptual framework for psychometrics. Taking educational measurement as

a case study, it explores what that could look like in practice, drawing on fuzzy

logic and mathematical order theory. It suggests that applying this approach to

the assessment of intersubjectively constructed phenomena, such as a learner’s

proficiency in an inherently fuzzily-defined subject area, entails recognizing the

theory-dependent nature of valid representations of such phenomena, which

need not be conceived of structurally as values of quantities. Finally, some

connections are made between this “qualitative mathematical” theorization

of educational assessment, and the application of techniques from machine

learning and artificial intelligence in this area.

KEYWORDS

theory and philosophy of measurement, psychometrics, educational assessment, van

Fraassen, qualitative mathematics, concept lattice, fuzzy logic

1 Introduction

The question of what it could mean to measure phenomena that form the basis of

theory and debate in the human sciences, such as human attitudes, opinions, dispositions,

or psychological or cognitive traits, has been a subject of critical enquiry since at least

the mid eighteenth century (Michell, 1999). For example, the question of whether such

phenomena could be quantified was contested by Reid (1849), even before a clearer

definition of “a quantity” had been put forward by Hölder (1901).

This paper considers the question of measuring educational constructs, such as a

learner’s ability, or proficiency, or competence in a subject, field of study, or educational

domain. Many educational tests and assessment procedures—some of them used to make

high-stakes decisions about the test-takers—apparently produce, or claim to produce,

numerical measurements of such properties, such that learners can be placed on a
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quantitative scale with respect to them. Psychometrics is the

application of statistical methods to the study of psychological and

educational phenomena. It relies on the particular mathematical

characteristics of quantitative structures (in practice, the real

numbers and vector spaces over the reals) to perform calculations

and procedures that are used as the warrants for substantive

conclusions, such as “how much” ability a student is estimated

to have, or how to equate measurements of ability derived from

different tests.

The paper argues that the reliance of psychometrics on

quantitative structures is grounded in an assumption that

quantification is necessary to allow measurement. It proposes,

however, that psychological and educational measurement need

not be reliant on numbers. It suggests that van Fraassen’s (2008)

account of measurement as a process whereby the measurand

is located in an appropriate “logical space” is well-suited to

serve as a foundation for an account of the measurement of

educational phenomena such as students’ abilities or competencies

in a subject domain—phenomena that are arguably inherently

“fuzzy” and multifaceted. Such a logical space could be the

particular mathematical structure that uniquely characterizes

the real numbers (a complete ordered field, in mathematical

terminology), but it need not be.

The structure of the paper is as follows. Section 2 briefly outlines

the approach to measuring cognitive and educational constructs,

by assuming quantitative structure, that became standard in

psychometrics over the twentieth century. It summarizes critiques

of the quantity assumption, and argues that these critiques have

sufficient conceptual and empirical weight to warrant a serious

explanation of what an approach to psychological and educational

measurement could look like if the assumption is set aside. Taking

the example of summative educational assessment in particular, it

suggests that in many cases construct validity may be better served

by a more generalized view of measurement, of the kind proposed

by van Fraassen (2008). Van Fraassen’s approach is explained in

more detail in Section 3.

Section 4 makes the discussion more concrete by comparing

quantitative and qualitative measurement approaches for a toy

example of an educational test. This is extended in Section

5 to a consideration of the practicalities—in particular, the

computational complexity—of applying qualitative mathematical

(fuzzy order-theoretic) methods to the kinds of test response

data that arise in real practice. And since traditional methods

of analysis of educational assessment data are increasingly being

supplemented, or even supplanted, by the application of techniques

from natural language processing, machine learning, and artificial

intelligence (AI), Section 6 considers some of the connections

between educational measurement and AI-enabled classification

procedures. Finally, the concluding discussion in Section 7 poses

some questions for further research. It concludes that it is

worth pursuing further conceptual and technical development

of non-quantitative measurement approaches in psychometrics,

especially since, with the rapid rise and application of AI (e.g., von

Davier et al., 2021), there is a risk that psychometrics is simply

replaced with data science—with the loss of substantive theoretical

content concerning construct definition and the design of valid

measurement procedures. A way forward is for psychometrics

itself to develop into a discipline that rests on quantitative

measurement when it is appropriate, but does not exclude a

broader view.

2 Quantification in psychometrics

2.1 Abilities as latent quantities

Psychometrics normally conceptualizes a learner’s ability (or

proficiency, or competence) in a domain as a latent numerical

quantity, θ (Kline, 2000; van der Linden and Hambleton, 1997).

For each learner, a value of θ is calculated from the observed

data arising from an assessment (e.g., item response data). The

“more θ” a learner has (the higher their value of θ), the “better

at” the assessment construct they are taken to be (modulo some

“measurement error”). That is to say, the relation of betterness,

between learners, as to the different levels, states, or configurations

of their abilities, is taken to be adequately captured by the relation of

order (≥) between numerical values. Moreover, to allow a value of θ

actually to be derived for each learner, the set of all possible θ-values

is normally supposed not only to be totally ordered, but quantitative

and continuous.1 Making these structural assumptions about the

property of ability enables it to be treated as if it were a real number.

Hence the whole array of statistical techniques whose mathematical

validity depends on themetric and topological properties of the real

numbers (such as factor analysis, item response theory, maximum

likelihood estimation, etc.) can be applied to obtain numerical

values that are taken to be measurements of learners’ abilities in the

cognitive or educational domain in question.

This paper will argue that one should not think of the

“betterness” relation between learners, as to their proficiency in a

particular educational domain, as a total order relation (a ranking),

in general, but rather as a partial order.2 Sometimes the way in

which the assessment construct is defined will allow learners to

be ranked as to their proficiency with respect to that construct.

In other cases, it may only be possible to infer, for some pairs of

learners, that their proficiency states, or levels, are non-comparable

(qualitatively different). This does not preclude the possibility of

1 See the Appendix for definitions of total order and quantity. Informally, a

totally ordered set X is one in which all the members can be ranked—there is

an ordering≥ such that either x ≥ y or y ≥ x, for all x and y in X. A property is a

quantity if its values are totally ordered and also additive—that is, they can be

combined in a way that mirrors the properties of the addition of numbers.

Additivity is required for a property’s values to form an interval scale or a

ratio scale, in the terminology of Stevens (1946). A quantitative property is

continuous if its possible values form a continuum with no “gaps”.

2 See the Appendix for a formal definition of partial order. In essence,

when entities are partially ordered, there may exist pairs of entities that are

not directly comparable, and the entities cannot necessarily be placed in

a single linear sequence (a ranking) with respect to the feature of interest.

In educational tests, each individual item (question or task) typically totally

orders the respondents with respect to that item (for example “those who

got the question right” ≥ “those who got the question wrong”; or “those who

scored 3marks”≥ “thosewho scored 2marks”≥ “thosewho scored 1mark’≥

“thosewho scored 0marks”) In general, however, the joint result (the product)

of all of these total orders is an overall partial ordering of respondents, with

some patterns of item responses not being directly comparable with others.
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grouping learners together into “coarser” ordinal classes (such as

examination grades), such that one can infer that those who “pass”

are more proficient than those who “fail”, for instance. It just

means that, within the “pass” category, there may be some learners

whose proficiencies, although both of at least a “pass” level, may be

different, and non-comparable. This argument is developed further

in Section 4 below.

There is a literature that critically examines the plausibility of

assuming quantitative structure for phenomena such as ability (for

example, Michell, 2006, 2009, 2012, 2013; Heene, 2013; Kyngdon,

2011; McGrane and Maul, 2020, and from a broader perspective,

Uher, 2021, 2022a). One focus of this has been what Michell

(2012) calls the “psychometricians’ fallacy”: the implicit leap that is

often made, from maintaining that a property has a totally-ordered

structure (that its possible values, states, or levels can be ranked,

that is, placed on an ordinal scale, as described by Stevens, 1946), to

treating it as if it had quantitative structure (as if its values formed

an interval or a ratio scale, in Stevens’ typology).

