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Learning changes in educational 
animation: visuospatial working 
memory is more predictive than 
subjective task load
Rolf Ploetzner *

Department of Psychology, University of Education Freiburg, Freiburg, Germany

Current theories suggest that visual and spatial processes in working memory 
are crucial for learning from animation. However, despite over three decades 
of research on learning from animation, little is known about how visuospatial 
working memory relates to learning. Instead, animation research often relies 
on subjective task load to explain and predict learning performance. To better 
understand how visuospatial working memory and learning from animation are 
related, a within-subjects study was conducted. Eighty six students learned from 
two animations of different complexity. The students’ performance on visual 
learning tasks, visual and spatial working memory capacity, and perceived task 
load were assessed. Hierarchical regression analyses show that visuospatial 
working memory capacity is more critical for learning from a complex animation 
than for learning from a less complex animation. Moreover, visuospatial working 
memory capacity predicts learning from a complex animation significantly 
better than subjective task load. The effect size is large. The results provide a 
coherent picture of the relationships between learning task demands, learners’ 
visuospatial working memory, perceived task load and learning performance. 
They not only allow for a more accurate prediction of learning from animation 
but can also help to tailor the design and use of animations to the learners’ 
cognitive resources.
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1 Introduction

Animation is widely used in education. For learning from animation to be successful, the 
design and use of animation should take into account the perceptual and cognitive resources 
of learners. Current theories consider perceptual processing to be an essential component of 
learning from animation. It involves the identification of events and relationships between 
events in the animated display. According to Lowe (1999), this requires the learner to 
perceptually extract information from the display at a given time, store it in memory until 
more information appears on the display, and then compare and contrast the memorized and 
external representations (see also Ploetzner and Lowe, 2017). According to Luck and 
Hollingworth (2008) and Schurgin (2018), an important function of visuospatial working 
memory is to bridge spatial and temporal gaps in our perception and to store features of visual 
targets for subsequent comparisons. Given this parallelism, it is reasonable to assume that 
visuospatial working memory plays a central role in learning from animation.
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Current theories of multimedia learning such as the Cognitive 
Theory of Multimedia Learning (Mayer, 2021, 2022) and the 
Cognitive Load Theory (Paas and Sweller, 2022) recognize the role 
of working memory in learning. Commonly, these theories are 
based on Baddeley’s (1999) model of working memory, which 
consists of the central executive, the verbal working memory (called 
the phonological loop), the episodic buffer, and the visuospatial 
working memory (called the visuospatial sketchpad). Several 
researchers have suggested that visuospatial working memory 
should be  further subdivided into a visual and a spatial 
subcomponent (e.g., Logie and Pearson, 1997; see also Baddeley 
et al., 2021).

While the role of working memory has received some attention in 
research on multimedia learning (for reviews see Gyselinck et al., 
2008; Schüler et al., 2011), it has been largely neglected in research on 
learning from animation. Instead, animation research often relies on 
subjective measures of task load, such as cognitive load (Paas and 
Sweller, 2022), to explain and predict learning performance. A deeper 
understanding of the role of visuospatial working memory in learning 
from animation would help not only to tailor the design and use of 
animation to learners’ perceptual and cognitive resources, but also to 
validate and further develop theoretical models of learning from 
animation. Tailoring the design and use of animations to learners’ 
visuospatial working memory rather than their task load ratings has 
at least three advantages:

 1 Visuospatial working memory is easier to assess objectively 
than task load. There are several standardized instruments for 
the objective assessment of visuospatial working memory 
capacity, such as the Visual Patterns Test (Della Sala et  al., 
1997) and the Corsi Block Tapping Test (Corsi, 1972). Although 
attempts have been made to objectively assess task load using 
neurophysiological and dual-task methods (for reviews see 
Brünken et al., 2003; Korbach et al., 2017), these methods are 
difficult to apply. Therefore, in most cases, task load is assessed 
using subjective ratings (for reviews see Krieglstein et al., 2022; 
Paas et al., 2003).

