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Our brain constantly processes multisensory inputs to make decisions and 
guide behaviors, but how goal-relevant processes are influenced by irrelevant 
information is unclear. Here, we  investigated the effects of intermodal and 
intramodal task-irrelevant information on visual and auditory categorical 
decision-making. In both visual and auditory tasks, we  manipulated the 
modality of irrelevant inputs (visual vs. auditory vs. none) and used linear 
discrimination analysis of EEG and hierarchical drift-diffusion modeling (HDDM) 
to identify when and how task-irrelevant information affected decision-relevant 
processing. The results revealed modality-specific impacts of irrelevant inputs 
on visual and auditory categorical decision-making. The distinct effects on the 
visual task were shown on the neural components, with auditory distractors 
amplifying the sensory processing whereas visual distractors amplifying the 
post-sensory process. Conversely, the distinct effects on the auditory task were 
shown in behavioral performance and underlying cognitive processes. Visual 
distractors facilitate behavioral performance and affect both stages, but auditory 
distractors interfere with behavioral performance and impact on the sensory 
processing rather than the post-sensory decision stage. Overall, these findings 
suggested that auditory distractors affect the sensory processing stage of both 
tasks while visual distractors affect the post-sensory decision stage of visual 
categorical decision-making and both stages of auditory categorical decision-
making. This study provides insights into how humans process information from 
multiple sensory modalities during decision-making by leveraging modality-
specific impacts.
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1 Introduction

We are constantly bombarded with information from multiple senses and make categorical 
decisions based on the features of the inputs to simplify our understanding of the world. In 
such complex multisensory scenarios, some of these inputs are task-relevant while some are 
less relevant. Research showed that our categorization performance can be  facilitated or 
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hindered by task-irrelevant information and the modality of inputs 
could modulate the impacts (see the review, Li and Deng, 2023a). In 
the cognitive process of categorical decision-making, our brain 
accumulates information from various sensors over time and 
ultimately elicits a motor response when a decision criterion is reached 
(Gold and Shadlen, 2007; Bizley et al., 2016; Keil and Senkowski, 2018; 
Trueblood et al., 2021). However, from the framework of evidence 
accumulation, it remains unclear about the precise effects of irrelevant 
information on the evidence accumulation of goal-relevant processes. 
Furthermore, the impact of input modality on categorical decision-
making remains unclear, as previous research has primarily focused 
on how categorical evidence accumulated in the visual modality (e.g., 
Diaz et  al., 2017; Kayser et  al., 2017; Franzen et  al., 2020). Here, 
through identifying neural activities and modeling the latent cognitive 
processes, we examined how intramodal and intermodal distractors 
(task-irrelevant or distracting information, Wöstmann et al., 2022) 
affect visual and auditory categorization that tap into different stages 
of evidence accumulation.

1.1 Impacts of distractors on evidence 
accumulation process: sensory processing 
account vs. post-sensory decision account

Impacts of task-irrelevant information on evidence accumulation 
of decision-making can be linked at either the sensory processing level 
(Schroeder and Foxe, 2005; Kayser and Logothetis, 2007) or the post-
sensory decision level (Franzen et al., 2020; Merz et al., 2021). The 
early processing hypothesis posits that multiple pieces of evidence are 
combined at the sensory processing stage (Kayser and Logothetis, 
2007; Jensen et al., 2019), which is supported by findings showing that 
(1) early attentional allocation or the early saliency computation was 
influenced (Geyer et al., 2010); (2) different activations in the primary 
sensory cortex for perceptual representation, rather than the higher 
areas for decision execution was elicited (Johnson et al., 2007; Geyer 
et al., 2010); and (3) temporally distinct EEG component occurred 
early after stimulus presentation (Philiastides and Sajda, 2006b; 
Philiastides et al., 2006). In contrast, the late processing hypothesis 
assumes that evidence is accumulated independently at the early 
sensory encoding, and interplays at the post-sensory decision phase 
(Bizley et al., 2016; Aller and Noppeney, 2019). For example, visual 
and auditory evidence was accumulated in the visual primary and 
auditory primary cortex independently and then combined for a 
decision response at the decision-making stage in higher cortices 
(Aller and Noppeney, 2019).

To characterize the evidence accumulation processes underlying 
behavioral performance, sequential-sampling models including the 
drift-diffusion model (DDM) have been applied to address at which 
cognitive processes, task-irrelevant information operates (Franzen 
et al., 2020; Chen et al., 2021). Such models assume that over the 
course of decision-making, people continuously sample and gradually 
accumulate information until a threshold of evidence is reached 
(Ratcliff and McKoon, 2008). The sensory processing account is 
modeled as associated with a bias in the rate of evidence accumulation, 
which should be inferred from the phenomenon that compared with 
the no-distractor trials, information accumulates faster or slower 
when with irrelevant inputs. Conversely, the post-sensory decision 
account could be correlated with a bias in the response boundary, as 

this account assumed that the higher-level information integration 
process was affected. Task-irrelevant information in this account 
changes the response threshold, reducing or increasing the amount of 
evidence required to make a response. Nevertheless, this model is a 
more sensitive way than behavioral indicators to look into what 
changed by a task-irrelevant input in evidence accumulation processes 
for decision-making (Ratcliff et al., 2016).

In addition, the impacts of distractors on the sensory processing 
stage and post-sensory decision stage can be dissociated by time-
resolved electroencephalography (EEG) (Talsma and Woldorff, 2005; 
Philiastides et al., 2006; Kayser et al., 2017; Franzen et al., 2020), 
which are marked by early and late neural components, respectively. 
Some studies showed that the late component, rather than the early 
component, better predicted the influence of the task-irrelevant or 
less-relevant information on the goal-relevant information processing 
(Li et al., 2010; Kayser et al., 2017; Franzen et al., 2020), whereas some 
findings suggest that multiple signals accelerate both stages (Mercier 
and Cappe, 2020). However, less is known about the role of sensory 
modalities in the influence of distractors on the evidence 
accumulation of goal-relevant processing. Distinguishing between 
the impacts of distractors on the sensory processing stage and post-
sensory decision stage is critical for a detailed understanding of how 
categorical decisions are formed based on perceptual-level 
multisensory context and higher-level conceptualization of evidence. 
This distinction is crucial as it reveals a general neural mechanism of 
distractor processing in decision-making across modalities, thereby 
facilitating the deciphering of the mechanisms underlying 
multisensory integration.

1.2 The modulation of input modality

Previous research has investigated visual perceptual decision-
making, focusing on some types of basic features like color (Jensen 
et  al., 2019), shape (Giard and Peronnet, 1999), facial expression 
(Young, 2016), and random-dot motion (Kayser et al., 2017). However, 
there is limited understanding regarding more complex decision-
making and decision-making based on auditory inputs. Auditory 
decision-making encompasses various tasks, such as the recognition 
of spoken words or phrases in different languages (Samuel and Kraljic, 
2009), the differentiation of different emotional states conveyed 
through vocal cues (Bachorowski, 1999), and the differentiation of 
musical instruments based on their sound characteristics (Reetzke 
et al., 2016). In the real world, decisions are often complex, needing 
evidence accumulation from multiple modalities or from stimuli 
separated in time and space, and requiring judgments on which may 
or may not be task-relevant. The interest in studying more complex 
decision-making tasks, such as categorical decision-making under 
multisensory contexts has increased. For example, Li and Deng 
(2023a) conducted a meta-analysis on multisensory learning research 
in the last two decades and revealed the facilitation and interference 
effects of cross-modal distractors on target processing. The results also 
suggested the moderating effects of modality on multisensory learning 
and pointed out that the underlying mechanism remained unknown. 
Since auditory and visual inputs are processed differently (Stein, 2012; 
Wilson et al., 2015), with auditory stimuli usually being dynamic, 
transient, and presented sequentially whereas visual stimuli typically 
presented simultaneously, we predict that a modality-dependent effect 
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of irrelevant inputs on relevant information processing could 
be observed.