In some cases it is possible to test empirically whether a

property whose values are ordered is plausibly likely to have the

further structure required for it to be quantitative. This is discussed

in Section 2.2.2. Yet at an even more basic level, one might question

why a construct such as ability with respect to a given cognitive

or educational domain (specified in a more-or-less precise way),

should even be regarded as a property that necessarily ought to

have a totally ordered structure. Must it be a phenomenon that only

occurs in such a way that any one person’s ability-state is always

linearly comparable with (larger than, the same as, or smaller than)

any other person’s state? Uher (2022b) makes an analogous point

with respect to the use of rating scales to “measure” the property

of agreement.

If one considers the actual data upon which the inferences

derived from educational testing procedures are based, then as

Kane (2008) notes, “we are likely to have, at best, a partial ordering,

unless we arbitrarily decide that some patterns [of item response]

are better than others”. In practice, and as discussed further in

Section 4, almost all psychometric approaches to working with such

partially-ordered data do indeed involve making decisions about

how to use the data to generate a total order (with each learner’s

score being their location with respect to this total order).

The question whether such decisions are indeed “arbitrary”

(and if not, which one is best or most appropriate) hinges, again,

on how the measurand—each respondent’s ability in the domain in

question—is conceptualized. This issue is well-described by Maul

(2017, p. 60), who notes that

Any effort to construct a measure of an attribute will have

trouble getting off the ground in the absence of a sufficiently

well-formed definition of the target attribute, including an

account of what it means for the attribute to vary (i.e., what

meaning can be attached to claims about there being “more” or

“less” of it, between and possibly within individuals) and how

such variation is related to variation in the observed outcomes

of the instrument (i.e., item response behaviour).

It is suggested in Section 3.2 that questions of this kind form

part of what van Fraassen (2008) refers to as the data model for

the target attribute. It is rather rare for psychometrics textbooks

to devote much attention to these theoretical or conceptual issues,

however. Often (e.g., Raykov and Marcoulides, 2011) it is stated

that psychological and educational measurement is concerned with

appraising how individuals differ with regard to hypothesized, but

not directly observable, attributes or traits, such as intelligence,

anxiety, or extraversion. It is assumed that these traits are in fact

quantities (for instance Kline, 2000, p. 18) simply states that “the

vast majority of psychological tests measuring intelligence, ability,

personality and motivation . . . are interval scales”), and models

are then introduced to relate them to observable data such as

test or questionnaire responses in such a way as to enable the

numerical latent trait parameters to be estimated, together with

measures of precision such as standard errors—all conditional on

the adequacy and plausibility of the model that has been assumed.

Of course if the model is not adequate as a structural theory of the

phenomenon itself, then results may simply reflect artifacts of the

model (e.g., consequences—sometimes rather trivial tautologies—

that follow from the metric structure of the real numbers), rather

than corresponding to valid inferences with respect to the theory of

the phenomenon.

Why should a phenomenon such as a learner’s proficiency

or competence in a particular domain be assumed to have the

structure of a total order (let alone a quantity)? The reason probably

goes back to a belief fundamental to the early development of

psychometrics, that quantitative structure is necessary to enable

measurement. For example, Thurstone (1928) claimed that

When the idea of measurement is applied to scholastic

achievement, . . . it is necessary to force the qualitative

variations [in learners’ performances] into a quantitative linear

scale of some sort.

If “the idea of measurement” entails locating a measurand

at a point on the real number line, then “forcing” observed

qualitative variations to fit a quantitative structure is an

understandable approach to adopt (even if it raises questions

about validity). Indeed two common theoretical frameworks for

psychological and educational measurement—the representational

theory of measurement, and Rasch measurement theory—could

be construed as concerned with ways to “force” qualitative

variation into quantitative form: the former by aiming to define

conditions under which qualitative observations can be mapped

into numerical structures; the latter by rejecting observations that

do not fit an assumed quantitative model. These approaches are

unpacked a little in the next section.

2.2 Theories of measurement

2.2.1 The representational theory of
measurement

Tal (2020), in his survey of the philosophy of measurement

in science, describes the representational theory of measurement

(RTM) as “the most influential mathematical theory of

measurement to date”. Wolff (2020), in a recent structuralist

account of quantity and measurement, calls it “arguably the

most developed formal theory of measurement”. Michell (1990)

claimed that it is “the orthodox theory of measurement within the

philosophy of science”.
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The canonical text on RTM (Krantz et al., 1971, p. 9) takes

measurement to mean “the construction of homomorphisms

(scales) from empirical relational structures of interest into

numerical relational structures that are useful”.

RTM supposes that we are given an “empirical relational

structure” (itself an abstraction of certain features of an “observed

reality”). This structure consists of objects, relations between them,

and possibly also ways of combining or composing them. For

example in educational measurement contexts, we might take as

objects students’ responses to a writing task, and consider a binary

relation � of betterness as being of interest (as in “student X’s

piece of writing is a better response to the task than student Y ’s:

X � Y”). Or we might be interested in how parts of a test

or assessment combine (via a binary operation •) to form an

overall measure. For example, “correctly answering questions 3

and 4 demonstrates a higher level of proficiency than correctly

answering questions 1 and 2”: q3 • q4 � q1 • q2. We might then

wish to investigate whether these aspects of students’ responses

to tasks—this empirical relational structure—can be mapped to

a numerical ordering or scoring system, in such a way that the

structure is preserved (e.g., relative betterness between responses

is mirrored by the relative magnitudes of the numbers assigned to

those responses).

The idea is that if such homomorphisms can be shown

to exist, then inferences in the numerical relational structure

(normally taken to be the real numbers with the usual order

relation ≥ and binary operations + and ·) provide warrants

for conclusions in the substantive domain of the empirical

relational structure. If, further, we posit that differences in the

observed outcomes of an educational assessment procedure, such

as the administration of a test or examination, are caused

by differences in the configurations, between learners, of their

“underlying proficiency”, then establishing a homomorphism

between the empirical relational structure and the real numbers

[i.e., establishing that the outcomes can be “placed on an interval

(or ratio) scale”] serves to justify the assumption of quantitative

structure for this assumed underlying proficiency trait, and hence

to enable the measurement of each test-taker’s proficiency by

locating them at the point on the real line that corresponds to their

level of proficiency.

2.2.2 Qualitative relational structures and testing
for quantity

The adequacy of RTM as a theory of measurement has

been extensively critiqued (see, e.g., Michell, 1990, 2021; see

also Luce and Narens, 1994), with commentaries noting that

its abstract nature sidesteps the actual process of measuring

anything, the construction of measuring instruments, and any

discussion of measurement error. The merits of such critiques

are not discussed further in this paper, because the position

adopted here will be that of Heilmann (2015). Heilmann (2015,

p. 789) does not assess RTM as a candidate for a theory of

measurement, but rather as a collection of mathematical theorems:

theorems whose structure makes them useful for investigating

problems of concept formation. He proposes viewing theorems in

RTM as

providing us with mathematical structures which, if

sustained by specific conceptual interpretations, can provide

insights into the possibilities and limits of representing

concepts numerically

He regards RTM as studying not mappings from an empirical

relational structure to a numerical relational structure, but rather

from a qualitative relational structure (QRS) to a numerical

relational structure. Taken in that sense, he argues, RTM can

provide tools for testing the extent to which abstract concepts

(captured or described as qualitative relational structures) can be

represented numerically.3

Arguably, this is how RTM (including in particular the subset

of RTM theorems that form the so-called theory of conjoint

measurement: see Luce and Tukey, 1964) does in fact tend to

be used in the literature exploring the plausibility of assuming

quantitative structure for educational, psychological, or social

measurands.

