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Editorial on the Research Topic

Variability and reproducibility of brain imaging

The human brain processes a constant stream of sensory information, necessitating

advanced filtering and cognitive processing for tasks like recognizing dynamic facial

expressions (Wang and Yuan, 2021). Advances in noninvasive neuroimaging methods,

such as electroencephalogram (EEG) (Wang et al., 2020a), magnetic resonance imaging

(MRI) (Lu et al., 2021), and near-infrared spectroscopy (NIRS) (Wang et al., 2020b) have

deepened our understanding of how the human brain works over the last decades (Finn

et al., 2023). However, the reliability and reproducibility of the results have been recently

questioned and exposed in the spotlight (Cognitive neuroscience at the crossroads, 2022),

highlighting the need to address and clarify the integrity of the research field (Revisiting

doubt in neuroimaging research, 2022).

Hence, the main goal of this Research Topic is to address and explore which factors

influence the reliability and reproducibility of brain imaging results and provide practical

perspectives and insights to enhance them.We have collected four articles for the Research

Topic, whose contributions were discussed as follows.

The first article explored the contributing factors to the brain age index. Brain age is the

age gap between chronological age and predicated age from brain imaging data (Cole and

Franke, 2017). There is evidence showing that brain age is associated with common brain

disorders (Kaufmann et al., 2019), and it has been considered as a potential biomarker

for various psychiatric disorders (Cole and Franke, 2017). However, the contribution

to brain age from non-brain imaging factors besides neuroimaging data has not been

explored. Korbmacher et al. have explored this issue and proposed a Bio-psycho-social

model for predicting brain age. The study utilized the UK Biobank data (Miller et al., 2016)

and compared different model configurations. They discovered that the Bio-psycho-social

model can partially explain the brain age variance which is comparable to the contribution

of the diffusion MRI approach. Additionally, they found large variability in gender and

ethnicity differences in brain age. They then suggest that in future studies, the effects

of ethnicity, cognitive factors, gender, as well as health and lifestyle factors should be

controlled to observe the bio-psycho-social factor impacts on brain age.
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The second article touched upon the reliability of the resting-

state (rs-)fMRI. Put simply, rs-fMRI captures systematic, non-

random variations in brain activation in the absence of a

specific task. These activations are indirectly reflected in regional

fluctuations in the level of oxygenation of the blood (known as

BOLD) (Ogawa et al., 1992), which has been widely used to

explore the functional brain activation (Lu et al., 2020) and brain

networks (Damoiseaux et al., 2006; Bullmore and Sporns, 2009;

van den Heuvel and Pol, 2010). There is evidence suggesting

that the time-of-day could be associated with reduced global

signal fluctuation and functional connectivity (Orban et al., 2020)

alongside the time-of-year effect (Wang et al., 2023; Zhang et al.,

2023). However, it’s still unclear how the time-of-day effect, along

with other factors such as age and gender, could sway the results

of longitudinal neuroimaging data. Vaisvilaite et al. addressed this

issue by leveraging the BETULA dataset, a longitudinal study

on aging (Nilsson et al., 1997), and employing the cross-spectral

dynamic causal modeling (DCM) (Friston et al., 2003), which puts

the temporal fluctuations of resting-state BOLD signal into the

focus. Specifically, they explored eight DCMmodels and found that

the time-of-day effect together with gender significantly influences

the parameters defining the BOLD signal. Therefore, they suggest

that when collecting longitudinal neuroimaging datasets, time of

day should be considered a covariate in addition to age and gender.

The third article discussed the reliability of the magnetic

resonance spectroscopy (MRS) measurement in multi-

site/vendor studies. MRS allows for non-invasive investigation of

neurometabolic profiles in health and disease, yielding metabolite

estimates from a localized volume (Oz et al., 2014; Wilson et al.,

2019). Widely used in clinical settings (Oz et al., 2014), MRS has

recently been applied to identify IDH-mutated gliomas (Branzoli

and Marjanska, 2020) and explore the association between

behavior and MRS-derived neurotransmitters (Li et al., 2022). It is

suggested that the MRS-derived metabolite estimates are reliable

within the participants (Wang et al., 2024). In large-scale clinical

studies, a multi-site/vendor design is often favored to achieve the

necessary statistical power. However, the impact of different sites

and scanners on metabolite estimates is frequently overlooked

(Považan et al., 2020). La et al. investigated how to account for

these differences in a pediatric concussion dataset comprising 545

short-TE MRS measurements, collected across six MRI scanners

with two MRI vendors at five scanning sites. They used four

general linear models and three linear mixed-effects models to

investigate site- and vendor effects on the quantitative estimates of

five major neuro-metabolites. They found that different analysis

strategies of controlling site, vendor, and scanner in MRS data

generated different results, from which they advocate that the

ComBat harmonization for clinical MRS data (Bell et al., 2022)

should be utilized to remove the site and vendor effects.

The fourth article is even more clinically related, exploring the

repeatability of 2D and 4D flow MRI measurement of intracranial

blood flow and pulsatility. Arterial stiffening impacts blood vessel

compliance and regulation and is considered a contributing

factor to various neurological conditions (Poels et al., 2012). To

noninvasively examine arterial stiffening specifically the blood flow

velocity, 2D phase-contrast MRI is dominantly used (McCauley

et al., 1995). However, it can only measure a few vessels per scan.

On the contrary, the 4D flow MRI can evaluate multiple vessels

simultaneously, making it an attractive alternative (Terada et al.,

2022). Yet, the repeatability, reliability, and consistency of 4D flow

compared to 2D across intracranial vessels remain uncertain. In the

study, Morgan et al. aimed to answer this scientific inquiry. They

used various statistical methods including intra-rater reliability,

inter-method conformity, and test-retest repeatability to assess the

repeatability of the pulsatility index and mean flow among patients

with small vessel disease and healthy controls. They found that the

4D flow MRI possesses repeatable and reliable PI measurements

and the mean blood flow measurement. Therefore, they have

suggested the 4D flow MRI can be confidently used to assess the

pulsatility across the major cerebral vessels.

We appreciate the contributions of the authors of these

four articles, which hopefully could stimulate and elicit further

discussions about the topic: the variability and reliability of brain

imaging. Indeed, we have witnessed collective initiatives to enhance

the robustness of the neuroimaging results (Korbmacher et al.,

2023), such as best practices in the data analysis (Nichols et al.,

2017; Boudewyn et al., 2023), guidelines for reporting or publishing

(Poldrack et al., 2008; Keil et al., 2014; Lin et al., 2021; Yücel et al.,

2021), and expert consensus (Choi and Kreis, 2021). We firmly

believe by acknowledging the problems we have in neuroimaging

studies and adopting the best practices, the neuroimaging results

will be more robust and reliable.
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