 2 It is more economical to assess visuospatial working memory 
than task load. While visuospatial working memory remains 
stable across successive learning tasks, task load, by definition, 
varies from learning task to learning task. Therefore, 
assessments of visuospatial working memory can be used to 
tailor multiple learning tasks, whereas assessments of task load 
are specific to individual learning tasks.

 3 Visuospatial working memory can be  assessed at a more 
appropriate point in time than task load, namely prior to the 
administration of a learning task. The result of the assessment 
can then be used to tailor the learning task to the learner’s 
cognitive resources. Task load, in contrast, is assessed either 
while a learning task is being performed or after a learning task 
has been completed. This makes it difficult to use task load to 
adapt learning tasks.

Therefore, this study focuses on two main research questions. 
First, how does visuospatial working memory relate to learning 
performance when learning from animation? Second, how does 
visuospatial working memory predict learning performance compared 
to subjective task load?

2 Theoretical and empirical 
background

2.1 Learning from animation

According to Hegarty and Just (1993) and Hegarty et al. (2003), 
two mental models are constructed during learning from animation: 
a kinematic model and a conceptual model. A kinematic model makes 
up an analog mental representation of the displayed changes and thus 
represents the visuospatial and spatiotemporal organization of the 
animation. It unfolds in time and the sequence of events it represents 
corresponds to the sequence of displayed changes. A conceptual model 
consists of a symbolic mental representation of relationships, concepts, 
and principles that are relevant to the animated subject matter and that 
conceptually describe and explain the changes in the display.

In the Animation Processing Model (APM), Lowe and Boucheix 
(2008; see also Lowe et al., 2022) describe the stepwise construction 
of a kinematic model using three phases: (1) the identification of 
individual event units (i.e., individual graphic entities and their 
behavior), (2) the combination of event units into local relational 
structures, and (3) the construction of more extensive relational 
structures that eventually encompass the entire spatial and temporal 
extent of the animation. Two further phases are distinguished in the 
creation of a conceptual model: (4) the assignment of functional roles 
to the identified relational structures and (5) the elaboration of the 
function of the animated system under different operating conditions.

While the early phases of animation processing are largely based 
on bottom-up perceptual processes, the later phases are mainly based 
on top-down conceptual processes. According to Lowe and Boucheix 
(2008), the initial identification of event units forms the basis for 
subsequent processing and is likely to be challenging for learners due 
to competition for limited perceptual and cognitive resources. Thus, 
learners’ visuospatial working memory can be expected to directly 
influence the early phases of animation processing and to indirectly 
influence the later phases as well. But what is known about the role of 
visuospatial working memory in learning from animation?

In their review of research on the role of working memory in 
learning from text and pictures, Gyselinck et al. (2008) summarize that, 
overall, the studies analyzed indicate that visuospatial working memory 
is involved whenever visuospatial information must be processed. This 
can be the case when visual information is perceived, reconstructed 
from knowledge, or constructed through imagery. Although learning 
from animation is not a focus of this review, it is reasonable to assume 
that these findings also apply to learning from animation. In a further 
review, Schüler et al. (2011) conclude that both capacity-based methods 
and dual-task methods for assessing working memory confirm the 
assumption that different working memory subsystems serve different 
functions in multimedia learning. Especially, the studies reviewed 
confirm that visuospatial working memory is involved in processing 
static and dynamic visualizations such as animations.

More recently, Castro-Alonso et al. (2019) have described how 
visuospatial ability can influence learning from animation. They focus 
on the transient information effect (cf. Jiang and Sweller, 2022). 
According to this effect, learning from animation may be hindered if 
learners are shown too much information in too short a time (e.g., 
Castro-Alonso et al., 2018). That is, the learners are unable to process 
the continuous flow of information in working memory. Castro-
Alonso et al. (2019) hypothesize that learners with high visuospatial 
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ability should learn more successful from exceedingly transient 
animations than learners with low visuospatial ability. They summarize 
various empirical studies that support this hypothesis. However, 
almost all of these studies focus on the role of spatial ability as assessed 
by the Mental Rotation Test (e.g., Vandenberg and Kuse, 1978) or the 
Paper Folding Test (e.g., Ekstrom et al., 1976) and not on visuospatial 
working memory (for a review see Höffler, 2010).