For example, Michell (1990) re-analyzed data collected by

Thurstone (1927b) regarding judgements as to the seriousness

of various crimes. Thurstone (1927a) claimed that his theory of

comparative judgement enabled the construction of a quantitative

scale for the measurement of seriousness of crime, by applying the

theory to the outcomes of a collection of pairwise comparisons,

in which subjects were repeatedly asked which of two crimes

presented to them was the more serious. Michell (1990, p.

107) carefully stated the assumptions of Thurstone’s theory,

and demonstrated by applying results from RTM that “either

seriousness of crimes is not a quantitative variable, or else some

other part of Thurstone’s theory of comparative judgement is false”.

van Rooij (2011) applied theorems from RTM to explore

whether properties of objects, that manifest linguistically

as adjectives with comparative degrees, can be represented

numerically, what scale properties may hold for them, and hence

whether inter-adjective comparisons (such as “x is P-er than y is

Q”) can be meaningful. This is analogous to the vexed question,

in educational assessment, of inter-subject comparison when it

comes to setting and maintaining qualification standards (see, e.g.,

Newton et al., 2007; Coe, 2008).

Karabatsos (2001, 2018), Kyngdon (2011), Domingue (2014),

and Scharaschkin (2023) applied theorems from RTM to the

question of testing whether psychometric attributes comply with

requirements for quantitative structure, combining the RTM results

with a stochastic approach to address expected “measurement

error” in most measurement scenarios with reasonable numbers

of test-takers and test items. Domingue found that the results of a

well-known test of reading showed that it was highly implausible

that reading proficiency was a quantitatively-structured variable.

Scharaschkin found that the results of a test of physics for school-

leavers did not support the assumption of quantitative structure

3 A further extension of Heilmann’s position would be to consider

mappings from a QRS to another QRS: in other words, to relax the restriction

that the “representing” structure should be numerical. Such a generalization

might permit both RTM and van Fraassen’s approach to be located, from

a formal mathematical perspective, within the general theory of structure

known as category theory, but will not be pursued here.
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for a hypothesized “physics proficiency” construct. On the other

hand, he found that the results of a similar test of economics

were approximately consistent with an assumption of quantitative

structure.

None of these applications require assuming the validity or

adequacy of RTM as a substantive theory of measurement—indeed,

Michell (2021) explicitly rejects it. Yet they do shed light on the

extent to which qualitatively-structured data can be treated as if it

were a manifestation of quantitatively-structured latent traits, and

provide empirical evidence that it is not always valid to do so.

This is relevant to the practice of educational assessment and

test construction because most practitioners and test developers

probably do work within a pragmatic “as if ” framework, as

summarized by Lord and Novick (1968, p. 358):

Much of psychological theory is based on trait orientation,

but nowhere is there any necessary implication that traits exist

in any physical or physiological sense. It is sufficient that a

person behave as if he were in possession of a certain amount

of each of a number of relevant traits and that he behave as if

these amounts substantially determined his behaviour.

Some of the ways in which theories of cognition have beenmore

directly incorporated into the use of quantitative latent variable

modeling, and their relation to the ideas considered in this paper,

are discussed further in Section 5.4.

2.2.3 Rasch measurement theory
Psychometrics conducted in the Rasch measurement tradition

(Andrich and Marais, 2019) takes the view that measurement

is only meaningful for quantitative phenomena. Thus, if a

putative measurement procedure such as an educational or

psychological test yields results that are inconsistent with a

underlying quantitative variable, then the procedure is not, in fact,

bona fide measurement, and requires modification. In practice

this means modifying tests by deleting or changing items until a

sufficiently good fit to the Rasch model is obtained.4

So rather than trying to find a model that fits the data

that has been obtained from the administration of a test, the

Rasch measurement approach is to try to make the data fit the

model. Modifying the measurement instrument to achieve this

may come at the cost of severely constraining the theory of (or,

in the terminology of Section 3.2, the relevant data model for)

the substantive phenomenon or construct of interest. It might

be that the construct cannot be sufficiently constrained or re-

defined without significantly departing from its underpinning

theory of value. In an educational assessment context, this

4 The Rasch model, also known as the 1-parameter item response model,

postulates that the log-odds of a test-taker of ability θ correctly answering an

item of di�culty δ is simply θ−δ (in the case of a test consisting of a sequence

of dichotomously-scored items). There are of course other item response

models that postulate additional item parameters, but Rasch theorists hold

that the 1-parameter model is theoretically more appropriate as a basis

for enabling measurement because it enables, within a given collection of

persons and items, so-called invariant comparisons of persons (as to their

ability) and items (as to their di�culty): see Andrich and Marais (2019, p. 80).

would be the case if making such changes to the assessment

instrument would compromise construct validity: the assessors’

understanding of what constitute the key attributes of proficiency in

the given domain, and how relatively better/worse/different states

of proficiency would present with respect to these attributes. In

such cases the choice would seem to be either to abandon the idea

of measuring the construct at all, or to abandon the restriction

of measurement to locating measurands within solely quantitative

mathematical structures. This paper explores the latter option.

2.2.4 Measurements as ratios
Michell (1999) traces the evolution of the concept of

measurement in psychology since the publication of Fechner’s

Elemente der Psychophysik in 1860. He bemoans the movement

away from the conceptualization of measurement that had become

standard in nineteenth century physics, namely (Michell, 1999, p.

14) “the discovery5 or estimation of the ratio of the magnitude of

a quantitative attribute to a unit (a unit being, in principle, any

magnitude of the same quantitative attribute)”. In other words,

as elementary physics texts still state, physical quantity = real

number × unit, where the real number is the measurement of the

physical quantity.

Michell notes (p. 19) that “according to the traditional

understanding of measurement, only attributes which possess

quantitative structure are measurable. This is because only

quantitative structure sustains ratios”. He argues that, this being

the case, it is incumbent on psychometricians to investigate

whether the phenomena they study do, in fact, have quantitative

structure, before applying statistical models that assume it. Since

in practice this is almost never done, his claim is that, for the

most part, “psychometrics is built upon a myth” (Michell, 2012).

Once again, the choice appears to be to accept the constraints

of the “traditional understanding of measurement”, or to explore

whether psychometrics could benefit from engagement with a

more expansive conceptualization of what it means to measure

something. The next section considers such a viewpoint.

3 van Fraassen’s account of
measurement

3.1 Basic principles and relevance to
psychometrics

Bas van Fraassen’s (2008) Scientific Representation: Paradoxes

of Perspective is an empiricist structuralist account of measurement

and representation in science. This stance eschews debate about

the ontological status of the phenomena or reality that scientific

theories describe, and concerns itself rather with elucidation of

5 The development of quantum theory in the twentieth century

problematized the classical epistemological viewpoint on measurement as

“discovery”. As Peres (1995, p. 14) observes, “classical physics assumes that

the property which is measured objectively exists prior to the interaction of

themeasuring apparatus with the observed system. Quantum physics, on the

other hand, is incompatible with the proposition that measurements discover

some unknown but pre-existing reality.”
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what van_fraassen argues is the key aim of developing and testing

such theories, namely their empirical adequacy. van Fraassen

(2008, p. 2) claims that “measuring, just as well as theorizing,

is representing . . . measuring locates the target in a theoretically

constructed logical space”. To be more precise (p. 164),

measurement is an operation that locates an item (already

classified in the domain of a given theory) in a logical space

(provided by the theory to represent a range of possible states

or characteristics of such items).

A key point here is the theory-relatedness of measurement

procedures. EchoingMaul’s (2017) requirements, quoted in Section

2.1, for a “well-formed definition of the target attribute” as

fundamental to psychometric measurement, van Fraassen suggests

(p. 166) that “once a stable theory has been achieved, the distinction

between what is and is not genuine measurement will be answered

relative to that theory”.

