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Background: Depression is one of the primary global public health issues, and

there has been a dramatic increase in depression levels among young people

over the past decade. The neuroplasticity theory of depression postulates that a

malfunction in neural plasticity, which is responsible for learning, memory, and

adaptive behavior, is the primary source of the disorder’s clinical manifestations.

Nevertheless, the impact of depression symptoms on associative learning

remains underexplored.

Methods: We used the di�erential fear conditioning paradigm to investigate

the e�ects of depressive symptoms on fear acquisition and extinction learning.

Skin conductance response (SCR) is an objective evaluation indicator, and

ratings of nervousness, likeability, and unconditioned stimuli (US) expectancy

are subjective evaluation indicators. In addition, we used associability generated

by a computational reinforcement learning model to characterize the skin

conductance response.

Results: The findings indicate that individuals with depressive symptoms

exhibited significant impairment in fear acquisition learning compared to

those without depressive symptoms based on the results of the skin

conductance response. Moreover, in the discrimination fear learning task,

the skin conductance response was positively correlated with associability, as

estimated by the hybrid model in the group without depressive symptoms.

Additionally, the likeability rating scores improved post-extinction learning in the

group without depressive symptoms, and no such increase was observed in the

group with depressive symptoms.

Conclusion: The study highlights that individuals with pronounced depressive

symptoms exhibit impaired fear acquisition and extinction learning, suggesting a

possible deficit in associative learning. Employing the hybridmodel to analyze the

learning process o�ers a deeper insight into the associative learning processes

of humans, thus allowing for improved comprehension and treatment of these

mental health problems.
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fear conditioning, associative learning, depression, skin conductance response, hybrid
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1 Introduction

Major depression is a mental illness that is characterized

by a persistent and significant low mood and is caused by a

combination of environmental and hereditary causes, which is

widespread, expensive, damaging, and related to heightened risk of

suicide. It is a major worldwide public health concern (Marwaha

et al., 2023). Rates of depression in youth have sharply increased

over the last 10 years, which is concerning because adolescence

is a time of rapid changes in social, emotional, and cognitive

development, as well as a period of significant life transitions.

The risk of recurrence of depression, co-morbidity with other

mental illnesses, and more severe and prolonged damages in social,

educational, and occupational functioning are the consequences

related to depression in young people (Thapar et al., 2022). It

has been observed that depression and anxiety are increasingly

common among the youth, and they frequently occur together

and have similar risk factors (Craske and Waters, 2005). The

hypothesis of a shared neurobiological malfunction is supported by

the fact that anxiety and depression have many similar symptoms

and may respond to comparable therapies. However, the precise

neurobiological mechanisms underlying depression and anxiety are

not yet fully understood (Nutt et al., 2002). Havingmore knowledge

about depression can help in the development of treatments for

other mental health issues.

Fear learning dysfunction is thought to be implicated in

the emergence and persistence of an array of psychiatric issues,

including not only anxiety disorders (Milad et al., 2014; Otto

et al., 2014) and posttraumatic stress disorder (PTSD) (Wicking

et al., 2016) but also depression (Sandi and Richter-Levin,

2009). Moreover, studies on extinction learning in depression

have yielded conflicting results, one study showed a deficiency

(Dibbets et al., 2015), and the other study exhibited enhancement

(Kuhn et al., 2014). Therefore, it is believed that maladaptive

social anxiety and fear are linked to depression. The ability to

recognize and respond to potential danger is essential for survival;