To identify empirical research that has specifically focused on 
visuospatial working memory in animation learning, a database 
search was conducted.

2.2 Empirical research

The search was conducted in August 2023 in the Academic Search 
Premier, APA PsychArticles, APA PsychInfo, and ERIC databases. The 
search expression was learning AND (animation OR “dynamic 
visualization” or “dynamic visualisation”) AND (“visual memory” OR 
“visual working memory” OR “visual short-term memory” OR 
“visuospatial memory” OR “visuospatial working memory” OR 
“visuospatial short-term memory”). Further limitations were year of 
publication (2000–2023), population (human), methodology 
(empirical study), and language (English).

After removing duplicates, the search yielded 329 articles. Eight 
additional articles were identified by citations in articles. The following 
criteria were used to select relevant studies:

 • The animation had to be representational, i.e., it had to represent 
the subject matter to be learned (cf. Ploetzner and Lowe, 2012). 
Studies that used artistic, decorative, entertaining, or mnemonic 
animations were not included.

 • The animation had to be  the main learning material and not 
merely a minor part of an extensive multimedia environment.

 • The visuospatial working memory and the learning performance 
of the learners had to be assessed.

 • The assessed visuospatial working memory and learning 
performance had to be related.

The titles and abstracts of the 329 articles were read. Occasionally, 
the full text of an article was skimmed. If an article violated at least one 
of the criteria, it was excluded. This left 16 articles for full text 
assessment. The texts of these 16 articles and the eight articles 
identified by citations were evaluated in their entirety.

Seventeen articles acknowledged the role of visuospatial working 
memory in learning from animation. However, they did not assess 
visuospatial working memory (e.g., Moreno and Mayer, 2000, 2002; 
Yue et al., 2013). In three articles, visuospatial working memory was 
assessed but not related to learning performance. For example, 
Boucheix and Guignard (2005) assessed learners’ visuospatial working 
memory using tasks proposed by Shah and Miyake (1996). Although 
the learners’ scores on these tasks were used to test whether the 
experimental groups differed on this variable, they were not related to 
learning performance. Only four articles met the selection criteria.

Münzer and Stahl (2011) investigated wayfinding learning from 
static and dynamic visualizations. They assumed that visuospatial 
representations constructed during learning must be maintained in 
working memory to successfully perform wayfinding tasks in real 
buildings. Therefore, they hypothesized that visuospatial working 

memory capacity—as measured by a Mental Pathway Span Task, a 
variant of a task originally proposed by Brooks (1967)—would predict 
wayfinding performance. Contrary to their expectations, the two 
variables were not correlated. Furthermore, Münzer and Stahl (2011) 
did not relate their hypothesis to the visualizations used. Thus, their 
research does not shed light on the role of visuospatial working 
memory in learning from animation.

Wong et al. (2018) investigated how different variables influence 
the learning of construction procedures from animation. One of the 
variables investigated was the learners’ spatial ability. As a component 
of spatial ability, the capacity of visuospatial working memory was 
assessed using the Corsi Block Tapping Test (Corsi, 1972). Wong et al. 
(2018) assumed that spatial ability helps learners process large amounts 
of rapidly changing information in animated displays. Accordingly, 
they observed significant small to medium correlations between 
visuospatial working memory capacity and three performance measures.