It is argued in Section 4 that a candidate theory for the

phenomena (proficiency or competence in a domain) that form

the subject matter of educational measurement, is a description

of what constitutes betterness between learners’ possible states

or configurations of proficiency in a given domain. “Betterness”—

which, as noted in Section 2, may be a more general order relation

than a simple ranking—has to be defined in terms of criteria that

may, in general, be manifested with fuzzy degrees of truth in the

responses of learners to tasks that have been designed to provide

information about their proficiency in the domain in question.

van Fraassen considers several measuring procedures in

classical and quantum physics (p. 157–172 and 312–316), and

concludes (p. 172) that they are all “cases of grading, in a

generalized sense: they serve to classify items as in a certain respect

greater, less, or equal. But . . . this does not establish that the scale

must be the real number continuum, nor even that the order

is linear. The range may be an algebra, a lattice, or even more

rudimentary, a poset”. In fact, Section 4 below considers the case of

lattices as logical spaces for educational measurement procedures.6

It is worth exploring how van Fraassen’s approach could be

applied to educational measurement for at least two reasons. Firstly

because, as discussed in Section 2.2.2, the mathematically necessary

conditions for a learner’s proficiency in a given educational domain

to have the structure of a quantity often do not hold; and it is

not possible to massage the assessment instrument to make them

hold without loss of construct validity. In such cases, it would

arguably be inappropriate to theorize the construct as quantitative,

and hence its measurement as location on the real line, rather than

in some other, theory-relevant, logical space.

Secondly, the approach of thinking about educational

assessment constructs in terms of fuzzy criteria of value (what will

count as creditworthy, or indicative of good/bad performance,

in relation to what particular domain content) is what actually

happens in practice, when subject domain experts develop

and administer at least one kind of high-volume, high-stakes,

6 Algebras, lattices, and posets (short for partially-ordered sets) are types of

mathematical structures. In particular, a lattice is a partially-ordered set (see

the Appendix for a definition) in which each pair of elements has a least upper

bound and a greatest lower bound.

educational assessment procedure, namely the public examinations

taken by school pupils aged 16 and 18 in the UK. This brings us to

a consideration of what van Fraassen calls data models.

3.2 Data and surface models

Measurements arise from the results of procedures designed to

gather information about a phenomenon of interest. As noted in

Section 2.2.2, these entail selective attention to specific features that

are deemed to be relevant. That is to say, measuring a phenomenon

involves collecting data structured in a specific way. van Fraassen

(2008, p. 253) calls such a structure a data model for the measurand

in question. He notes that

A data model is relevant for a given phenomenon, not

because of any abstract structural features of the model, but

because it was constructed on the basis of results gathered in a

certain way, selected by specific criteria of relevance, on certain

occasions, in a practical experimental or observational setting

designed for that purpose.

In educational measurement we have gathered in a certain way

(via an assessment procedure such as a test), selected by specific

criteria of relevance (construct-relevant criteria: Pollitt and Ahmed,

2008) on certain occasions (at a particular point or points in

time), in a practical setting designed for that purpose (e.g., the

rules of administration and physical requirements for conducting

an examination).

In the case where the test consists of a sequence of

dichotomously-scored items I : = {i1, . . . , in} administered to a

collection L : = {l1, . . . , lm} of learners, we can think of this

measurement setup as a map V : L × I → {0, 1} that assigns

to each instance of a learner encountering an item the valuation

1 if they answer it correctly, and 0 if they answer it incorrectly.

Equivalently, we can think of the information collected by the

assessment procedure as organized in anm×nmatrix whose (m, n)

entry is V(lm, in). There is, however, more structure entailed by the

“betterness” ordering within each item (namely that “1” is better

than “0”) than immediately stands out from simply viewing the data

as a table. As discussed in Section 4.2, the totality of the results-plus-

valuation-system can be viewed as a lattice (the so-called concept

lattice for the data table)—and it is suggested in Section 4 that such

lattices (generalized to incorporate fuzzy valuations if necessary)

form the natural data model for the phenomena that educational

measurement procedures, such as tests and examinations, aim

to measure.

van Fraassen (2008, p.253) describes constructing a data model

as “precisely the selective relevant depiction of the phenomena by

the user of the theory required for the possibility of representation

of the phenomenon.” In the context of educational testing, the

proficiencies being studied are proficiencies or competencies with

respect to a specified domain (such as “high school chemistry”, or “A

level French”). What “good performance” or “good demonstrated

attainment” looks like in these domains (and hence what would

count as evidence of better or worse levels, or states, or

configurations, of learners’ proficiencies) is always subject to a

prevailing understanding or agreement as to what potential aspects
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of the domain are chosen as relevant for discrimination between

learners’ performances as to their quality. In other words, the

criteria for creditworthiness of candidates’ responses to tasks in an

assessment can be regarded as the selective relevant depiction of

the phenomenon of interest, by those members of the competent

authority (the “users of the theory”) who design, administer, and

grade the tests. For that reason, concept lattices derived from the

outcome data from the tests, that encode the relationship between

learners and the assessment criteria, are appropriate data models.

In practice, van Fraassen (2008, p.167) notes that data models

may be “abstracted into a mathematically idealized form” before

empirical or experimental results are used to explore theories or

explanations, or for substantive purposes. He gives the example of

a datamodel consisting of relative frequencies, which is “smoothed”

such that frequency counts are replaced with probabilities. An

idealized or simplified version of a data model is called a surface

model for the phenomenon in question. Surface models are

considered further in Section 5.

4 Theories of constructs: comparing
item response theory and fuzzy
concept analysis

4.1 A small example

Table 1 shows results from an assessment that generates data

on each of three items (or attributes) {i1, i2, i3} for six learners

{l1, . . . , l6}. Here 0 means “not demonstrated”, 1
2 means “partially

demonstrated”, and 1 (or 2
2 ) means “fully demonstrated”.

A traditional psychometric approach to analyzing this kind of

data would be to treat each learner’s results from the assessment

as a vector in R
3, and each learner’s proficiency measure as a

quantity (a point in R). For example, we could treat the label for

each item response category as a number, and add them to get a

total score for each learner. This orders learners, with respect to

proficiency, equivalently to fitting a Rasch model (a 1-parameter

item-response model), since total score is a sufficient statistic for

estimating proficiency in this model. Or we could do a principal

components analysis and take the projection of each learner’s item-

response vector onto the component that accounts for the most

variance as their proficiency measure (this is equivalent to fitting

a 2-parameter item-response model: see Cho, 2023). Doing so for

the data in Table 1 yields three components of which the first

accounts for 72% of the variance in outcomes, with the other

two accounting for 19 and 9%, respectively. We could therefore

take the loading (projection) of each learner’s results onto the first

component as their score on an “underlying” quantitative variable

that represents the assessment construct reasonably well. Figure 1

shows how learners’ proficiency measures differ depending on the

approach taken.

However, in view of the problems associated with assuming

quantitative structure for proficiency discussed in Section 2.1

(tantamount, in Section 3.2’s terms, to replacing the data model

with a radically different surface model), let us consider a non-

quantitative approach. If we take each learner’s test response not

as a vector of numbers, but rather a vector of ordered labels, then

TABLE 1 Data from a test.

\ i1 i2 i3

l1 0 1
2

1
2

l2
1
2

1
2

1
2

l3 1 1 1
2

l4
1
2

1
2

1
2

l5 0 1
2

0

l6
1
2

1 1

FIGURE 1

IRT-derived proficiency measures. (A) Sum score. (B) Latent variable

score.

the observed data can be characterized as a collection of partially-

ordered nodes: a network of “betterness” relations between nodes.

In this data model, shown in Figure 2, each node is a type of

performance on the assessment.