however, when this process becomes impaired and when one

experiences an abnormal fear response to harmless situations,

anxiety disorders may develop. Numerous studies have been

conducted for understanding the behavioral, experiential, and

neural components of both adaptive and maladaptive fear-learning

processes in both animals and humans. Pavlovian fear conditioning

is a prevalent model for studying both fear and anxiety, and it

continues to influence modern explanations of clinical anxiety

issues. Despite its widespread usage in studies of both animals

and humans, the neurological basis of fear conditioning is not

yet fully comprehended. Investigating the relationship between

fear learning and depression can help us gain insights into the

associative learning processes of humans, which could lead to

improved comprehension and treatment of these mental health

issues. Conditioning, extinction, and reinstatement are essential

elements of animal adaptation, and they are also closely associated

with mental disorders such as PTSD, anxiety, depression, and

addictions (Mattera et al., 2020). Fear conditioning and fear

extinction learning are fundamental components of models that

explain the development of anxiety disorders and the reduction

of pathological fear during exposure-based treatments (Shankman

and Klein, 2003). Studies conducted on rodent models of learned

helplessness have revealed a correlation between impaired fear

extinction and heightened depression-like behaviors (Shumake

et al., 2005). It was also found that depressed patients had trouble

acquiring conditioned fear. Furthermore, following successful

fear learning, they displayed impaired extinction of conditioned

fear responses (Wurst et al., 2021). Depression increases the

risk of enduring persistent fear, which is the characteristic of

anxiety disorders, and similarly, persistent fear can contribute

to depression.

Fear conditioning is a form of associative learning with

adaptive and self-protective functions (Pearce and Bouton, 2001)

to predict threat through the association of initially neutral stimuli

(conditioned stimuli, CS) with aversive outcomes (unconditioned

stimuli, US) (Ojala and Bach, 2020), and the corresponding

laboratory model has been used extensively as a classical

experimental paradigm to quantitatively measure associative

learning (Lonsdorf et al., 2017). Classical formal learning theory,

such as the Rescorla–Wagner (R-W) and Pearce–Hall (P-H)

models, which explain how the CS and US signals are integrated

algebraically to connect cues with aversive events, can provide

a good description of computational principles behind direct

fear conditioning (LePelley and McLaren, 2004; Lindström et al.,

2018). The R-W model is a learning model that is driven by the

prediction error, that is, the difference between the expected and

actual outcomes of a conditioning trial (Miller et al., 1995; Li

and McNally, 2014). In other words, the R-W model suggests that

the formation of an association depends on deviations or “errors”

between expectations and actuality. However, the P-H model is an

associability gated learning model. Organisms learn cue–reinforcer

associations by applying a quantity called associability, which is

determined by the dynamics of trial-wise prediction errors (Herry

and Johansen, 2014). To be more precise, associability is based on

prediction errors from prior trials involving the same cue, which

indicate the degree to which each cue has been accompanied by

a surprise in the past. Learning rate is a constant in the R-W

model, but in the P-H model, a cue’s associability gates learning

rate dynamically, decelerating learning to reliable predictors and

accelerating learning to cues that are poor predictors (Li et al.,

2011). However, the hybrid model is shown to have better power to

comprehend a variety of experimental findings than the previous

single model (Le Pelley, 2004).

Recent studies have revealed that people with depression

demonstrate improved extinction learning in comparison to

healthy controls (Kuhn et al., 2014), as well as enhanced differential

acquisition of fear responses toward the CS+ (Nissen et al.,

2010). Despite contrary reports (Otto et al., 2014; Waters et al.,

2014; Wurst et al., 2021) or null findings (Dibbets et al.,

2015), most studies have been conducted with relatively small

sample sizes, making it necessary to conduct more research

to gain a better insight into the effects of depression on fear

acquisition and extinction learning. The neuroplasticity hypothesis

of depression postulates that a malfunction in neural plasticity,

which is responsible for learning, memory, and adaptive behavior,

is the primary source of the disorder’s clinical manifestations

(Spedding et al., 2003; Normann et al., 2007; Kuhn et al., 2014).

Due to the attentional and memory deficits associated with
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mood disorders, we predicted that the people with depressive

symptoms would show poor acquisition of the conditioned fear

response than those without depressive symptoms. This is because

differential conditioning necessitates the learning and subsequent

discrimination of the meaning of both a CS+ and CS–.

2 Materials and methods

2.1 Subjects

In total, 53 healthy college students aged between 18 and

30 years participated in this 2-day study. On the 1st day of the

experiment, four subjects showed flat SCRs, which were deemed

as a failure to show detectable or reliable SCR. Therefore, these

four subjects were excluded. On the 2nd day of the experiment,

three subjects were unable to participate in the experiment due to

personal reasons, and for two other subjects, SCR and subjective

evaluation data were not collected due to equipment failure.

Therefore, finally, 49 subjects participated on the 1st day of

the experiment and 44 on the 2nd day of the experiment. All

participants were right-handed with self-reported normal vision

or corrected vision. Written informed consent was obtained from

all participants. The experimental procedure was approved by

the Ethics Committee of the Tianjin Medical University and

Peking University.