It has been demonstrated that visual modality is dominant in the 
spatial domain, while auditory modality is relatively specialized in 
temporal processing (Freides, 1974; Repp and Penel, 2002; Koelewijn 
et  al., 2010). Therefore, to effectively investigate the influence of 
irrelevant information processing on task-relevant information 
processing, it is advisable to present the visual and auditory targets in 
their optimal modes: simultaneous presentation for the visual target 
and sequential presentation for the auditory target. For example, 
Mcauley et al. (2006) found that participants were better able to detect 
the regularity or predictability of events over time in an auditory 
sequence (e.g., a series of beeps) compared to a visual sequence (e.g., 
a series of flashing lights), even when the two sequences were matched 
for complexity. Similarly, Repp and Penel (2002) found that 
participants were better at synchronizing finger tapping with an 
auditory metronome than with a visual metronome, indicating that 
temporal information was accumulated more accurately by the 
auditory modality than by the visual modality.

In the current study, we aimed to understand how intramodal and 
intermodal distractors affect visual categorical decision-making, as 
well as their influence on auditory categorical decision-making, from 
the perspective of evidence accumulation. Considering the spatial 
separation of visual inputs and temporal separation of auditory inputs, 
task-relevant information with multiple items was presented 
simultaneously in the visual categorization task and sequentially in 
auditory categorization. The main research questions of this study 
were threefold. First, how does visual and auditory irrelevant 
information affect the evidence accumulation of visual categorical 
decision-making in which task-relevant items were presented 
simultaneously? Second, how does visual and auditory irrelevant 
information affect the evidence accumulation of auditory categorical 
decision-making in which task-relevant items were presented 
sequentially? Finally, do visual and auditory distractors have similar 
or different effects on evidence accumulation for visual or auditory 
categorical decision-making?

1.3 The present study

Given the research gap on auditory decision-making and the two 
stages in decision-making (sensory processing stage and post-sensory 
decision stage) reviewed above, the effects of intermodal and 
intramodal distractors on visual and auditory categorization could 
occur in sensory processing stage only, in post-sensory decision stage 
only, or in both stages. Considering the distinct processing of auditory 
and visual inputs (Stein, 2012; Wilson et al., 2015) and the modulation 
of inputs’ modalities on categorical decision-making (Li and Deng, 
2023a), we  predicted a modality-specific impact. Specifically, the 
impact of distractors on the stages of categorical decision-making 
varied based on the modality of the inputs. For the visual categorical 
decision-making, previous research showed that auditory distractors 
could lead to a lower evidence accumulation rate without affecting the 
response boundary (Philiastides and Ratcliff, 2013). Additionally, 
auditory distractors are alert and transient (Stein, 2012) and would 
be prioritized over task-relevant information processing. Based on 
these findings, we predicted that auditory distractors would primarily 
impact the sensory processing rather than the post-sensory decision 

stage. In contrast, visual information is often processed in a parallel 
and spatially distributed manner (Nassi and Callaway, 2009). The task-
irrelevant information would be accumulated after the task-relevant 
information. Consequently, it was hypothesized that visual distractors 
would mainly affect the post-sensory decision stage. For the auditory 
categorical decision-making, there is limited research on how 
irrelevant information affects decision-making from an evidence 
accumulation perspective. It is difficult to accurately predict the stage 
at which irrelevant information will influence decision-making. 
Nevertheless, like the effect on visual categorical decision-making, 
there could be a modality-specific impact.

To test our hypothesis, we employed two experiments (within 
participants), a visual categorical decision-making task and an 
auditory categorical decision-making task, in which categorical 
features of task-relevant stimuli were provided simultaneously (visual) 
and sequentially (auditory). Crucially, to examine the impacts of 
visual and auditory task-irrelevant information, participants were 
required to finish three conditions of each task (no-distractor, visual 
distractor, and auditory distractor). In the distractor conditions of 
both tasks, there was one distractor on each trial, and the visual or 
auditory distractor was presented until participants made a response. 
We used HDDM and EEG technique to explore and compare the 
impacts of visual and auditory irrelevant inputs on behavior 
performance, modeling parameters, and neural signals during visual 
or auditory categorical decision-making.

2 Materials and methods

2.1 Participants

Forty healthy volunteers, right-handed with self-reported normal 
hearing and normal or corrected-to-normal vision, were recruited 
from the University of Macau. They were tested on both visual and 
auditory categorical decision-making tasks, and one of them was 
excluded due to not completing both tasks. The final sample consisted 
of 39 volunteers (11 males, M = 21.54 years, SD = 1.85 years, range 
19–25 years). All of them were naive about the hypotheses of the study 
and were tested in a sound-attenuated and electrostatically shielded 
room in the psychology laboratory at the University of Macau. Before 
starting the task, a written consent form was provided.

2.2 Stimuli

In the visual task, the task-relevant stimuli were colorful images 
of seven animals (bird, dog, pig, sheep, chick, cow, and cat), with 
200 × 200 pixels. In the auditory task, the task-relevant stimuli were 
sounds of these seven animals, 250 ms, 60–65 dB, 44.1 kHz, adopted 
from Marcell et al. (2000), presented to both ears. In both tasks, the 
deterministic item for categorization was a dog or a bird. As a result, 
the visual distractors were pictures of a dog or bird selected from the 
same set as the task-relevant stimuli; the auditory distractors were 
sounds of a dog or bird, 5,000 ms (sufficient for responding based on 
the results of the pilot experiment), 40–45 dB, 44.1 kHz, adopted from 
Marcell et al. (2000), presented to one ear randomly. It should be noted 
that there was no overlap between the target sounds and the auditory 
distractors, as they were taken from separate sections of a lengthy 
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audio clip. Such manipulation has been employed (Murphy et al., 
2013), and it was effective in making the target and distractor sounds 
separable and preventing them from being perceived as the 
same sound.

2.3 Experimental design

This study included two experiments. Each experiment 
conforms to a three-factorial design (no-distractor, ND vs. 
auditory distractor, AD vs. visual distractor, VD). Human 
categorization is considered to reflect the derivation of optimal 
estimates of the probability of features of objects (see review, 
Anderson, 1991). In empirical categorization research, the task-
relevant stimuli were items with a deterministic feature and several 
non-deterministic or probabilistic features (Hoffman and Rehder, 
2010; Deng and Sloutsky, 2015, 2016). Correspondingly, in the 
current work, the target frame containing six animals (i.e., six 
animal images in visual categorization and six animal sounds in 
auditory categorization) served as a categorization stimulus. The 
deterministic animal (i.e., dog or bird) was presented in any of the 
six positions in the visual space or the sound sequence, similar to 
the deterministic feature of a typical categorization stimulus, while 
the other five animals were non-deterministic. On each trial with 
a distractor, the visual distractor was a bird or a dog appearing 
above or below the black frame and the auditory distractor was the 
sounds of a bird or dog presented to left or right randomly. 
Therefore, this categorization paradigm allowed for an investigation 
on the impacts of visual or auditory distractors on visual and 
auditory categorization.