Each type of performance is defined by a collection of attributes,

that characterize it; or (dually) by a collection of learners, who

demonstrate it. The boxes in Figure 2 are the different types of

performances on the test. The best performance is at the top of

the diagram, and the worst performance at the bottom. Attributes,

and learners, may belong to nodes to a fuzzy degree. Thus learner

5 belongs to (demonstrates) the lowest type of performance

completely (to degree 1). Learners 2, 3, 4, and 6 all demonstrate

the highest type of performance to degree 0.5.

Better types of performance are characterized by showingmore

attributes (and, dually, are demonstrated by fewer learners) than

worse types of performance. An arrow from a box A to a box B

means that B is a better performance than A (and by extension

better than any performance C such that there is a connected path

from C to A). If there is no path between two types of performance,

then they are not comparable. Locating a learner (measuring their

proficiency), with respect to this data model for the construct which

the three-item test aims to assess, then means finding the “highest”
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FIGURE 2

Fuzzy concept lattice for assessment data.

node that they belong to in the network. This intuitive description

is made more precise in the following section.

4.2 Formal concept analysis and
proficiency measurement

Formal concept analysis (Ganter and Wille, 1999; Carpineto

and Romano, 2004) is an important development of mathematical

order theory that has been applied extensively to fields such as

linguistics, political science, information sciences, medicine, and

genetics. A recent application (Bradley et al., 2024) is to elucidating

the mathematical representation of structure in large language

models such as ChatGPT, discussed briefly below in Section 6. It

can be thought of as a way of making explicit the information

structure that is implicit in a matrix—such as that in Table 1—

which relates objects to attributes (or learners to test items). It

provides methods to extract the concepts and implications that can

be deduced from such data, and introduces a logic to reason and

infer new knowledge.

Consider first the case of measuring proficiency in a domain

by administering an n-item test to m learners, where each item

is dichotomously scored, i.e., for each learner l and item i, it is

either the case that l answered i correctly, or that l did not answer

i correctly. Given a subset of learners L1 : = {l1, . . . , lk}, let I1 : =

{i1, . . . , ij} be precisely those items that all learners in L1 got correct.

Then the pair (L1, I1) is an instance of a formal concept present in

the data. L1 is called the extent of the concept, and I1 is called its

intent. We can equally well start with a subset I2 : = {i1, . . . , ip} of

items, and then form the concept (L2, I2), where L2 is precisely the

set of learners who got all items in I2 correct.

The collection of all formal concepts extracted from a matrix or

data table simply restates the information present by virtue of the

way the data is structured due to the choice of attributes (test item

responses, in this example), and the ordered valuations chosen for

attributes (just the two categories 1 ≥ 0 in this case). However, it

makes this structure more apparent (and graphically representable,

as in Figure 1) because concepts are (partially) ordered via the set-

theoretic notion of inclusion. A concept (L1, I1) is more general

than a concept (L2, I2) if L1 ⊇ L2 (or equivalently, if I1 ⊆

I2). The most general concept is the one that has the largest

extent (and smallest intent). In test performance terms, the most

general concept corresponds to the bottom, or worst, performance:

because every other performance has a larger intent (entails more

correct items). Similarly, the least general concept (with the smallest

extent and largest intent) corresponds to the top, or best, level

of performance.7

We can think of formal concepts as different ways of

performing on the test (i.e., different ways of exhibiting proficiency

in the subject domain). Each type of performance—or exhibition of

proficiency—can be described extensively, by showing the learners

who demonstrated it. Or it can be described intensively, by

showing the item-profiles that characterized it. These two modes of

presentation correspond to different ways of training “measuring

instruments” (traditionally, human judges; more recently machine-

learning methods such as neural nets) to recognize what good/bad

performance (high/low proficiency) looks like. One can either

give examples of a certain kind of performance, until an assessor

can correctly classify new instances, or one can give descriptions

of that kind of performance (in this case, the relevant profile

of item responses), to enable new instances to be classified

(measured) correctly.8

For a small educational measurement procedure of this kind

(small in terms of the number of items/tasks/relevant attributes

on which data is collected, as well as small in terms of the

number of subjects to which it is administered), the qualitative

equivalent of a quantitative score is a learner’s location in the

concept lattice: the highest concept, in the partial order, to

whose extent they belong. This level of proficiency is described,

not as a numerical “amount” (location on a line), but rather

by the intent of the relevant concept: the actual items they

mastered (or, more generally, the construct-relevant attributes

7 Normally concept lattices are drawn as so-called Hasse diagrams with

the least general concept at the bottom, and the most general concept at

the top. An arrow is drawn upwards from concept A to concept B if B is more

general than A. In the educational assessment context, we naturally regard

the best performance as the top concept, which means we need to reverse

the usual ordering (in mathematical terms, we use the dual lattice). This is

done throughout this paper, for example in Figure 2, where the worst level

of proficiency (exhibited, to degree 0.5, by learner l5) is at the bottom of the

diagram, and the best level (exhibited by learners l2 , l3 , l4 , and l6, also to degree

0.5) is at the top.

8 As Weyl (1952, p. 8) noted, “For measurement the distinction is essential

between the ‘giving’ of an object through individual exhibition on the one

side, in conceptual ways on the other”.

Frontiers in Psychology 08 frontiersin.org

https://doi.org/10.3389/fpsyg.2024.1399317
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Scharaschkin 10.3389/fpsyg.2024.1399317

FIGURE 3

Concept lattice for a 5-item test with 100 learners.

their performance demonstrated). For larger (more realistically

sized) assessments, the concept-lattice data-model becomes too

granular, as shown in Section 5, and we develop a notion of

“prototypical” kinds of performances at a manageable number of

levels, such that each learner’s level, or state, of proficiearency

can be described approximately in terms of its qualitatively

closest prototype.

Before moving on to that discussion, it is necessary to consider

the question of the fuzziness of the criteria that structure data

models in many educational measurement procedures.

4.3 Truth degrees and fuzzy concepts

4.3.1 Assessment results as truth degrees
Table 1 illustrates a situation that often obtains in educational

assessment. Learners are given tasks, such as questions on a test,

and they may be successful in engaging with them to a certain

degree. The outcome of a learner’s interaction with an item is not

necessarily captured by the crisp dichotomy of {correct, incorrect}.

The usual way of dealing with this in psychometric models is

to model response categories for polytomous items as a sequence

of threshold points on a latent quantitative continuum. A learner’s

response is in a higher category if it results from their proficiency-

state being higher than, but not otherwise different from, a learner

whose response is in a lower category. Differences in proficiency

must be conceived of as differences in degree, not in kind. Yet as

Michell (2012, p. 265) notes, in the context of mathematics tests,

“the differences between cognitive resources needed to solve easy

andmoderately difficult items will not be the same as the differences

between resources needed to solve moderately difficult and very

difficult mathematics items. This observation suggests that abilities

are composed of ordered hierarchies of cognitive resources, the

differences between which are heterogeneous.”

An alternative approach is to start by the viewing the

dichotomous situation as providing information about learners’

performances in the form of propositions of the form “learner l

answered item i correctly”.9 This proposition is true just in case the

(l, i) entry in the data table arising from the assessment is 1. So we

can think of the entries in the table as truth values (with 0 meaning

false and 1 meaning true).

9 As Michell (2009) observes, “Tabulated numbers are shorthand for a

set of propositions that tell where the numbers came from. Furthermore,

deductions from a data set are inferences from these propositions.”
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FIGURE 4

Concept lattice for a 12 item test with 200 learners.

It has long been recognized that, in situations in which there is

inherent fuzziness, vagueness, or semantic uncertainty in concepts,

bivalent logics, in which the only possible truth values for a

proposition are {false, true} can be unduly restrictive (see e.g.,

Goguen, 1969; Goertz, 2006; Bělohlávek et al., 2017). Fuzzy logic

(Hajek, 1998; Bělohlávek et al., 2017) allows propositions to have

truth values drawn from ordered sets of truth degrees, that can be

more extensive than {false, true}.