2.2 Assessment of psychiatric symptoms

All subjects were required to complete five self-report

questionnaires, which were brief, commonly used, and

psychometrically sound, before starting the task on the 1st day.

The Beck Depression Inventory (BDI) consists of 13 items,

and each item is rated on a 4-point scale from 0 to 3. The BDI

is administered to measure depressive symptoms at this moment.

A total score is used to distinguish the presence and severity

of depressive symptoms: 0–4 represents (basically) no depressive

symptoms, 5–7 is mild, 8–15 is moderate, and 16 or more is severe

(Beck et al., 1961; Metcalfe and Goldman, 1965; Aalto et al., 2012).

The State-Trait Anxiety Inventory (STAI) consists of two subscales:

the State Anxiety Inventory (S-AI) and the Trait Anxiety Inventory

(T-AI), each with 20 items, which can assess current (state anxiety)

and persistent (trait anxiety) anxiety symptoms, respectively. Each

item is scored on a scale of 1–4. Cumulative scores for the S-AI

and T-AI subscales are calculated separately, with a minimum of

20 and a maximum of 80, and then summed to calculate the total

score. Based on the age of the subjects included in this study, the

thresholds were used as follows: male subjects with state anxiety

scores over 53 and trait anxiety scores over 56 and female subjects

with state anxiety scores over 55 and trait anxiety scores over 57

were considered abnormal. Higher scores indicate higher levels of

anxiety (Spielberger et al., 1971; Spielberger, 1983).

The Childhood Trauma Questionnaire (CTQ) is used to assess

childhood adverse experiences before the age of 16 years. The

CTQ has a total of 28 items. Each item is graded on a 5-point

scale. The CTQ can be divided into five subscales, each of which

is scored between 5 and 25 points. When emotional abuse ≥ 13,

sexual abuse≥ 8, physical abuse≥ 10, emotional neglect≥ 15, and

physical neglect≥ 10, any subscale score meeting the above criteria

is considered as accompanied by childhood trauma (Bernstein et al.,

2003).

The Pittsburgh Sleep Quality Index (PSQI) evaluates the sleep

quality of the subjects in the last month. The items consist of seven

components, and each component is scored on a scale from 0 to 3.

The total score of the PSQI is the sum of the scores of the seven

components, ranging from 0 to 21. Higher scores indicate poorer

sleep quality, using seven points as the threshold (Buysse et al.,

1989).

The Zhang Ming Yuan Life Event Scale (LES) has a total of 65

items, covering a variety of common life events. According to the

age of the subjects, the corresponding value for the life event unit

(LEU) was taken. The LEU value of each event in the past year was

added to get the total LEU value.

2.3 Conditioning paradigm

On the 1st day, all participants underwent a differential fear

conditioning paradigm. Two geometric shapes (circle and triangle)

as non-conditioned (CS–) and conditioned (CS+) stimuli were

presented on a gray background, with black color, the same size,

and mean luminance. The assignment of shapes to the CS type

was balanced across subjects. The order of the trial was generated

pseudo-randomly with two constraints. The first trial was always

CS+US, and no more than two consecutive trials of the same

kind were observed. The US usually was an aversive outcome.

Here, a mild electric shock was delivered to the participant’s right

forearm via the BIOPAC stimulator module STM200-1 (BIOPAC

Systems Inc., Goleta, California, USA), which served as the US.

The intensity of the shocks was customized for everyone to a

level described as “aversive but not painful.” The experiment was

performed by administering a constant shock intensity throughout.

The conditioned stimulus (CS+) was presented for 4 s and was

paired with an electric shock of 500-ms duration and 50Hz current

pulse, with the application of partial reinforcement (50%). The

conditioned stimulus was never paired with an electric shock

(CS–). The conditioning phase consisted of 24 CS+ trials, 12 of

which were reinforced with the electric shock, and 12 CS– trials.