In two experiments, Wright et al. (1999) investigated the learning 
of history from text and from static and dynamic visualizations. They 
hypothesized that learning from animations would lead to improved 
learning performance compared to learning from static pictures, and 
that this improvement would be more pronounced for learners with 
greater visuospatial working memory. Visuospatial working memory 
was assessed with a self-constructed Picture Memory Test. In the first 
experiment, visuospatial working memory correlated significantly 
with a delayed performance measure in the group who learned from 
animation. In the second experiment, visuospatial working memory 
correlated significantly with the same performance measure in two 
groups who learned from animation. Although the authors summarize 
that learners who performed well on the visual memory test benefited 
most from the animations, it remains unclear how visuospatial 
memory specifically contributed to learning from animation.

More recently, Kühl et al. (2022) investigated how spatial ability 
influences learning from static and dynamic visualizations. They 
focused on visuospatial working memory as an important factor of 
spatial ability. Like Münzer and Stahl (2011), they measured 
visuospatial working memory using a Mental Pathway Span Task, a 
variant of a task originally proposed by Brooks (1967). Kühl et al. 
(2022) found significant (non)linear relationships between 
visuospatial working memory capacity and learning performance.

Thus, although the importance of visuospatial working memory is 
often acknowledged in research on learning from animation, empirical 
investigation of its role in learning is the rare exception. Only four of the 
337 articles identified were relevant in this respect. Overall, the results 
observed in these articles suggest a positive relationship between 
visuospatial working memory and the performance in learning from 
animation. However, the variance within the reported results is 
considerable. Furthermore, only Kühl et al. (2022) and Wong et al. (2018) 
describe how visuospatial ability may specifically support learning from 
animation. Thus, there appears to be little systematic empirical research 
on the role of visuospatial working memory in learning from animation.

3 Method and materials

3.1 Design and hypotheses

To gain insight into the role of visuospatial working memory, 
especially in the initial phase of learning from animation, learners 

https://doi.org/10.3389/fpsyg.2024.1389604
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Ploetzner 10.3389/fpsyg.2024.1389604

Frontiers in Psychology 04 frontiersin.org

were shown two animations of mechanical gears, one of low and one 
of high complexity, in a within-subject design. The learners had to 
grasp and memorize the motion patterns of the individual components 
of the animated gears, i.e., they had to identify event units in terms of 
the APM. In addition, the learners’ visual working memory (VWM) 
capacity, spatial working memory (SWM) capacity, and subjective task 
load were assessed. Four hypotheses were tested:

H1: Since a low complexity animation should be easier to grasp 
and memorize than a high complexity animation, it is predicted 
that the low complexity animation will lead to higher learning 
performance than the high complexity animation.

H2: Due to the difference in complexity of the animations, it is 
predicted that the subjective task load will be lower for the low 
complexity animation than for the high complexity animation.

H3: Because learners had to learn the motion patterns of the 
animations—not their spatial arrangements—the correlation 
between learning performance and VWM capacity is predicted to 
be higher than the correlation between learning performance and 
SWM capacity. This relationship should be more pronounced with 
respect to the high complexity animation than with respect to the 
low complexity animation.

H4: As observed in previous studies on subjective task load and 
learning performance (e.g., Krieglstein et al., 2022), subjective task 
load and learning performance are predicted to be  negatively 
correlated. Similarly, negative correlations between subjective task 
load and VWM/SWM capacity are predicted, as lower VWM/
SWM capacity should be associated with the perception of higher 
mental load, at least in the context of complex visual learning tasks.

3.2 Participants

With two dependent variables (learning performance on the high 
and low complexity animation), three predictors (VWM capacity, 
SWM capacity, and task load), and an expected medium effect size, a 
power analysis using G*Power (Faul et  al., 2007) requires 77 
participants to achieve 80% power. A total of 86 students (63 
undergraduates and 23 graduates, 70 female and 16 male, mean age 
M = 21.64 years, SD = 2.73) from various study programs at a university 
in Germany voluntarily participated in the study. They received 
financial compensation for their participation.