Thus we can view the example in Table 1 as providing

information about propositions with three truth-degrees, that we

could label {0, 12 , 1}, or {false, partially-true, true}. For

example, it is false that learner l1 demonstrated attribute i1 (or

we could say, she demonstrated it to degree 0), and it is partially-

true that she demonstrated attribute i2 (she demonstrated it to

degree 1
2 ).

When the outcomes of educational measurement procedures

are not completely and crisply dichotomous with respect to

all the construct-relevant attributes about which information

is collected, the concept lattice for the resulting matrix of

fuzzy truth values is itself fuzzy. Objects and attributes

belong to concepts with degrees of truth, rather than crisply.

In the concept lattice in Figure 2, the label “0.5” after a

learner-identifier means that learner belongs to the concept

(i.e., has demonstrated that type or level of performance) to

degree 1
2 ).

Although a discussion of the concept of “measurement error”

in psychological testing and educational assessment would take

us beyond the scope of this paper, it may be worth clarifying,

for the avoidance of doubt, that the application of fuzzy logic

in this context is not simply an alternative to using probability

theory. Probability is a tool that can be used to study (epistemic)

uncertainty (the lack of precision that arises from incomplete

or poor information), whereas fuzzy logic is a tool that can

be used to study (ontological) vagueness (the inherent fuzziness,

or necessary inexactness, of concepts like “proficiency” in a

certain domain). Erwin Schrödinger, when considering what the

development of quantum mechanics meant for the measurement

of physical phenomena, distinguished these two facets when he

noted (Trimmer, 1980; p. 328) that “There is a difference between

a shaky or out-of-focus photograph and a snapshot of clouds and

fog banks”.

The statement “Mary has a fairly good understanding of

physics” is vague but certain, whereas “Mary will pass the physics

test tomorrow” is precise but uncertain.Working with propositions

such as the former (i.e., deploying what Goguen, 1969 calls a

“logic of inexact concepts”) is core to educational assessment,
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FIGURE 5

Factor representation for fuzzy data.

because of the contestable and intersubjective nature of educational

constructs, discussed further in Section 7.2.

4.3.2 Truth degrees and quantities
Buntins et al. (2016) apply fuzzy logic to psychological tests

in a somewhat different way to that proposed here. They take the

view that scores obtained from a test should not “refer to latent

variables but to the truth value of the expression ‘person j has

construct i”, where a construct is defined by a collection of relevant

attributes, each of whichmay be possessed by a test-taker to a certain

degree, and each of which may be relevant for the construct to a

certain degree. Modeling truth degrees as real-valued quantities in

the interval [0,1], they present an algorithm for aggregating them

across attributes to arrive at an overall score for each learner: the

truth value of the proposition “this learner has the construct”. They

are careful to distinguish the semantic vagueness of a construct

definition (recognized in the use of fuzzy truth values) from the

idea of “measurement error”.

Buntins et al. claim that this approach “neither relies on

latent variables nor on the concept of [quantitative] measurement”.

However, they do state it is arguable that “although there is no

measurement theory involved in the ... formalism, the application

to actual test behavior does presume item answers to be assessed

on an interval scale level”, because “test answers have to be real

numbers between 0 and 1, reflecting the subjective truth-values

of the corresponding attributes for the tested person . . . However,

these only refer to the item level and do not extend to theories about

latent variables.”

In fact truth degrees do not have to be real numbers between 0

and 1. What is required is that they have a way of being compared

with each other—that is, an order structure (which could be a

partial order)—and way of being combined with each other. In

general these requirements are met by taking them to have the

mathematical structure of a so-called complete residuated lattice

(Hajek, 1998). Further work on conceptualizing truth degrees—

and especially what that means for empirically eliciting them—is

important, as touched on in Section 7, but beyond the scope of this

paper.

Buntins et al. see their approach “not as opposed to

psychometric theory but tr[ying] to complement it with an

alternative way to conceptualize psychological tests”. By contrast,

the approach presented in this paper is suggested not as an

alternative to, but an extension of, psychometric theory: one in

which quantitative measurement forms an important, but special,

case of a more general measurement framework.

4.3.3 Fuzzy relational systems
In summary, the argument in this section is that in general,

educational assessment procedures that aim to measure constructs

such as proficiency, ability, or competence in a fuzzily-defined

domain, generate fuzzy relational systems: matrices of truth-values

for propositions of the form “learner l has demonstrated construct-

relevant attribute i”. As data models, these are equivalent to fuzzy

concept lattices: partially-ordered hierarchies, or networks, of types

of performance on the assessment, that are discriminable with

respect to these construct-relevant attributes. The next section
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considers whether these data models can provide insight for

realistically-sized assessments.

5 Practicalities of educational
assessment with non-quantitative data
models

5.1 Granularity of data models

An issue with data models of the kind discussed in the

previous section is that their combinatorial complexity increases

geometrically with the numbers of learners and construct-relevant

attributes of performance (or test items) involved. Figures 3, 4, for

instance, show the concept lattices for subsets of outcomes of a

physics test.10 with increasing numbers of learners and attributes.

Clearly the information here is too granular to be useful, and we

need to simplify or “smooth” it in some way.

For quantitative data models, where learners’ test responses

as thought of as vectors in n-dimensional Euclidean space, the

analogous granuarity-reduction is often performed using latent

variable models that aim to find a k-dimensional subspace with k <

n (often a one-dimensional subspace, i.e., a line) that is oriented in

such a way as most closely to approximate the direction of most

of the variation between the positions of these points (possibly

subject to some other constraints as well, for certain factor-analytic

models: see Bartholemew et al., 2008). Each learner’s latent-variable

score is then the projection of the vector that represents their test

performance onto this subspace. Calculating these scores entails

factorizing the (transpose of the)matrix Z of normalized test scores.

If there are m learners and n test items, then the n × m item-by-

learner matrix ZT is factorized into the product of a n× k item-by-

factor matrix L and a k × m factor-by-student matrix F, plus some

error: ZT ≈ LF. Then using standard results in linear algebra, it can

be shown (e.g., Reyment and Jöreskog, 1993) that the factors are the

eigenvectors of the covariance matrix ZZT .

5.2 Factorizing qualitative matrices

Bělohlávek (2012) studied the question of factorizing a matrix

of fuzzy truth values. Now the matrix product is no longer defined

in terms of operations on quantities, but rather in terms of

operations on truth values.11 Let M be an m × n matrix arising

from an educational measurement procedure conceptualized as in

Section 4.3, so that Mij is the degree to which learner i displays

10 Part of paper 1 of the AQA A level physics examination taken in 2018.

Unusually for an A level assessment, the items here are all dichotomous

(multiple-choice questions). The lattices would be even larger if the items

admitted fuzzy valuations.

11 The product of two real-valued matrices A and B is defined by setting

its (i, j) entry (AB)ij to the inner product of row i of A with column j of B:

i.e., (AB)ij : =
∑k

p=1 AipBpk. When the matrix entries are truth values, they are

elements of a type of lattice that is equipped with an operation⊗ to combine

values. In this case the matrix product A◦B is defined as (A◦B)ij : =
∨k

p=1 Aip⊗

Bpk, where
∨

is the supremum over the indicated set (see Appendix).

attribute j. By analogy with the quantitative case, consider an

approximate factorization of M into a m × k learner-by-factor

matrix A and a k × n factor-by-attribute matrix B, i.e., M ≈

A ◦ B. The key theorem in this case, due Bělohlávek (2012), is

that the factors are particular formal concepts from the concept

lattice for M. That is, “picking out key concepts” (particular types

of learners’ responses to the assessment) is equivalent to “logically

factorizing” the matrix of truth-degrees that is the outcome of the

measurement procedure.