2.3.1 Visual categorical decision-making task
As illustrated in Figure 1A, the task-relevant information was 

an array of animals presented simultaneously in the target area 
(i.e., inside a black frame), one deterministic item in each trial, 
either a dog or a bird presented at any of the six locations, and the 
other five positions were filled by different (cats, pigs, etc.) or 
identical non-target animals (e.g., probabilistic features, the five 
other features were the same, or they were different animals to 
control the diversity among trials). In the no distractor (ND) 
condition, there was only the target without any distractors. The 
task-relevant stimuli inside the black frame were presented until 
a response was made. Participants were instructed with a 
cover story:

“Welcome to our game named Help Animals Go Home. Some 
animals will be presented in the black frame in the center of the 
screen. If there is a dog in the black frame, these animals are 
living in the mushroom (see Figure 1, the top-left corner of the 
screen), and you should press the F key to help them back home. 
If there is a bird presented in the black frame, these animals live 
in the apple room (see Figure  1, the top-right corner), and 
you  should help them back home by pressing the J key on 
the keyboard.”

In the visual distractor (VD) condition, a bird or a dog appears 
above or below the black frame. Correspondingly, in the auditory 
distractor (AD) condition, auditory distractors were randomly 

presented to the left or right side. This approach, previously utilized 
in auditory distractor studies (Murphy et al., 2013; Robinson et al., 
2018), aims to prevent the perception of the target and distractor 
as a combined entity, thereby generating an appropriate distractor 
effect. Participants were instructed to pay attention to the task-
relevant information inside the frame. On each distractor trial, (1) 
the onset of task-relevant stimuli and distractors was the same as 
that of the trial, and they were presented until participants made a 
response; (2) these distractors could trigger either the same or 
different responses from the target (congruent distractor/
incongruent distractor) to prevent participants from using a 
specific strategy of paying attention only to the distractors: if the 
distractor is constantly the same or different from the target, 
participants can optimize their task performance by ignoring the 
target and relying exclusively on the distractor directly related to a 
response. Notably, we did not treat congruency as an independent 
variable in our current data analysis. Instead, we controlled for it 
as a random factor since previous behavioral experiments using the 
same paradigm did not reveal an effect of congruency (Li and 
Deng, 2023b), which is consistent with previous research 
employing a similar paradigm demonstrating no congruency effect 
of unimodal distractors on adults (Matusz et al., 2015; Robinson 
et al., 2018).

2.3.2 Auditory categorical decision-making task
As we stated above, considering the physical properties of auditory 

stimuli, the temporal separation was more appropriate for auditory 
stimuli. As shown in Figure 1B, each trial consisted of a rapid sequence 
of six animals’ sounds (Murphy et al., 2013), a target sound (dog bark 
or bird chirp) with other five non-target sounds. These sounds were 
separated by silent intervals of 50 ms, resulting in a total duration of 
1750 ms for each sequence. Similar to the visual task, participants were 
instructed that:

“Welcome to our game named Help Animals Go Home. A few 
animals are hiding behind the black frame. Please pay attention to 
the target sequence and send animals back home depending on 
whether there was a dog bark or bird chirp. If there is a dog in the 
sound sequence, then these animals live in the mushroom, and 
you should press the F key to help them back home. If there is a bird 
in the sound sequence, then these animals live in the apple room, 
and you should press the J key to help them back home. The bird and 
dog sound will not appear in the same trial. Please respond as soon 
as you  make a choice, rather than waiting for the whole 
sound sequence.”

Similar to the visual task, the dog or bird sound was presented 
randomly at any of the six positions, and the other five positions 
were filled by different or identical (cats, pigs, etc.) animal sounds.

For the AD and VD conditions, the distractor presentation 
was the same as that of the visual task. The visual or auditory 
distractors were presented at the onset time of the first sound in 
the sound serial since the onset of distractors was the same as that 
of the task-relevant information (the entire sound serial) in each 
distractor trial. And distractors would be presented until response 
(ending the trial). Notably, the response time of the auditory task 
was the duration from the onset of bird chirp or dog bark to 
participants’ responses.
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2.4 Procedure

Participants sat approximately 50 cm from a laptop screen. The 
experiment consists of instructions, practice, EEG recording 
preparation, and testing.

2.4.1 Instructions and practice
Before practice, participants were instructed with the cover 

story about two categories of animals. They read the instructions 
and questions on the computer screen and pressed the keyboard to 
make responses. After instructions, participants were given 
practice trials to make sure they understood the procedure. They 
needed to practice each condition until the accuracy rate of the last 
five trials was not less than 80%, and they were required to 
complete at least 10 trials.

2.4.2 EEG recording preparation and testing
After practice, the experimenter helps participants to wear an 

electrode cap and an in-ear headphone. The testing phase is 
administered immediately after the EEG recording is prepared. For 
the three conditions of each task, the ND condition was always the 
first (to establish a baseline categorization performance), followed by 

the VD and AD conditions in random order. In each task, there are 60 
trials in the ND condition and 120 trials in the other two distractor 
conditions (240 total trials). The location of the visual distractor 
(above/blow frame), auditory distractor (left/right ear), the variability 
(the probabilistic features were the same or different), and the 
congruency (the task-relevant information and distractors were 
eliciting the same or different responses) were random, and the order 
of test modality (AD/VD), the specific response keys for two 
categories, and the test order of two tasks were fully counterbalanced 
with each participant.

2.5 Data analysis

We analyzed the behavioral performance (see section 2.5.1), 
HDDM parameters (see section 2.5.2), and EEG signals (see 
section 2.5.3) of the two experiments (i.e., visual categorization 
and auditory categorization) separately. Since task-relevant stimuli 
were presented simultaneously in the visual task but sequentially 
in the auditory task, it’s somewhat inappropriate to compare the 
two tasks directly. Because the visual task and auditory task were 
completed in blocks, with participants finishing three conditions 

FIGURE 1

Experimental design and channel selection. (A) Schematic representation of the visual distractor condition of the visual task. Participants were required 
to categorize a set of animals in the black frame either a dog or a bird presented and indicate their choice with a keypress, followed by an inter-
stimulus interval for 500–800  ms. In the no-distractor condition, only the task-relevant animals were presented, with no animals outside the black 
frame. In the auditory distractor condition, preserving the visual stimuli as the no-distractor condition, the sounds of a bird or dog are playing randomly 
in the left or right ear. (B) Example of the task-relevant information presentation in each trial of the auditory task. The sounds of animals were 
presented for 250  ms, followed by a 50  ms silence interval. The auditory task follows the identical structure as the visual task, with a 500–800  ms 
fixation and each trial lasting until response. Participants were instructed to press response as soon as they get the categories rather than waiting for 
the entire series. Visual and auditory distractors are presented in the same way as the visual task. (C) The 128-electrode position on the scalp. The gray 
colors indicate unprocessed channels. The remaining 98 channels were used for analysis.
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of each task in random order, this design allowed for separate 
analyses. Importantly, such analysis would serve the purpose of the 
current study, which was to investigate the impacts of visual and 
auditory distractors on visual and auditory categorical decision-
making and to determine if the impact mechanisms were the same 
or different for each task.

Please refer to Appendix Figure A1 for the analysis outline and the 
key variables extracted from the behavioral, modeling, and 
EEG analysis.

2.5.1 Behavioral analysis
We analyzed the visual task and auditory task separately. For each 

task, trials with a reaction time (RT) exceeded 3 standard deviations 
of that participants’ mean RT were first excluded from the analyses. 
To investigate how the task performance was affected by the 
distractors, we applied two linear mixed effect models on each task, 
with reaction time (RT) and response accuracy (ACC) as dependent 
variables, Condition (ND vs. AD vs. VD) as a fixed factor, and ‘Subject 
ID’ and ‘Stimuli’1 as random factors. These analyses were performed 
in RStudio (R CoreTeam, 2013). Results were analyzed by fitting linear 
mixed models using the lmer (RT data), glmer (ACC data), and anova 
functions in the lme4 and lmerTest package in R (Bates et al., 2014; 
Kuznetsova et al., 2017). Post hoc tests were done with pooled t-tests 
by using the emmeans function provided by the emmeans package 
(Lenth et al., 2018).