Partial reinforcement was used to delay acquisition and to evaluate

the response to the CS+ without interference from the shock or

habituation to the shock. During an inter-trial interval randomly

determined to last 7–11 s, a fixation cross was shown at the center

of the gray background. Subjects were instructed to focus on

the geometric shapes presented on the computer screen and to

discern the correlation between the stimuli and shocks. Before the

conditioning phase, a habituation phase was conducted without

electrical shock, wherein the CS+ and CS– were each displayed

four times randomly, amounting to eight trials, to accustom the

physiological response to the novel stimulus (Boucsein et al., 2012).

After 24 h, subjects participated in extinction training. The

extinction phase consisted of 24 trials: 12 CS+ trials without the

US pairing and 12 CS– trials. The trials remained in a pseudo-

random order with no more than two sequential presentations of

either the CS+ or CS–. During the extinction phase, no electric

shocks appeared throughout the process. Subjects were given no

instructions to changes in the previous CS-US contingency. Each
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stimulus was also displayed for 4 s, with the same inter-trial interval

as applied in the conditioning phase.

In addition, subjects were required to rate the nervousness,

likeability, and US expectancy of each CS following each

experimental phase. Nervousness and likeability were rated on

a 7-point-Likert scale, ranging from “very relaxed” (1) to “very

nervous” (7) and “very dislike” (1) to “very like” (7), respectively.

US expectancy was indicated as the probability of a shock following

each stimulus in percent on a scale from 1 to 100 in 10% steps.

The whole task procedure (Figure 1) was run by The Psychtoolbox

Version 3 of MATLAB R2022b.

2.4 Physiological assessment

The skin conductance response (SCR) is one of the most

common physiological indicators to assess human threat learning

(Lonsdorf et al., 2017), which is often measured to make inferences

about mental processes such as emotional arousal and threat

prediction (Boucsein et al., 2012). The SCR was assessed using two

Ag–AgCl electrodes, filled with standardNaCl electrolyte gel, which

were attached to the index and middle fingers of the left hand,

between the first and second phalanges. Signals were amplified and

recorded with a BIOPAC MP 150 (BIOPAC Systems Inc., Goleta,

California, USA) skin conductance module connected to an HP

computer. Data were continuously recorded at a rate of 2,000Hz,

and SCR waveforms were analyzed offline using AcqKnowledge 5.0

software (BIOPAC Systems Inc., Goleta, California, USA) with a

notch filter of 50 Hz.

The SCR level for each trial was determined by measuring the

base-to-peak difference for the waveform (in micro siemens, µs)

in the 0.5 to 9.5 s window following stimulus onset. A minimal

response standard of 0.02 µs was established; if the SCR response

was lower than this, it was recorded as 0. The raw SCR scores were

square root-transformed to normalized distributions (Olsson et al.,

2007; Schiller et al., 2008, 2010, 2012, 2013). Trials affected by body

movements, coughing, sneezing, or other involuntary behaviors

were removed based on the abnormal waveform.

2.5 Data analysis

The descriptive presentation of the data included mean values

and standard deviations. We used IBM SPSS Statistics 26 to

conduct an independent sample t-test and chi-square test on

demographic characteristics and the scores of the five scales for

group comparisons. The researchers conducting the data analysis

were blinded to the group assignments to minimize potential bias

and confounding factors. A 2 × 2 × 2 repeated measures analysis

of variance (ANOVAs) was conducted to examine the main effects

and interactions of subjective evaluations, with phase (acquisition

and extinction) and stimulus (CS+ and CS-) as within-subject

factors and group (BDI > 4, BDI ≤ 4) as between-subject factor.

ANOVAs were followed by simple effect analysis where applicable

and necessary. For the SCR, a paired-sample t-test was used. The

level of significance was set at p < 0.05.

To further explore the differences between the two groups, we

chose the hybrid model to fit the SCR data of each subject (i.e.,

using a separate set of free parameters for each subject to achieve

the optimal fitting). The hybrid model was as follows:

δn = rn−Vn (xn)

Vn+1 (xn) = Vn (xn)+kαn (xn) δn

αn+1 (xn) = η |δn| + (1− η) αn (xn)

In the model, xn was defined as a conditioned stimulus on trial

n (CS+ or CS–) and rn as the US (1 for US; 0 for no US). Vn(xn)

indicated value predictions (i.e., shock) for each stimulus type and

trial. The prediction error δn referred to the difference between the

actual US (i.e., rn) and the expected US [i.e., Vn(xn)] on trial n. The

αn(xn) meant the associability estimated by the hybrid model for

each stimulus type and trial. Additionally, η represented the weight

assigned to the latest PE, and κ was the normalization factor. The

PE weights (η) were constrained to the range (0, 1) with a β (1.2,

1.2) prior distribution slightly favoring values in the middle of the

range; normalization factor κ was constrained to be positive values

with a γ (1.2, 1) prior distribution (Raio et al., 2017; Dunsmoor

et al., 2019).