The factors are the (extents and intents) of specific concepts

in the concept lattice for M. The intuition is that, with Mij =

Aip ◦ Bpj:

• Aip is the degree to which learner i is an example of (in the

extent of) factor p;

• Bpj is the degree to which attribute j is one of the

manifestations of (in the intent of) factor p;

• M = A ◦ B means: learner i displays attribute j if and only if

there is a factor (formal concept) p such that i is an example of

p (or p applies to i); and j is one of the particularmanifestations

of p.

Thus, the qualitative analog of projecting a Euclidean space

onto a lower-dimensional subspace consists in picking out certain

points in a partially ordered set. Specific formal concepts are

selected, similarly to the way in which specific vectors—the

eigenvectors of the covariance matrix—are selected when learners

are scored on quantitative latent variables. The analogs of scores on

a latent variable are the degrees to which learners’ performances

“display” or “participate in” or “reflect” these specific concepts,

which may be thought of as prototype or standards of performance

on the construct. They have the advantage, over hypothesized

latent variables whose values are abstracted from observed data,

that they are directly expressible in terms of the construct-relevant

attributes—that is, in terms of the features of learner’s responses

to assessment tasks that are taken to be important in a “theory” of

“what (good) performance means”, for the educational construct

in question. They can be described both by means of their extent

(the collection of actual learners’ performances exemplifying the

concept/standard in question), and by means of their intent [the

collection of (fuzzy) attributes that characterizes the standard

in question].

5.3 Measures and meanings: comparing
quantitative and qualitative approaches

Bartl et al. (2018) examined this qualitative factor analytic

approach to educational assessment data, with the aims of

exploring its applicability in practice, and its application to

the study of the construct validity of an examination: the

degree to which students’ responses, assessed as being at a

particular level, matched the intentions of the assessment designers

in terms of the qualitative performance standard intended

to broadly characterize responses at that level. This is the

kind of question that is difficult to study using traditional

quantitative methods.
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The technical issues involved (for example how to determine

the coverage and number of factors that broadly explain

the data—analogous to a scree plot in quantitative principal

components analysis) will not be rehearsed here. See Bartl

et al. (2018) for computational details. For a deeper theoretical

treatment of the relationship between eigenvectors (of quantitative

covariance matrices) and formal concepts (of qualitative matrices

of truth values), see Bradley (2020). The key point is that

this approach allows drawing out key features associated with

responses assigned to a particular level, by the assessment

procedure, and an appraisal of the degree to which each learner’s

performance on the examination embodies or matches those

features. Indeed, it “explained” the data (in terms of proportion of

data covered or variance explained) as well as standard principal

components analysis, but generated factors exemplifying attributes

of performance that seemed to be more easily interpretable.

Figure 5 shows an example of this, for the educational

measurement data studied by Bartl et al. (2018), in which learners

were assessed on 14 fuzzy attributes {y1, . . . , y14}, each of which

reflected an aspect of the construct, in this case proficiency in

the specific subject of “A level Government and Politics”. Each

of the attributes corresponds to demonstrating specific types of

knowledge and understanding, in accordance with the examiners’

agreed understanding of what better/worse proficiency means

in this domain. Hence the intent of any given concept can be

interpreted by users of the assessment as a description of broadly

what that level of proficiency means (and likewise the extent of the

concept can be interpreted as an indication of the degree to which

each learner has demonstrated that level of proficiency).

The question of the interpretability or explainability of the

results of educational measurement procedures—whether those

results are numerical scores, or broader grades or levels—is

particularly important for high-stakes assessments such as those

that underwrite school-leaving qualifications. For learners, clarity

about why their response to an assessment merited their being

characterized as demonstrating a certain level of proficiency is

arguably required for reasons of natural justice. For teachers,

understanding qualitatively what their students did well, and what

they would have to do better to demonstrate more proficiency

in a subject domain, is clearly valuable as an input into their

future pedagogical practice. Bartl et al. (2018, p. 204) concluded

that their approach to qualitative factor analysis yielded “naturally

intepretable factors from data which are easy to understand”, but

that more research is needed both on technical implementation and

on the views of learners and teachers.

5.4 Other order-theoretic approaches to
educational assessment

In the 1940s Louis Guttman began to develop an approach

to psychological measurement (e.g., Guttman, 1944) that led him

to think of it as a structural theory (Guttman, 1971), rather than

as a process of quantifying amounts of latent traits, and to the

development of facet theory and partial order scalogram analysis

(Shye and Elizur, 1994). In the 1980s, Doignon and Falmagne

(1999) developed knowledge space theory, later evolved into a theory

of learning spaces, in which assessment constructs are represented

as partially-ordered sets.

Applications of facet theory and knowledge space theory

(including related approaches such as Tatsuoka, 2009’s rules

space and Leighton and Gierl, 2007’s cognitive diagnostic models)

normally assume or overlay quantitative latent variable models,

to account for “underlying” proficiencies or competencies that

determine a learner’s progression through such partially-ordered

outcome spaces.

However, from the mid 1990s onwards, there has been a strand

of research investigating how to extend knowledge space theory

to incorporate a focus on skills and competence, leading to the

development of competence-based knowledge space theory (see e.g.,

Stefanutti and de Chiusole, 2017). Here, a learner’s proficiency or

competence is itself conceptualized as a partially-ordered space,

rather than a quantity. Ganter and Glodeanu (2014) and Ganter

et al. (2017) suggested that formal concept analysis could be applied

to study competence-based knowledge space theory, and this is now

starting to be done.

For example, Huang et al. (2023) consider how to transform

maps from competence-states to “knowledge-states” (types of

demonstrated performances) into formal contexts, and hence to

represent them as concept lattices. Each node in the lattice then

embodies a knowledge-state and a competence-state as its extent

and its intent, respectively. This is clearly analogous to the approach

set out in Section 4 above.

A very clear application of these methods is to formative,

adaptive, assessment and learning systems, where, for instance, they

provide an alternative to traditional IRT-based adaptive tests that is

more grounded in a theory of learning.

To date there has been less attention to examining summative

assessment, and what is often called “educational measurement”,

from this perspective. Yet, as argued above, application of non-

quantitative approaches needs to be investigated here too, since the

pragmatic “as if ” approach to routine application of latent variable

models is not always justifiable.

6 Connections to artificial intelligence

A final reason why it is imperative to pursue research in

this area is the rapidly growing application of machine-learning

methods, and generative artificial intelligence in particular, in

educational contexts. For example, Li et al. (2023) report on using

the large language model ChatGPT to score students’ responses to

(essay style) examinations, and to provide rationales for the scores

awarded.

Because the outputs of generative AI applications using large

language models are no more than statistically plausible sequences

of words, albeit expressed in well-formed natural language, their

validity, fairness and reliability is hard to establish theoretically.

That is because they are produced using so-called subsymbolic

approaches to AI (see e.g., Sudmann et al., 2023), such as deep

neural nets, rather than symbolic methods that aim to use forms

of explicit logical inference to arrive at results: analogously to

reasoning about a learner’s response to a task with reference to

criteria for betterness that define the kind of proficiency one intends

to measure by administering the task.
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An interesting angle opened up by the qualitative measurement

approach described above is the possibility of combining formal

concept analysis with neural networks to enhance the explainability

of, for example, scores derived from applying a classifier based on a

large language model to learners’ performances on an examination.

Some initial work in this area has been done by Hirth and

Hanika (2022) and Marquer (2020), among others. This kind of

analysis could complement quantitative approaches to explaining

marks or scores awarded to learners’ responses, such as dimension-

reduction of the high-dimensional vector space that the language

model uses to represent linguistic artifacts—such as learners’

responses to assessment tasks—as numerical vectors. In fact,

Bradley et al. (2024) have recently shown that there is a relationship

between quantitative techniques based on linear algebra, such as

latent semantic analysis, and formal concept analysis, such that

the latter can be seen as a more general form of the former.