2.5.2 Hierarchical drift-diffusion modeling 
analysis

Participants’ performance (RT and dog-category or bird-category 
choice accuracy for each trial) was fitted with Hierarchical drift-
diffusion modeling (HDDM). This model was used to figure out the 
impacts of task-irrelevant on latent cognitive processes underlying 
decision-making and link them to neural mechanisms (Ratcliff et al., 
2016). Similar to the traditional DDM, the HDDM implies that noisy 
sensory evidence is sampled from the environment over time until it 
reaches one of two categorical choices (here, corresponding to 
dog-category and bird-category choices), prompting a choice decision.

The model returns estimates of internal cognitive processes 
(Ratcliff et al., 2016; Murray et al., 2020; Shamloo and Hélie, 2020): (1) 
a probable bias toward one of the two responses or an initial preference 
for one of them is represented by the initial bias (preference) z; (2) the 
speed of information accumulation is represented by the drift rate 
parameter v, which is attributed to the perceptual accumulation of 
‘target’ evidence and donating for the sensory processing account; (3) 
the amount of information required to trigger response is depicted by 
the boundary separation a, representing the distance between the start 
point and the decision boundaries (boundary for bird-category and 
boundary for dog-category) and donating for the post-sensory 
decision account; (4) time not related to decision process (for example, 
the time required for sensory information encoding preparation or the 

1 This is a random factor to control the potential impacts of (1) the position 

of deterministic feature among the six features, (2) the variability of probabilistic 

features, whether they are the same or different, and (3) the congruency 

between task-relevant information and distractors. Thus, this factor has 24 

levels (6 position × 2 variability × 2 congruency).

time for motor response execution) is represented by non-decision 
time parameter t. The difference in this parameter is not due to the 
evidence accumulation processes.

A hierarchical Bayesian framework (updating prior model 
parameter distributions based on the likelihood of the data) was used 
to calculate the modeling parameters and then get the posterior 
distributions. To maximize the summed log-likelihood of the 
predicted data, Markov chain Monte Carlo (MCMC) sampling was 
utilized (Wiecki et al., 2013; Wabersich and Vandekerckhove, 2014) 
with 5,500 samples chosen from the posterior to generate smooth 
parameter estimates, and the first 500 samples were discarded as 
burn-in. Besides, to check that the models had appropriately 
converged, the autocorrelation and Gelman–Ruben statistic were 
computed after inspecting traces of model parameters (Gelman and 
Rubin, 1992). Compared to the traditional DDM analysis, the current 
modeling has significant advantages. Foremostly, HDDM analysis is 
useful for enhancing statistical power. Secondly, the uncertainty of 
parameter estimates can be  conveyed directly by posterior 
distributions (Kruschke, 2010). Thirdly, the Bayesian hierarchy helps 
with more reliable results even though few trials (Ratcliff and Childers, 
2015). Lastly, all observers are from the same group in this hierarchical 
structure, resulting in more reliable parameter estimations for 
individual participants (Wiecki et al., 2013).

To determine the parameters, the HDDM was implemented in 
Python 3.9.2 According to the hierarchical design, individual 
parameters are generated and constrained by group distributions with 
group priors (Gelman et  al., 2013). Parameters were drawn from 
group-level Gaussian distributions. Trials that fell within 5% of each 
tail of the RT distribution were considered outliers (e.g., slow replies 
as a result of inaction or quick but incorrect reactions) and removed 
from the analysis (Wiecki et al., 2013).

We estimated HDDM models based on the behavioral 
performance of the visual task and auditory task separately. With the 
assumption that no response bias to two categories (dog-related-
category and bird-related-category), to discover the best model, 
eight distinct models were evaluated in both tasks, with three 
parameters of interest (v, a, t) either fixed or allowed to vary on 
conditions across the eight model variants (model 1: all three 
parameters were fixed; model 2: v was varying; model 3: a was 
varying; model 4: t was varying; model 5: a and t were varying; 
model 6: v and a were varying; model 7: v and t were varying; model 
8: v, a and t were varying between conditions). To compare the 
models, the deviance information criterion (DIC), which is the 
lower, the better (Zhang and Rowe, 2014), reflecting the best 
trade-off between model complexity and quality of fit, was used to 
select the best model to describe the data across the eight models 
(Spiegelhalter et al., 2002). Lower DIC values favor models with the 
highest likelihood and least degrees of freedom. A DIC difference of 
10 is considered significant, and the lower the value, the better the 
model fit (Zhang and Rowe, 2014). In addition, after getting the best-
fitting model, we  examined the between-group overlap of the 
Bayesian posterior distributions for all parameters, defining 
significance as less than 5% overlap, to show the difference between 
no-distractor and distractor conditions.

2 http://www.python.org
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2.5.3 EEG data analysis
Briefly, we first preprocess the EEG data. Secondly, to estimate 

linear spatial weights, which maximally represented the difference 
representations between no-distractor and distractor contexts 
within short predefined temporal windows, the single-trial 
multivariate discriminant analysis was performed for each 
participant. By applying the spatial weights of single-trial data, an 
index of the extent of the discrimination on representations, and 
the discriminating component amplitudes (henceforth y) were 
calculated. The more extreme amplitudes, positive or negative, 
indicate higher representation discrimination between 
no-distractor and distractor contexts, while values closer to zero 
indicate no evidence of encoding differently. Thirdly, we employed 
a k-means clustering technique to detect temporal transitions to 
identify EEG components. And finally, rather than a guess 
probability, we determined the criterion for each comparison using 
the temporal cluster-based bootstrap analysis.

2.5.3.1 EEG data acquisition and preprocessing
The task was presented on a Dell laptop (1,024 × 768 pixels, 

60 Hz) using the Eprime 2.0 with recoding experimental events and 
behavioral responses. Continuous EEG data were collected in a 
sound-attenuated and electrostatically insulated environment 
utilizing 128-channel HydroCel Geodesic Sensor Nets coupled to 
Net Amps 300 (Electrical Geodesics) and NetStation software. EEG 
data were acquired at a sampling rate of 1,000 Hz with an analog 
filter of 0.01–100 Hz and the electrode impedances of all channels 
were adjusted below 50 kΩ. These data were gathered and saved for 
offline analysis with MATLAB.

All EEG data preprocessing was carried out offline with the 
EEGlab toolbox (v2021.0) (Delorme and Makeig, 2004) of 
MATLAB R2017b. Firstly, 98 out of 128 channels were selected 
(Figure 1C, gray channels deleted and white channels remained for 
analysis), discarding all channels outside the scalp (Luu and Ferree, 
2005), corresponding to the previous research, in which 64-channel 
EEG was used and dynamic temporal components of face-vs.-car 
categorization were demonstrated (Franzen et al., 2020). Secondly, 
all signals were re-referenced to the average of the channels, a 
software-based fourth-order butterworth band-pass was then 
filtered with cutoff frequencies between 0.5 and 40 Hz. Thirdly, 
automatic channel rejection and visual screening for high 
amplitude due to body movements, sweating, and temporary 
electrode malfunction were conducted, with a result that no more 
than 5% bad channels per participant were interpolated. In 
addition, to obtain event-related components, stimulus-locked 
epochs of 1,200 ms (200 ms pre-stimulus) were extracted from 
continuous data, and then Independent Component Analysis 
(ICA, option: runica) procedure was used to de-noise (Delorme 
et  al., 2007). An ADJUST automatic classification algorithm 
(EEGlab plugin) (Delorme et al., 2007) and manual screening on 
topographical distribution and frequency contents were employed 
to reject components that reflected eye movement-induced muscle 
activity. The EEG signal that exceeded ±120 μV in amplitude 
during the epochs was then deleted.