In the hybrid model, the initial values of α0 and V0 were set

as 0.5 for all kinds of stimuli. Moreover, we calculated the average

of the SCR and associability estimated by the computational model

for each trial within all subjects in each group. Then, we calculated

the Pearson correlation and made linear regressions from the

associability to the SCRs and achieved the best fit through the least

squares. All US trials were omitted from the regression onto the

SCRs to avoid possible contamination of the predictive response by

shock-related responses, but they were included in the computation

of associability.

3 Results

3.1 Subject characteristics

Subjects were categorized into two groups according to BDI

scores: the group with depressive symptoms (total score > 4) and

the group without depressive symptoms (total score ≤ 4). Groups

did not differ in demographic characteristics, such as age [t(47) =

0.560, p = 0.578], sex (χ2 = 0.420, p = 0.517), and educational

level [t(47) = 0.470, p = 0.641]. Table 1 shows that the group with

depressive symptoms had higher scores in S-AI, T-AI, PSQI, and

CTQ than the group without depressive symptoms, although these

scores were within the normal range.

3.2 Subjective evaluations

For US expectancy, the ANOVA yielded a significant Phase

× Stimulus interaction [F (1,42) = 100.254, p < 0.001]. Follow-

up simple effect analysis further revealed higher levels of US

expectancy to the CS+ relative to CS– after the acquisition (p

< 0.001) and extinction (p < 0.001), and a higher level of US

expectancy to the CS+ was reported after the acquisition than

extinction (p < 0.001), the same being true for CS– (p = 0.037).
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FIGURE 1

Stimulus set and experimental design: the paradigm comprised three phases. The habituation phase consisted of four CS+ and four CS–; no US was

presented. The acquisition phase consisted of 24 CS+ and 12 CS–. The CS+ co-terminated with the US in 50% of trials, whereas the CS– was never

paired with the US. The extinction phase consisted of 12 CS+ and 12 CS–, in which CS+ and CS– were never paired with US. Subjects were not

informed about the CS–US contingencies.

TABLE 1 The demographic data of individuals with and without self-rated

depressive symptoms.

BDI ≤ 4
(n = 29)

BDI > 4
(n = 20)

χ2/t
(p-value)

Demographic variables

Age 24.45 (2.080) 24.10 (2.222) 0.560 (0.578)

Range 21–30 20–28

Sex (M:F) 9:20 8:12 0.420 (0.517)

Education, years 18.38 (1.916) 18.10 (2.222) 0.470 (0.641)

Scales rating

BDI 1.34 (1.396) 9.85 (4.308) −8.527 (0.000)

S-AI 31.97 (6.179) 38.95 (7.149) −3.647 (0.001)

T-AI 35.10 (6.810) 45.30 (7.197) −5.034 (0.000)

PSQI 3.90 (1.739) 5.55 (1.468) −3.479 (0.001)

CTQ 32.46 (6.269) 37.82 (8.988) −2.308 (0.026)

LES 70.96 (50.149) 104.35 (90.227) −1.392 (0.178)

Subjects were grouped according to their BDI scores. The value represents mean ± SD. The

p-value for the statistical tests: chi-square test for sex distribution and Student two-sample

t-test (unequal variance assumed) for the questionnaire variables.

In addition, the main effect of phase was significant [F(1,42) =

106.498, p< 0.001]. Finally, the main effect of the stimulus was also

significant [F(1,42) = 180.450, p < 0.001]. Between-group effects

were not significant [F (1,42) = 1.183, p= 0.283] (Figure 2A).

For nervousness ratings, the ANOVA yielded a significant

Phase × Stimulus interaction [F (1,42) = 40.100, p < 0.001].