3.3 Materials

3.3.1 Animations
Two gear mechanisms of varying complexity were animated, a 

four-bar linkage and a six-bar linkage (see Figure  1). These 
mechanisms move in one plane and transform the continuous rotation 
of the input gear (red links) into more complex motion patterns of the 
output gear (black links). Whereas the four-bar linkage consists of 
four links—including the rack—and five joints, the six-bar linkage 
consists of six links—including the rack—and seven joints. 

Furthermore, while the links of the four-bar linkage have a continuous 
and regular motion, the links of the six-bar linkage—except for the 
input gear—have a discontinuous and/or irregular motion. Thus, the 
two mechanisms differ in both structural and behavioral complexity. 
The animations were created using Adobe Animate CC.

3.3.2 Assessment of learning performance
After learning, the participants had to identify the correct motion 

pattern of each link. For each link, learners were presented with four 
animations: the correctly animated version of the link and three 
incorrectly animated versions of the link. The incorrect versions 
moved in the same direction and traveled the same path in the same 
time as the correct version of the link, but had different motion 
patterns along the path (e.g., continuous vs. discontinuous motion). 
Figure 2 shows snapshots of the four animations of the green link of 
the six-bar linkage at 3 s. As the animations have different motion 
patterns, they are only in the same positions and have the same 
orientations at the beginning and at the end of a loop. To avoid 
confusing the learner with four animations running simultaneously, 
the animations were covered independently. When the mouse was 
moved over a cover, the looping animation became visible (see 
Figure 2). This allowed learners to watch one animation after another 
and move the mouse back and forth between the animations for as 
long as they wanted. The animations of the different links were shown 
to the learners in random order. The learners did not receive any 
feedback on their learning performance. All animations were created 
using Adobe Animate CC.

3.3.3 Visual Patterns Test and Corsi Block Tapping 
Test

To assess the visual component of the learners’ visuospatial 
working memory, a computerized version of the Visual Patterns Test 
(Della Sala et al., 1997) was used. Participants are shown increasingly 
complex matrix patterns consisting of 50% black and 50% white 
squares. The matrices range from 2 × 2 matrices to 5 × 6 matrices. Each 
matrix of a certain complexity is shown with three different patterns. 
A pattern is presented to the learner for 3 s. The learners are then 
asked to reproduce the pattern in an empty matrix. If all three patterns 
of a given complexity cannot be reproduced, the test is stopped. The 
complexity of the last pattern that was successfully reproduced 
determines the visual memory span. When the three 2 × 2 matrices are 
used for practice, the span ranges from 3 to 15. As this study is not 
intended for clinical diagnosis, the more sensitive score of all correctly 
reproduced patterns is used (cf. Della Sala et al., 1997). A maximum 
of 39 points could be  achieved. Learners were given feedback on 
their performance.

To assess the spatial component of the learners’ visuospatial 
working memory, a computerized version of the Corsi Block Tapping 
Test (Corsi, 1972) was used. In the computerized version, nine 
identical and spatially separated squares are placed within a larger 
rectangle. Learners are presented with increasingly long sequences of 
squares, which are highlighted one at a time. Highlighting a square 
and moving from one square to another takes 1 s each. The learner is 
asked to reproduce a sequence by clicking on the corresponding 
squares in the correct order. Sequences range from two squares up to 
nine squares. Two different sequences are shown for each length. The 
spatial layout of the squares and the sequences of highlighted squares 
were arranged according to the standardized administration of the 
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Corsi Block Tapping Test as proposed by Kessels et al. (2000). If both 
sequences of a given length cannot be reproduced, the test is stopped. 
The length of the last sequence successfully reproduced determines 
the block span. When sequences of length two are used for practice, 
the span ranges from 3 to 9. As this study is not intended for clinical 
diagnosis, the more sensitive score of all correctly reproduced 
sequences is used (cf. Kessels et al., 2000). A maximum of 14 points 
can be achieved. Learners were given feedback on their performance.