2.5.3.2 EEG single-trial discrimination analysis
To identify (1) the effect of task-irrelevant information in each 

sense; (2) the dynamic time process of the effect, that is, whether 

the early sensory processing of information or the efficacy of post-
sensory processes was impacted (Parra et al., 2005; Franzen et al., 
2020), linear multivariate single-trial discrimination analysis was 
conducted separately for the visual and auditory task.

Specifically, we identified a projection of the multidimensional 
EEG data, xi, where i = [1, 2…N trials], within short sliding 
windows that maximally discriminated between distractor and 
no-distractor trials. As a result, VD-ND and AD-ND comparisons 
were carried out in the visual and auditory tasks, respectively. All 
time windows had a width of 60 ms with 10 ms onset intervals and 
the window center was shifted from −100 to 900 ms relative to 
stimulus onset. In particular, logistic regression was used to learn 
a 98-channel spatial weighting, 𝜏, that achieved maximal 
discrimination within each time window, arriving at the 
one-dimensional projection yi (τ), for each trial i and a given 
window 𝜏:
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where T refers to the transpose operator and D stands for the 
number of EEG sensors. The discriminator was built to convert 
component amplitudes yi (τ) to positive and negative values for 
no-distractor and distractor trials, which are the weighted reflection 
of neural evidence of the difference between no-distractor and 
distractor contexts. A larger positive or negative value indicates a 
higher possibility of a no-distractor or distractor context, whereas 
values approaching zero imply difficulty in differentiating context.

We employed the area under a ROC curve (Green and Swets, 
1966), referred to as an Az value, together with a leave-one-trial-out 
cross-validation approach to compensate for overfitting and measure 
the performance of our discriminator for each time frame (Philiastides 
and Sajda, 2006a,b, 2007; Philiastides et al., 2006). Specifically, we used 
N-1 trials to estimate a spatial filter w, which was then applied to the 
left-out trial to extract out-of-sample discriminant component 
amplitudes (y) and compute the Az value for each iteration. 
Furthermore, we used a bootstrap approach (see temporal cluster-
based bootstrap analysis), as well as a separate leave-one-trial-out test, 
to access significance thresholds for discriminator performance rather 
than assuming an Az = 0.5 as chance performance. This procedure was 
done 1,000 times to produce a probability distribution for Az, which 
was utilized as a reference to estimate the Az value, resulting in a 
significance level of p < 0.05. This EEG analysis pipeline was run on 
separate participants, making each one their own replication unit 
(Smith and Little, 2018).

Finally, given the linearity of our model, we computed the scalp 
projections of our discriminating components arising from Eq. (1) by 
estimating a forward model as follows:
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where the EEG data (x) is in a matrix and discriminating 
components (y) are in vector notation. These forward models can 
be shown as scalp plots and interpreted as showing the normalized 
correlation between the discriminant output and the EEG activity 
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(Philiastides et al., 2014). In both the visual and auditory tasks, these 
forward models were estimated separately for AD-ND comparison 
and VD-ND comparison.

2.5.3.3 Optimizing the number of distinct spatiotemporal 
components

During periods of persistent significant discriminating activity, 
we employed the forward model estimates from Eq. (2) to identify 
temporal transitions between various components based on scalp 
distribution discrepancies, which are suggestive of changes in the 
underlying cortical sources. Specifically, we  used a k-means 
clustering technique with a Euclidean distance metric on the 
intensities of vector a(τ) for the entire time range of interest and 
optimized k (i.e., the number of different time windows with similar 
scalp topographies) using silhouette values (Rousseeuw, 1987), as 
implemented in MATLAB’s evalclusters function. Moreover, 
regardless of the criterion employed, the distance metric used for 
clustering, and the settings for both comparisons, our results were 
consistent. The obtained temporal components were used in all 
relevant EEG analyses.

2.5.3.4 Temporal cluster-based bootstrap analysis
The primary goal of this study is to figure out when the 

categorical decision is influenced by task-irrelevant information 
and then to discuss if visual and auditory distractors have an impact 
on different stages of evidence accumulation in the visual and 
auditory tasks. As a result, we  attempted to identify temporal 
windows during which the discriminator performance of the 
AD-ND and VD-ND comparisons differed. Then figure out when 
it intersects with the early and/or late components. We utilized a 
percentile bootstrap approach to compare the group-level Az 
difference between two dependent samples to quantify whether and 
when the discriminator performance changed between the VD-ND 
and AD-ND comparison (Rousselet et  al., 2016). Specifically, 
we produced a distribution of shuffled Az difference scores (AD-ND 
comparison – VD-ND comparison) among individuals on a 
sample-by-sample basis. For each sample, we repeated the shuffling 
method 1,000 times, resulting in a random bootstrap distribution 
with the median Az difference scores from each iteration. In 
addition, we calculated the average of this bootstrap distribution 
and evaluated the difference of bootstrapped mean against the 
lower bound of the calculated confidence interval (p < 0.025, at the 
2.5% threshold) to see if it was statistically different from zero.

A minimum of three significant samples was required to form 
contiguous temporal clusters and prevent transient effects caused by 
false positives. The 95th percentile of a data-driven null distribution 
of maximum cluster sizes was used to calculate this criterion. While 
the relationship between adjacent samples was preserved in the 
previous analysis, we  used a permutation procedure (shuffling 
temporal samples without replacement) to abolish the relationship 
between temporal samples, while keeping the relative difference 
between AD-ND and VD-ND comparison Az values for each sample 
and participant unchanged. We computed and stored the maximum 
number of adjacent significant samples of the largest cluster for each 
of the 1,000 repetitions to construct the null distribution of maximum 
cluster sizes. This analysis was performed on the discriminator 
performance (Az), which generated at least two significant samples in 
each comparison (it is also possible that both components are 

significant in VD-ND and AD-ND comparison). This technique 
accounts for multiple comparisons and is analogous to the temporal 
cluster-based non-parametric permutation test (Maris and 
Oostenveld, 2007).

Furthermore, the proportion of individuals who exhibited a 
participant-level impact in line with the general group-level effect was 
calculated to ensure that neural effects could be consistently traced in 
individual participants without group-level averages obscuring 
variability. These statistical analyses were carried out using MATLAB 
code (Rousselet et al., 2016, 2017).

3 Results

3.1 Visual task: visual and auditory 
distractors exhibited differential effects on 
the neural level

To assess the effect of intermodal and intramodal distractors on 
the visual evidence accumulation process, we used two linear mixed-
effects models with random intercepts for the subject and stimuli to 
examine the effects of distractor condition (AD vs. ND vs. VD) on 
ACC and RT. Participants responded within the time limit in all trials. 
We excluded trials with reaction times that deviated more than 3 
standard deviations from the mean. In the analysis, a small percentage 
of trials from each condition were excluded: 1.90% from the AD 
condition, 2.39% from the ND condition, and 1.73% from the VD 
condition. For both ACC (Figure  2A) and RT (Figure  2B), no 
difference was found between no-distractor and distractor conditions 
(ps > 0.05; ACC: MAD = 0.973, SDAD = 0.029; MND = 0.981, SDND = 0.019; 
MVD = 0.974, SDVD = 0.039; RT: MAD = 703 ms, SDAD = 134 ms; 
MND = 806 ms, SDND = 137 ms; MVD = 721 ms, SDVD = 132 ms).