Follow-up simple effect analysis further revealed higher levels of

nervousness to the CS+ relative to CS– after the acquisition (p <

0.001) and extinction (p= 0.003), and a higher level of nervousness

to the CS+ was reported after the acquisition than extinction (p <

0.001), but not for CS-. In addition, the main effect of phase was

significant [F (1,42) = 9.018, p = 0.004]. Finally, the main effect

of the stimulus was also significant [F (1,42) = 51.613, p < 0.001].

Between-group effects were not significant [F (1,42) = 0.118, p =

0.732] (Figure 2B).

For likeability ratings, the ANOVA yielded a significant Phase×

Stimulus interaction [F (1,42) = 6.791, p = 0.013] and a significant

Phase × Group interaction [F (1,42) = 6.966, p = 0.012]. Follow-

up simple effect analysis further revealed lower levels of likeability

to the CS+ relative to CS– after the acquisition (p < 0.001) and

extinction (p = 0.009), and a lower level of likeability to the CS+

was reported after the acquisition than extinction (p = 0.001), but

not for CS-. Moreover, likeability increased in the group without

depressive symptoms from acquisition to extinction (p < 0.001),

while not in the group with depressive symptoms. In addition, the

main effect of phase was significant [F (1,42) = 6.966, p = 0.012].

Finally, the main effect of the stimulus was also significant [F (1,42)

= 15.971, p < 0.001]. Between-group effects were not significant [F

(1,42) = 0.093, p= 0.761] (Figure 2C).

3.3 Skin conductance response

To avoid the confounding effect of the US on the SCR,

trials paired with electric shock were excluded from the SCR

analysis. In addition, to capture the time course of differential fear

conditioning, we divided each phase into four blocks, three CS+

and three CS– in each block, and calculated the average of the SCR

in each block. Figure 3 depicts the mean SCR for each group across

each phase. The criterion of the SCR for successful acquisition was

defined as the conditioned threat responses (CRs) in the last block

being >0.05. Conditioned threat responses (CRs) were calculated

by subtracting the mean SCR to CS- from that of CS+ (CS+

minus CS–). The result of the paired-sample t-test indicated that

the group without depressive symptoms exhibited heightened SCRs

to the CS+ vs. the CS– in the last block during fear conditioning

[t (28) = −7.733, p < 0.001, Figure 3A], and the conditioned SCR

was significantly higher than 0.05 [t (28) = 6.268, p < 0.001],

indicating successful acquisition of conditioned fear. The primary

index of fear recall (Day 2) was the mean SCR to the early CS+

vs. CS– trials. Our results showed that in the first two blocks of the

extinction phase, the differential responses reappeared in the group

without depressive symptoms [t (25) = −4.273, p < 0.001, t (25)
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FIGURE 2

Results of 2 × 2 × 2 repeated-measures ANOVA for subjective evaluations, (A) Unconditioned stimulus (US) expectancy ratings. (B) Nervousness

ratings. (C) Likeability ratings *p < 0.05; **p < 0.001.

= −2.874, p = 0.008, Figure 3B]. After several unreinforced trials,

subjects began to extinguish, manifested by the disappearance of

the difference between CS+ and CS–. However, subjects in the

group with depressive symptoms showed similar responses to CS+

and CS– throughout the acquisition phase [t (19) = −0.376, p =

0.711, Figure 3A] and the extinction phase [t(17) = −0.651, p =

0.524, Figure 3B]. This result suggests that subjects with depressive

symptoms did not establish a conditioned fear, and thus there was

no extinction.

3.4 Computational model fitting

To test whether the SCR data were consistent with the

hypothesized learning mechanisms, we fitted SCR data using the

hybrid model. After using the best setting of the free parameters,

when applied to the trial-by-trial time series of the SCR, the

hybrid model defined the associability or dynamic learning rates

that might be reflected in the SCR. To further illustrate the

extent to which associability explains the SCR, then we performed

linear regressions from the associability to the SCR. There was no

correlation between the associability derived from the group with

depressive symptoms and the SCR [r = 0.0061, p = 0.9671, k =

0.0024, Figure 4A]. By contrast, applying the same analysis, results

revealed a significant correlation between associability and the SCR

in the group without depressive symptoms [r = 0.6877, p < 0.0001,

k = 0.4772, Figure 4B]. This indicates that the associative learning

model fitted better in the group without depressive symptoms

and subjects in the group with depressive symptoms had impaired

associative learning.