3.3.4 NASA Task Load Index
Five scales of a computerized version of the NASA Task Load 

Index (TLX, Hart and Staveland, 1988) were used to assess learners’ 
perceived task load: mental demand, temporal demand, overall 
performance, effort and frustration. The physical demands scale was 

not appropriate for this study. Each scale was rated by the learners on 
a 20-point Likert scale. As suggested in the TLX manual, the scales 
were weighted according to their supposed importance to the learning 
task. The following weights were applied: mental demand 5, effort 4, 
temporal demand 3, performance 2, and frustration 1. The TLX score 
is the weighted sum of the scores on each scale. A maximum task load 
of 300 can be achieved.

3.4 Procedure

The students were investigated in groups of up to eight individuals. 
Each student learned individually using a computer equipped with a 
21-in. screen and a mouse. The computers were placed on separate 

FIGURE 1

Snapshots of the animations of the four-bar (left) and six-bar (right) linkage.

FIGURE 2

Snapshots of the uncovered (left) and covered (right) correct and incorrect animations of a link.
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desks. All the material was presented to the students using a computer 
program created with the authoring software ActivePresenter.1 The 
size of the presentation area was 1,200 × 1,000 pixels.

First, the students were told how to use the program and what 
they would be learning. The students were then asked to give their 
consent to take part in the study. The program then presented the 
material to the students in the following order: (1) example of an 
oscillating link and identification of its motion pattern, (2) first gear 
and identification of its motion patterns, (3) first TLX assessment, 
(4) second gear and identification of its motion patterns, (5) second 
TLX assessment, (6) Visual Patterns Test, and (7) Corsi Block 
Tapping Test. Half of the students received the lower complexity 
animation first and then the higher complexity animation. The 
other participants received the animations in reverse order. The 
procedure took approximately 40 min.

4 Results

Regarding the first hypothesis, learning performance was 
significantly higher for the low complexity animation (M = 76.74%, 
SD = 28.50) than for the high complexity animation (M = 61.86, 
SD = 21.17; t(85) = 4.36, p < 0.001). According to Cohen (1988), the 
effect size is medium (g = 0.46).

Correspondingly, and regarding the second hypothesis, subjective 
task load was significantly lower for the low complexity animation 
(M = 159.44, SD = 35.40) compared to the high complexity animation 
(M = 203.42, SD = 34.76; t(85) = 10.74, p < 0.001). According to Cohen 
(1988), the effect size is large (g = 0.88).

Consistent with the third hypothesis, Table  1 shows that the 
correlation between learning performance and VWM capacity is 
higher than the correlation between learning performance and SWM 
capacity. As predicted, this relationship is more pronounced with 
respect to the high complexity animation than with respect to the low 
complexity animation.

In line with the fourth hypothesis, there are significant negative 
correlations between subjective task load and learning performance 
for both animations (see Table  1). Furthermore, as predicted, 
subjective task load and VWM capacity are negatively correlated. 
Subjective task load and SWM capacity are almost uncorrelated.

1 atomisystems.com

To further analyze the strength of the relationships examined, two 
hierarchical regression analyses were conducted. In each analysis, the 
dependent variable was learning performance, and the predictors were 
subjective task load, VWM capacity, and SWM capacity. The criterion 
for including a predictor was that its increment in explaining the 
variance of the dependent variable was significant at the level of 
α = 0.05. For the low complexity animation, only subjective task load 
was a significant predictor of learning performance (β =−0.35, F(1, 
84) = 11.43, p < 0.01). According to Cohen (1988), the effect size is 
medium. For the high complexity animation, only VWM capacity was 
a significant predictor of learning performance (β = 0.52, F(1, 
84) = 31.28, p < 0.001). According to Cohen (1988), the effect size 
is large.