To determine which functional level the distractor affects in the 
visual task, we  compared multiple hypothetical hierarchical drift-
diffusion models, which were used to figure out which cognitive 
processes the task-irrelevant information was affecting. Specifically, 
we examined the best model that fitted the behavioral data first and 
then compared the parameters (drift rate, v; decision boundary, a; 
non-decision time, t) among conditions. We built eight models and 
the model comparison showed that model 8, with all three parameters 
free to vary, was the best-fit model, as a lower value of the variance 
information criterion (DIC) indicates a better balance between 
complexity and model fit (DICmodel 8 = −1880; DICmodel 1 = −1,249; 
DICmodel 2 = −1734; DICmodel 3 = −1728; DICmodel 4 = −1,657; 
DICmodel 5 = −1816; DICmodel 6 = −1825; DICmodel 7 = −1862). In addition, 
model 8 demonstrated excellent convergence for all estimated 
parameters: Rubin statistic values, Meanv ± SDv = 1.00102 ± 0.00156, 
range = [0.99996, 1.00877]; Meana ± SDa = 1.00164 ± 0.00209, 
range = [1.00002, 1.01220]; Meant ± SDt = 1.00138 ± 0.00186, 
range = [0.99994, 1.01097] (Rubin statistic values <1.1 are considered 
to indicate acceptable convergence). The results of model 8 revealed 
no initial preference for a dog-category or a bird-category response 
pBayes(bias >0.50) = 0.179. There was moderate evidence for a difference 
in drift rate [Figure  2C, pBayes(ND > VD) = 0.068; 
pBayes(ND > AD) = 0.051], indicating higher evidence accumulation rate 
when with either a visual or an auditory distractor. In addition, the 
response boundary was lower in either visual or auditory distractor 
condition, compared with no distractor condition [Figure  2D, 

https://doi.org/10.3389/fpsyg.2024.1380196
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Li et al. 10.3389/fpsyg.2024.1380196

Frontiers in Psychology 09 frontiersin.org

pBayes(ND < VD) = 0.073; pBayes(ND < AD) = 0.001], indicating 
that responses were more cautious when with a distractor. No evidence 
for a non-decision time difference between no-distractor and 
distractor conditions [Figure  2E, pBayes(ND > VD) = 0.715; 
pBayes(ND > AD) = 0.652].

Next, we sought to identify the early (sensory processing) and late 
(post-sensory decision) EEG components that discriminate the 
no-distractor and distractor contexts and to investigate how they are 
modulated by the modality of irrelevant input. A single-trial 
multivariate discriminant analysis was performed on visual task EEG 
data firstly, by comparing ND with AD and VD trials separately, to (1) 
detect the impact of extra task-irrelevant evidence, in other words, to 
identify the temporally distinct components that discriminate the 
visual categorical representation under no-distractor and distractor 
contexts; (2) characterize the magnitude of the visual and auditory 
distractors’ impact on visual categorical decision making.

For the AD-ND comparison, the discriminator’s performance 
reveals a broad window (190–370 ms and 520–630 ms post-stimulus, 
see Figure 3A, blue horizontal dotted line), indicating the categorical 
information represented differently. And for the VD-ND comparison, 
it is 490–700 ms post-stimulus (see Figure 3A, red horizontal dotted 
line). We used temporal clustering with a time window of 190–700 ms 
to determine the number of relevant components. With a transition 
point of 400 ms, this method reveals the presence of two temporally 
different scalp representations. As a result, considering the overlap 
with the broad window as much as possible, 190–370 ms and 
520–630 ms were selected as early and late components. We  next 
extracted participant-specific component latencies by finding the time 
points within the early and late component time-windows that led to 
peak Az performance, for each comparison.

The results of temporal cluster-based permutation analysis 
showed that temporal clusters overlapping with the early 

(190–310 ms) and late (540–580 ms) components (Figure 3A). For 
the early component, the discriminator performance of the 
AD-ND comparison is significantly higher, while it’s the VD-ND 
comparison higher for the late component (Figure  3B). Up to 
74.4% of participants exhibited an early component difference and 
71.8% showed a late component difference in the discriminator’s 
performance (Figure  3C). These results showed that the extra 
task-irrelevant auditory information in our task improves the 
quality of visual categorical evidence (as indicated by our 
discriminator component amplitudes y) during sensory processing 
(Figure  3D). However, the task-irrelevant visual information 
improves the late component primarily (Figure 3E), representing 
the post-sensory decision process. In addition, for AD-ND 
comparison, the corresponding scalp models (Figure  3A, 
topographical inserts, top row) revealed the strongest effects 
originated over occipital and temporal electrodes for the early 
component. For the VD-ND comparison, the early component’s 
topography was quite similar to that of the AD-ND comparison, 
but of opposite signs. For the topographies of the late component, 
only the VD-ND comparison (Figure 3A, topographical inserts, 
bottom row) showed the strongest correlations between 
discriminant output (y) and the EEG activity over posterior, 
temporal, and occipital regions.

These results suggested modality-specific impacts of irrelevant 
inputs in the visual categorical decision-making task. Specifically, the 
distinct effects of visual and auditory distractors showed on the neural 
components, with auditory distractors changing the sensory 
processing stage whereas visual distractors influencing the post-
sensory decision stage. The impact on behavioral performance was 
minimal, however, the presence of both visual and auditory irrelevant 
inputs led to an increase in drift rate and a decrease in 
response boundary.

FIGURE 2

Behavior analysis and HDDM results of visual task. ACC (A) and RT (B) of the visual categorical decision-making task. Dots indicate single-participant 
values for each condition. Plots of posterior probabilities for HDDM parameters: drift rate v (C), response boundary a (D), non-decision time t (E). 
**p  <  0.01.
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3.2 Auditory task: visual and auditory 
distractors exhibited differential effects on 
the behavioral and modeling-oriented 
cognitive level

We first removed the trials in which the participants responded 
before the target presentation, and then deleted trials with reaction 

times that fell outside of three standard deviations. In the analysis, a 
small percentage of trials from each condition were excluded: 4.55% 
from the AD condition, 3.03% from the ND condition, and 3.08% 
from the VD condition. Same to the analysis on the visual task, in the 
auditory categorical decision-making, analysis on ACC (Figure 4A) 
showed different impacts of visual and auditory distractors, showing 
that auditory categorical performance was facilitated by visual 

FIGURE 3

Distractor – no-distractor context discrimination analysis for visual categorical decision-making task. (A) Mean discriminator performance (Az) after a 
leave-one-trial-out cross-validation procedure for the AD-ND comparison (AD; red) and VD-ND comparison (VD; blue). Horizontal dotted lines 
represent the group average permutation threshold for statistical significance at p  <  0.05 (for AD-ND comparison, Az sig  =  0.573, and for VD-ND 
comparison, Az sig  =  0.575). Bootstrapped standard errors among participants are represented by shaded error bars. To obtain the number of clusters 
and their extent, a k-means clustering algorithm with a Euclidean distance metric and optimized k (k  =  2 in both VD-ND and AD-ND comparison) was 
used. Early (190–370  ms) and late (520–630  ms) EEG component windows computed via temporal clustering of scalp topographies are indicated by 
shaded gray vertical bars. These bars do not indicate statistical significance. The scalp topographies at representative time windows are used to show 
forward models, corresponding to the early and late EEG components. The color bar represents normalized correlation. (B) Bootstrapped discriminator 
performance difference (thick black line; VD-AD: VD-ND comparison minus AD-ND comparison) with 95% confidence intervals (thin black lines; 2.5–
97.5%). Significant temporal windows (i.e., the lower confidence interval is higher than zero at p  <  0.05, with an extra data-driven minimum criterion of 
three contiguous windows to correct for multiple comparisons) are illustrated by a horizontal thick black line above and below the x-axis. (C) The 
percentage of individuals whose discriminator performance (Az) is in the same direction as the group average. Histogram represents the early (D) and 
late (E) EEG component amplitudes at the point of maximal Az the separation between distractor and no-distractor trials (ydistractor – yno-distractor).
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distractors (p < 0.001) whereas auditory distractors had no effects 
(p = 0.687; MAD = 0.929, SDAD = 0.089; MND = 0.941, SDAD = 0.127; 
MVD = 0.977, SDVD = 0.026). For RT (Figure  4B), auditory task 
performance was slowed down by the auditory distractors (p = 0.015) 
but wasn’t affected by the visual distractors (p = 0.344; MAD = 960 ms, 
SDVD = 359 ms; MND = 818 ms, SDND = 258 ms; MVD = 742 ms, 
SDVD = 247 ms).