4 Discussion

The current study explored basic forms of learning to further

test the neuroplasticity hypothesis of depressive symptoms in

associative learning. The strengths of the study include a well-

defined sample of participants with depressive symptoms and

participants without depressive symptoms matched according to

sex, age, and educational level. Based on the results of the skin

conductance responses, we found that the subjects with depressive

symptoms had deficits in fear acquisition. Furthermore, we used

associability as estimated by a hybrid model to investigate the

effect of depressive symptoms on the associative learning process.

We found that skin conductance responses of subjects without

depressive symptoms, who successfully acquired differential

conditioned fear, were positively correlated with associability, as

estimated by a hybrid model.

During a typical differential fear conditioning procedure,

subjects learn to form an association between CS+ and US.

The CS+ becomes a predictor of the US and will itself evoke

the associated fear, known as the conditioned response (CR),

which consists of motor, neuroendocrine, autonomic, and other

components (Krabbe et al., 2018). Differential skin conductance

and subjective responses to the CS+ than the CS– reflect that the

subject has successfully acquired the conditioned fear responses
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FIGURE 3

Changes in skin conductance responses throughout the experiment within the two groups. (A) Acquisition phase. (B) Extinction phase. **p < 0.001.

FIGURE 4

Dynamics of associability (α) generated from the best-fitting hybrid model. (A) In the group with depressive symptoms. (B) In the group without

depressive symptoms. Relationship between associability (α) and skin conductance responses (SCRs) in two groups using the best fitting hybrid

model. Data represent average SCRs for each trial averaged across subjects. The black curve is the best-fitting line using least squares.

(Schiller et al., 2010; Rainer et al., 2020). In the present study,

the results of the SCR showed that the subjects with depressive

symptoms did not successfully acquire conditioned fear, although

subjective evaluations showed that they exhibited higher US

expectancy, nervousness, and likeability ratings to CS+. These

findings were anticipated because the dissociation between the

subjective evaluations and SCR results was common in previous

studies (Britton et al., 2013; Shechner et al., 2015, 2018; McLaughlin

et al., 2016). McLaughlin et al. also measured the SCR continuously

and collected subjective evaluations after each phase. They found

disturbances in the acquisition of conditioned fear in maltreated

children based on the SCR results. Maltreated children exhibited

blunted SCR to the CS+ and failed to exhibit differential SCR to the

CS+ vs. CS- during early conditioning relative to healthy controls.

However, all subjects reported greater fear of CS+ than CS–

after conditioning, regardless of maltreatment (McLaughlin et al.,

2016). Unconditional stimulation anticipation evaluations and

contingency awareness tests suggested high and similar cognitive

representations of the association between the CS and the US in

depression patients and healthy controls (Blair et al., 2001; Phelps

and LeDoux, 2005; Vansteenwegen et al., 2008). In the present

study, both groups showed no difference in the SCR between

CS+ and CS– at the end of the extinction phase. However, the

likeability ratings of CS+ did not increase in the group with

depressive symptoms after extinction. These results were consistent

with those of Shechner et al. (2018), who indicated successful

extinction for the sample, as indexed by the SCR. However,

subjective evaluations showed that the difference between CS+

and CS– still exists. Subjective evaluations may represent a more

cognitive expression of threat anticipation, reflecting declarative

knowledge of stimulus contingencies. The SCR can track emotional

arousal change resulting from exposure to the stimulus, even upon

subliminal conditions (Raio et al., 2012).

Though anxiety and depression frequently co-occur, only

a few studies have been conducted on fear conditioning in

depression, with inconclusive results. Our results were similar

to those of Otto et al. (2014) and Wurst et al. (2021),

who found significantly attenuated differential fear conditioning
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among depression patients. In other words, compared to the

healthy individuals, patient samples were conditioned less well.