5 Discussion

A systematic database search revealed that the role of visuospatial 
working memory has rarely been investigated in research on learning 
from animation. This is surprising given that visuospatial working 
memory plays a central role in the processing of visuospatial 
information (e.g., Luck and Hollingworth, 2008; Schurgin, 2018) and 
that current theories describe learning from animation as, among 
other things, a visual and spatial learning task (Lowe et al., 2022). 
Instead, animation research often relies on subjective measures of task 
load to explain and predict learning performance (e.g., Hasler et al., 
2007; Moreno, 2007; Wong et al., 2012).

To investigate the relationship between visuospatial working 
memory and animation processing, a correlational study was 
conducted. In the study, learners were required to complete visual 
learning tasks involving two animations of varying complexity. 
Learners’ VWM capacity, SWM capacity, and perceived task load were 
assessed. This made it possible to formulate differential hypotheses 
about how VWM, SWM, and task load are related to the processing 
of animations of low and high complexity, respectively.

As predicted, the results are different for each animation used. For 
the low complexity animation, VWM and SWM capacity correlate 
very little with learning performance. This may indicate that the 
learners’ perceptual resources did not seriously limit their achievement 
of this learning task. Nevertheless, learners had to direct their visual 
attention to the displayed links and identify and memorize their 
motion patterns. The effort involved in these processes is probably 
reflected in the moderate negative correlation between perceived task 
load and learning performance. As VWM and SWM capacity were not 

TABLE 1 Intercorrelations between learning performance, task load (TLX), visual (VPT), and spatial (Corsi) working memory capacity.

Variable Perf. low 
compl. anim.

Perf. high 
compl. anim.

TLX low 
compl. anim.

TLX high 
compl. anim.

VPT Corsi

Perf. low compl. anim. —

Perf. high compl. anim. 0.22* —

TLX low compl. anim. −0.35** −0.15 —

TLX high compl. anim. −0.23* −0.24* 0.41** —

VPT 0.16 0.52** −0.18 −0.25* —

Corsi 0.10 0.10 0.07 0.07 0.40** —

*The correlation is significant at the level of α = 0.05.
**The correlation is significant at the level of α = 0.01.

https://doi.org/10.3389/fpsyg.2024.1389604
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
http://atomisystems.com


Ploetzner 10.3389/fpsyg.2024.1389604

Frontiers in Psychology 07 frontiersin.org

limiting factors in this learning task, only perceived task load 
significantly predicted learning performance.

For the high complexity animation, the picture is very different. 
Learners not only had to learn movements of more links, but also 
more complicated movements involving irregular and non-continuous 
motion. The large correlation between VWM capacity and learning 
performance may indicate that VWM was a limiting factor in 
achieving this learning task. As with the low complexity animation, 
SWM capacity correlates little with learning performance. Although 
perceived task load increased significantly from the low to the high 
complexity animation, the correlation between task load and learning 
performance did not. In this learning task, only VWM capacity 
significantly predicted learning performance.

The finding of moderate to high correlations between VWM 
capacity and learning performance on the one hand, and only weak 
correlations between SWM capacity and learning performance on the 
other, emphasizes that the learning tasks were visual rather than 
spatial. While this design of the learning tasks was intentional, the 
current study does not shed light on the question of how VWM and 
SWM capacity relate to animation learning when the learning tasks 
become more spatial. Future research could also enhance the findings 
of the current study by experimentally investigating the influence of 
visuospatial working memory on animation learning, for example by 
examining samples paired by their visuospatial working 
memory capacity.

Overall, the results support current theories of learning from 
animation such as the APM in which it is assumed that visuospatial 
working memory affects the early stages of animation processing, 
where bottom-up perceptual processes are prominent. However, the 
current study leaves open the question of how visuospatial working 
memory relates to later phases of animation processing as described 
in the APM. Theoretically, stronger relationships would be expected 
in the early phases of animation processing and weaker relationships 
in the later phases when cognitive processes come to the fore.

A better understanding of the role of visuospatial working 
memory in learning from animation may not only help to further 
validate theoretical models of animation learning, such as the APM, 
but also to support learning by tailoring the design and use of 
animation to learners’ perceptual and cognitive resources.
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