The results of HDDM revealed that model 8, in which all three 
parameters were free to vary, was the best-fit model (DICmodel 8 = 6,421; 
DICmodel 1 = 6,544; DICmodel 2 = 6,642; DICmodel 3 = 7,313; DICmodel 4 = 7,702; 
DICmodel 5 = 7,572; DICmodel 6 = 6,859; DICmodel 7 = 8,440). In addition, 
model 8 demonstrated excellent convergence for all estimated 
parameters: Rubin statistic values, Meanv ± SDv = 1.00088 ± 0.00143, 
range = [0.99992, 1.00602]; Meana ± SDa = 1.00160 ± 0.00229, 
range = [1.00002, 1.01008]; Meant ± SDt = 1.00144 ± 0.00221, 
range = [1.00002, 1.00986]. The posterior distributions of model 8 
revealed no initial preference for a dog-category or a bird-category 
response, pBayes(bias >0.50) = 0.233. It was a higher drift rate when with 
visual distractors but lower when with auditory distractors [Figure 4C, 
pBayes(ND > VD) = 0.016; pBayes(ND < AD) = 0.037]. In addition, 
compared with the no-distractor condition, the visual distractors 
resulted in a wider response boundary, but no significant impact of 
auditory distractors [Figure  4D, pBayes(ND > VD) = 0.019; 
pBayes(ND > AD) = 0.77]. The non-decision time of the visual distractor 
condition was shorter than no-distractor condition but no evidence 
for the difference between no-distractor and auditory distractor 
condition [Figure 4E, pBayes(ND < VD) = 0.019; pBayes(ND > AD) = 0.865].

In the analysis for the auditory categorical information 
representation, we  used the same analysis method as the visual 
categorical decision-making. We compared the different effects of 
additional task-irrelevant visual and auditory information. No 

significant discriminator performance showed in both the VD-ND 
and AD-ND comparisons (Figures 5A,B). That is, we did not find the 
temporally distinct components between no-distractor and distractor 
contexts in the auditory task.

Collectively, we observed modality-specific impacts of irrelevant 
inputs in auditory categorical decision-making, which is consistent with 
the findings of the visual task. In the auditory task, the distinct effects of 
visual and auditory distractors showed on the behavioral level and 
cognitive processes, showing (1) the facilitation of visual distractors but 
interference of auditory distractors on behavioral performance; (2) visual 
distractors resulting in a higher evidence accumulation rate and response 
boundary, indicating the impacts on both the sensory processing and 
post-sensory decision stages, whereas auditory distractors led to a lower 
evidence accumulation rate without affecting the response boundary, 
indicating the impacts on the sensory processing rather than the post-
sensory decision stage. The impacts of irrelevant inputs were not 
observed on the neural level in the categorical decision-making task.

4 Discussion

We continually categorize information based on the features of 
inputs from multiple senses, yet not all sensory inputs are equally 
relevant. In this work, we provided evidence on how intermodal and 
intramodal distractors affect categorical decision-making processes 
from the behavioral level, cognitive level (HDDM framework), and 
neural level. In the visual categorical decision-making, the distinct 
effects of visual and auditory distractors showed on the neural 
component, with visual distractors changing the post-sensory decision 
stage whereas auditory distractors affecting the sensory processing 
stage. Cognitive processes were identically impacted by visual and 

FIGURE 4

Behavior analysis and HDDM results of the auditory task. ACC (A) and RT (B) of the auditory categorical decision-making task. Dots indicate single-
participant values for each condition. Plots of posterior probabilities for HDDM parameters: drift rate v (C), response boundary a (D), non-decision time 
t (E). *p  <  0.05, ***p  <  0.001.
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auditory distractors, with no effect on behavioral performance. In the 
auditory categorical decision-making, the distinct effects of visual 
and auditory distractors showed on the behavioral level and cognitive 
processes, showing the facilitation effect of visual distractors and 
impacts on both the sensory processing and post-sensory decision 
stages, but the interference of auditory distractors and impacts on the 
sensory processing rather than the post-sensory decision stage. In 
addition, the impacts of irrelevant inputs on the auditory task were not 
observed on the neural level.

Therefore, the modality-specific impacts of irrelevant information 
on both the visual and auditory categorical decision-making were 
demonstrated, with the effect of irrelevant information modulated by 
its modality and occurring at both sensory processing and post-sensory 
decision stages. In the visual task, even though the behavioral 
performance and modeling parameters were hardly affected, they had 
distinct effects on the neural level. Auditory distractors resulted in an 
early EEG component, reflecting the effects on the perceptual evidence 
accumulation (Chen et al., 2021), whereas visual distractors resulted in 
a late component, indexing the impacts on the post-sensory decision 
stage (Philiastides and Sajda, 2006a,b, 2007; Philiastides et al., 2006; 
Ratcliff et al., 2009; Franzen et al., 2020). However, in the auditory 
categorical decision-making, there were no dynamic neural 
components, but there were distinct effects of distractors on the 
behavioral performance and the underlying cognitive processes, 
implying that visual distractors are likely to facilitate performance, 
possibly due to the higher evidence accumulation rate and more 
conservative response criterion, whereas auditory distractors tend to 
interfere, due to the lower evidence accumulation rate.

In this study, we were particularly interested in the effect of task-
irrelevant information and the moderating role of its modality. In the 
field of information processing, perceptual processing and response 
selection are required (Halford et  al., 2010). The early processing 

hypothesis posits that evidence from multiple modalities is combined 
at the sensory encoding stage and may be  reflected in the early 
component of neural activity in primary cortices (Schroeder and Foxe, 
2005; Kayser and Logothetis, 2007), whereas the late processing 
hypothesis states that evidence from each sensory modality is isolated 
originally and processed independently and supports for a response 
later (i.e., post-sensory decision process). However, most previous 
studies exploring the dynamic processes of information processing 
have focused on simple perceptual decision-making, such as visual 
detection and visual feature discrimination (Giard and Peronnet, 
1999; Sajda et al., 2009; Kayser et al., 2017). It may be challenging to 
generalize inferences drawn from these studies to auditory decision-
making or more complex cognitive tasks such as categorization.

In the visual task, our neurological results support the modality-
specific early and late processing hypotheses. The early EEG 
component in the auditory distractor condition indicates that the 
representation of auditory task-irrelevant information emerges at a 
sensory processing stage, suggesting a perceptual origin rather than 
post-sensory decision process (Zhang and Rowe, 2014). Besides, it is 
the primary cortical regions that are involved in this process (Cappe 
et al., 2009; Mercier et al., 2013). These results support the sensory 
processing hypothesis for the processing of auditory distractors in 
visual categorical decision-making.