Additionally, one study on fear conditioning in offspring

susceptible to affective disorders due to maternal psychopathology

found that the offspring of depressed mothers showed diminished

responses to aversive cues during the acquisition phase (Waters

et al., 2014). However, Nissen et al. (2010) conducted a classical

differential fear conditioning paradigm to explore the fear

acquisition of major depressive disorder patients and healthy

controls, wherein a mild electric shock was used as the

unconditioned stimulus (US) and four geometric shapes served as

the conditioned stimulus (CS). However, the reduced differential

skin conductance responses in the group with depressive symptoms

were not in line with the results of that study, which showed

that MDD patients had a greater skin conductance response

(SCR) to the CS+ than to the CS–, while the control participants

did not demonstrate differential SCRs to the CSs. Although

the study by Nissen et al. showed that patients with major

depressive disorder successfully acquired conditioned fear, the

anxiety levels of the MDD patients were not taken into account in

that study. Given that the MDD patients are often accompanied

by anxiety symptoms, it is possible that anxiety contributed to

the acquisition of conditioned fear in the MDD patients. A

meta-analysis of fear conditioning in anxious and non-anxious

adolescents showed that successful acquisition of conditioned fear

occurred in both groups, demonstrating comparable differential

learning, but anxious individuals had higher fear responses to

both CS+ and CS– than non-anxious individuals (Dvir et al.,

2019). These results are consistent with those of two previous

meta-analyses of fear acquisition in anxious and non-anxious

adults (Lissek et al., 2005; Duits et al., 2015), suggesting some

combination of stronger excitatory processes to the CS+ and

weaker inhibitory processes to the CS– in anxiety. In the present

study, although there were differences in anxiety levels between the

two groups, they were within the normal range. Thus, our results

better eliminated the influence of anxiety symptoms and strongly

suggested that impaired conditioned fear acquisition was due to

depressive symptoms.

Previous results from skin conductance measurement revealed

a lessened fear acquisition among the patient samples, particularly

in individuals with depression and posttraumatic stress disorder,

indicating an attenuated fear conditioning (Otto et al., 2014).

Studies have indicated that individuals suffering from depression,

particularly endogenous depression, tend to have lower levels

of skin conductance and a higher percentage of SCR non-

responders to unpleasant auditory stimuli than healthy persons

(Lader and Wing, 1964; Mirkin and Coppen, 1980). The results

of this study suggest that people with depression may not be

as affected by external stimulation (Mirkin and Coppen, 1980),

likely because of the wide-reaching and persistent nature of

depressive disorders weakening the human defensive system,

thereby decreasing psychophysiological reactivity to emotional

stimuli (McTeague et al., 2012). Previous research has indicated

that depression is associated with a reduction in fear-potentiated

startle and pleasure-inhibited startle, leading to a generally

flattened affect–startle pattern (Vaidyanathan et al., 2012). This

could explain why the depression group in the current study

exhibited similar skin conductance responses to CS+ and CS–.

Consequently, these studies sought to investigate whether a

weakened psychophysiological response is a risk marker that

develops before the onset of depression in those predisposed to

the disorder.

Rescorla–Wagner’s empirically well-supported notion of error-

driven value update was incorporated into the Pearce–Hall

associability model, resulting in the hybrid model (Li et al.,

2011). These models are usually fitted to the trial-by-trial skin

conductance responses in threat learning (Pearce and Hall,

1980; LePelley and McLaren, 2004). We found that the skin

conductance responses of subjects without depressive symptoms

who successfully acquired differential conditioned fear were

positively correlated with associability, as estimated by a hybrid

model. It has been proposed that complex fear-learning procedures

might be more effective than the traditional differential fear-

conditioning paradigm in detecting individual differences related

to susceptibility to anxiety disorders. This is based on the idea

that those at risk of developing an anxiety disorder may have

an abnormal fear response to a real-life conditioning event

(Arnaudova et al., 2013). Consequently, further exploration of

complex fear learning may be critical for gaining insight into the

general principles of associative learning in humans, as real-world

Pavlovian associations are likely more intricate than those explored

in laboratory experiments.

5 Conclusion

Our study revealed that those with self-reported depressive

symptoms may have impairments in associative learning. The

effect of depressive symptoms on fear conditioning is distinct

from that of anxiety symptoms. Different outcomes of differential

fear conditioning may aid in distinguishing depression from

anxiety. Understanding the physiological differences that may be

the source of symptomatology is vital for understanding the varied

pathophysiology of these disorders.
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