They have applied formal concept analysis to elucidating how

semantics appears to arise from syntax, and to study the structure of

semantics, when large languagemodels are used to produce outputs

from qualitative data.

Clearly, the practice of educational (and psychological)

measurement is changing as technology changes. Tasks can be

administered digitally; the widespread availability of devices with

reasonable processing power means the possibilities for task design

are much more open than they were a decade ago, and they

will continue to evolve. The data that is gathered about learners,

given their responses to these tasks, can be more unstructured

than category-labels or scores: it may be text, audio, or video,

and/or representations of such data for example in a vector-space

language model. To the extent that human assessors form part of

measurement procedures, for example to apply scoring rubrics,

they may be partially or wholly replaced by AI.

What remains fundamental, however, is the need to base

these measurement procedures in a theory of what defines or

constitutes better or worse proficiency, in the domain of interest,

and hence what substantive and semantic content is entailed in

statements such as “this learner got a score of 137”, or “this learner

has 1.07 logits of proficiency”; or “this learner has demonstrated

three of the four prototypical aspects of proficiency that define

a “grade B standard”, or whatever — what it means to locate

them, via a measurement, at a certain position in a (quantitative

or other) space.

7 Discussion

7.1 Qualitative educational assessment is
possible in principle, and includes
quantitative measurement as a special case

This paper has argued that it is not warranted to assume

the phenomena studied in psychometrics, and in educational

measurement in particular, are necessarily appropriately

conceptualized as quantities. In cases where an assumption

of quantitative structure is appropriate, then measuring an instance

of such a phenomenon means locating it at a point on the real

continuum. In cases where the assumption is not appropriate,

the idea of measurement becomes, more generally, locating the

measurand in a suitable logical space, that is defined in a way that

is relevant for the phenomenon.

When the measurand is quantitative and the logical space is

the real numbers, the usual methods of psychometric analysis

for estimating latent parameters can be deployed. But, contra

Thurstone (1928), the paper has argued that it is not necessary

to “force” theoretically well-supported constructs into a more

reductive quantitative form if that is not appropriate. Hence

the argument of this paper is not that psychometrics should be

replaced, but that its repertoire of measurement approaches should

be widened to cope with measurands that are intrinsically non-

quantitative in nature.

The paper suggests that the outcomes of educational

measurement procedures can be thought of, in general, as fuzzy

relational systems; and that fuzzy formal concept analysis is an

appropriate tool to describe data models for the measurands they

aim to locate. These models instantiate the “betterness” relation for

the measurand: they model the notion of “what good performance

looks like”. Such an account or understanding is prior to, and

necessary for, an understanding or agreement as to “what being

(more or less) proficient” means, in an educational domain. It

forms the theory of the construct (one might say, the theory of

value for the construct, and hence a foundation for evaluation of

construct validity).

7.2 Educational constructs are
contestable, intersubjective,
temporally-located phenomena

These theories of constructs such as proficiency or competence

in a domain are necessarily contestable, intersubjectively

constructed, and liable to change over time. Intersubjectivity

(Chandler and Munday, 2011) refers to the mutual construction

of relationships through shared subjectivity. Things and their

meanings are intersubjective, within a given community, to

the extent that the members of the community share common

understandings of them. Thus, the community that constitutes

the competent authority for defining an educational construct

decides what particular knowledge, skills, and understanding it will

encompass, and what will count as better or worse configurations

of these aspects as possible ways of being proficient in the

domain in question. Thus, for instance, the job of someone

marking responses to an examination that is designed to

measure that construct is to apply the mutually constructed

and agreed standard consistently to each response she marks

(irrespective of whether she personally agrees that it is the

“right” standard).

We do not have to think of data models that encode

these intersubjective constructions as (more or less accurate)

representations of some objective or underlying “true” account

of the measurand in question. As van Fraassen (2008, p. 260)

notes, “in a context in which a given model is someone’s

representation of a phenomenon, there is for that person

no difference between the question whether a theory fits

that representation and the question whether that theory fits

the phenomenon.”
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7.3 More research is needed on using
partial orders in practice, on linking
di�erent assessments of the same
construct, and on fuzzy valuations

Section 4 argued that in general the datamodels formeasurands

such as proficiency in an educational domain are partial orders.

This perhaps goes against a relatively strongly ingrained concept of

educational assessment as synonymous with ranking (e.g., Holmes

et al., 2017). Yet in many cases, once a theory of (betterness

for) a construct has been settled, rankings are neither necessary

nor needed. Two learners’ proficiency values may simply be

qualitatively different (non-comparable). For instance in Figure 2,

this is the case for learners 3 and 6. But both learners 3 and 6

have performed better than learner 1. So if learner 1’s performance

was sufficient to merit a “pass” grade, let us say (or was picked

out as a “pass” grade prototype), then we know that learners 3

and 6 are also sufficiently proficient to be awarded a pass, even

though it is not meaningful to say that their actual demonstrated

proficiencies were the same, or that either one is more or less

proficient than the other. More work is needed on the scope for

using visualizations such as concept lattices to help educational

assessment designers and teachers engage with and interrogate

the outcomes of educational measurement procedures (see, for a

start, Bedek and Albert, 2015).

A common application of quantitative latent variable models

is to equating or linking different forms of tests of learners’

proficiency in a certain domain. Typically, equating studies are

designed to answer questions like “what score on form X of a test is

equivalent to (represents the same level of proficiency as) a given

score on form Y of the test?”. In practical applications in many

educational contexts however, such as grading students’ responses

to school-leaving examinations (Newton et al., 2007), one is not

so much interested in constructing a monotone map from scores

on X to scores on Y , as in ensuring that the levels or kinds of

proficiency demonstrated by students graded, say, A, on this year’s

examination, are “equivalent”, or “of a comparable standard” to the

type of proficiency demonstrated by students graded A on last year’s

examination.

An area for further research is how to implement such

comparability studies in the fuzzy-relational approach to

educational assessment proposed in this paper. For example one

could take the students graded A on each of the two forms of an

assessment, and examine the intents of the formal concepts that

form their largest factors (cover an appreciable proportion of the

data, in the terms of Bartl et al., 2018). Are these sufficiently similar

to count as equivalent demonstrations of proficiency, and what

criteria should be applied to appraise similarity?

A deeper question is how the truth degrees that summarize each

learner’s demonstration of each construct-relevant attribute are

determined. In some cases this is straightforward in practice (e.g.,

for dichotomously-classified test items such as multiple-choice

questions); but when judges are needed as part of the measurement

procedure, different judges may give different truth values, so what

counts as a reasonable or acceptable value? A full account of this

aspect of qualitative valuation may need to draw on rough fuzzy

logic (Dubois and Prade, 1990; Bazan et al., 2006), itself an active

area of research in machine learning. Certainly more research is

needed here.

Having said that, there is strong support for connecting fuzzy

relational structures to cognitive theories of concept formation,

when exploring the question of how experts—and these days,

AIs—learn to categorize (value) responses to tasks, given some

prototypical exemplars: see for example Bělohlávek and Klir (2011).

The outcomes of educational measurement procedures are

ultimately underpinned by value judgements about exactly what

to assess and how to assess it. As Wiliam (2017, p. 312) puts it:

“whereas those focusing on psychological assessment tend to ask,

‘Is this correct?’, those designing educational assessment have to

ask, ‘Is this good?”’. So questions about how to use mathematical

methods in these contexts, in a way that leverages their power, but

is not unduly reductive, will no doubt always be debated. It is hoped

this paper makes a helpful contribution to that debate.
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