In contrast, the processing of visual distractors in the visual task 
showed a late neural component, supporting the late-processing 
hypothesis. In categorization tasks, sensory regions interact with 
higher-order areas, such as the parietal and frontal associative cortex 
and lateral occipital cortex (Philiastides and Sajda, 2007; Kayser et al., 
2017; Mercier and Cappe, 2020). Visual distractors may have an effect 
in this manner. Specifically, all inputs are encoded separately and then 
combined into a single source of evidence for decision formation in 
the higher-order areas (Heekeren et al., 2004; Pisauro et al., 2017).

FIGURE 5

Distractor – no-distractor context discrimination analysis for auditory categorical decision-making task. (A) Mean discriminator performance (Az) after 
a leave-one-trial-out cross-validation procedure for the AD-ND comparison (AD; red) and VD-ND comparison (VD; blue). Bootstrapped standard 
errors among participants are represented by shaded error bars. Horizontal dotted lines represent the group average permutation threshold at p  <  0.05 
(for AD-ND comparison, it was Az sig  =  0.591, and for VD-ND comparison, Az sig  =  0.583). Scalp topographies display the forward models at 200–
600  ms. The color bar shows a normalized correlation. (B) Bootstrapped discriminator performance difference (thick black line; VD-AD: VD-ND 
comparison minus AD-ND comparison) with 95% confidence intervals (thin black lines; 2.5–97.5%).
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An alternative explanation is that evidence from different 
modalities accumulates concurrently, whereas in one modality it is 
sequential. As such, simultaneously presented auditory and visual 
information can affect sensory processing (Widmann et al., 2004; Foxe 
and Schroeder, 2005), and thus evidence accumulates at a higher rate, 
generating greater neural activity in the early stage of stimulus onset. 
However, with top-down control, the relevance and reliability of the 
information are considered, and the visual-irrelevant information is 
processed later.

Another possibility is that the information accumulation could 
be modulated by the physical properties of stimuli. A cognitive process 
that determines whether the received information is a target or a 
distractor can help individuals to select and focus on more useful 
information. Given that most auditory inputs are alert, dynamic, and 
transient, they could be prioritized so that individuals have little time 
to think and instead use all the information available to them to 
respond. In contrast, individuals have enough time to consider the 
value of visual inputs, which are silent and continuously available, and 
then process them selectively. As a result, the effect of auditory 
distractors on neural activity is shown in the early components, 
whereas the visual irrelevant information is collected in the late 
processing stage.

However, the three explanations above do not seem to be directly 
applicable to the influence of irrelevant information in auditory 
tasks, since the impacts and the moderation of modality are observed 
in behavioral performance and modeling parameters rather than 
neural activity (Stein, 2012). Nevertheless, the dynamic mechanism 
of the auditory categorical representation in the context of the 
intermodal or intramodal distractor is consistent with that of visual 
processing: the modality of irrelevant information modulates the 
impacts and both sensory processing and post-sensory decision 
processes are affected.

Specifically, the HDDM was implemented, and psychologically 
meaningful parameters were proposed to map various cognitive 
processes. Visual distractors resulted in a higher evidence 
accumulation rate and response boundary, eliciting higher response 
accuracy and indicating the impacts on both the sensory processing 
and post-sensory decision stages (Ratcliff and McKoon, 2008; Voss 
et al., 2015). In contrast, auditory distractors led to a lower evidence 
accumulation rate without affecting the response boundary, resulting 
in lower reaction time and indicating the impacts on the sensory 
processing rather than the post-sensory decision stage (Philiastides 
and Ratcliff, 2013; Sewell et al., 2018).

Taking the results of two tasks together, these findings pointed 
to modality-specific mechanisms of task-irrelevant information 
processing. The sensory processing stage of the visual categorical 
decision-making was affected by auditory distractors, whereas the 
post-sensory decision stage was affected by visual distractors. 
Similarly, the sensory processing stage of the auditory categorical 
decision-making were affected by auditory distractors whereas both 
stages were affected by visual distractors. These findings 
demonstrated the impacts of auditory distractors on the sensory 
processing stage while the impacts of the visual distractors on the 
post-sensory decision stage of visual categorical decision-making 
and both stages of auditory categorical decision-making.

The present study makes several noteworthy contributions. 
Theoretically and methodologically, the combination of modeling 
and neural data provided a comprehensive insight into which both 

the cognitive and neural mechanisms were disclosed (Frank et al., 
2015; Turner et al., 2017; Delis et al., 2018).

This study appears to be a variant of the flanker task (Eriksen 
and Eriksen, 1974; Lavie, 1995), but in the current exploration, 
we primarily emphasize categorical decision-making. This research 
has two key differences from the flanker task. Firstly, the target to 
be  categorized consisted of a deterministic feature and several 
probabilistic features, and the task-irrelevant information was 
congruent or incongruent with the deterministic feature of the 
target. The probabilistic features were less-relevant rather than 
irrelevant. Secondly, in the current design, the locations of the target 
features and the location of the task-irrelevant information were 
changing, and participants needed to search for the deterministic 
feature among the target’s various features for categorization. In the 
traditional flanker task, the target is defined by its spatial location, 
and three distracting stimuli are presented on either side of the 
target, flanking the central target stimulus (e.g., BBBABBB) (Merz 
et al., 2021). Overall, in line with the main purpose of the current 
research, this study focuses on categorical decision-making and aims 
to explore the impact of irrelevant information on visual and 
auditory categorical decision-making.

Several limitations to this study need to be acknowledged. First, 
while our findings are in line with prior categorization research 
(Matusz et al., 2015; Robinson et al., 2018), in which the behavioral 
performance of the congruent condition was not significantly different 
from the incongruent condition, and a previous study using the same 
tasks did not observe a congruency effect in behavioral performance 
either (Li and Deng, 2023b), there is insufficient evidence to suggest 
that the congruent and incongruent irrelevant inputs have the same 
impacts on the neural level or cognitive level. But we did not investigate 
its potential impacts due to its low relevance to the research questions, 
and a larger number of trials is preferable for evidencing the impacts 
of congruent or incongruent intermodal or intramodal task-irrelevant 
information in such categorical visual and auditory decision-making. 
Additionally, a direct comparison of the impacts of distractors on 
evidence accumulation between visual and auditory categorization was 
not performed, as the presentation method of the categorization 
stimuli was different between the two tasks (i.e., spatial separation in 
visual task vs. temporal separation in auditory task). Instead, the main 
purpose of the current study was to examine the modulation of 
distractor modalities on each task separately. Future research is needed 
to investigate the interaction between the target modalities and 
distractor modalities. Finally, since we did not identify any neural 
components of distractor impacts in the auditory task, it was not 
technically feasible to build the neural-directed modeling for auditory 
categorical decision-making. And we decided to interpret the results 
from different levels: the behavioral, cognitive (HDDM framework), 
and neural level. However, it could be possible that the impacts of 
irrelevant information on the evidence accumulation of auditory 
categorical decision-making were hard to detect at the neural level and 
innovations in techniques would be needed.

5 Conclusion

Taken together, this work provides a comprehensive 
understanding of multisensory categorical decision-making from an 
evidence accumulation perspective. We  revealed the impacts of 
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irrelevant inputs at the behavioral, cognitive, and neural levels, and 
demonstrated that irrelevant inputs influenced both the sensory 
processing and post-sensory decision stages of visual and auditory 
categorical decision-making, with modality-specific impacts on both 
the visual and auditory task. This study suggests the importance of 
considering modality-specific impacts when studying multisensory 
decision-making and contributes to our understanding of how 
humans process information from multiple sensory modalities.
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Appendix

FIGURE A1

The framework diagram. The analysis outline and the key variables extracted from the behavioral, modeling, and EEG analysis.
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