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Evaluating fit indices in a 
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This study informed researchers about the performance of different level-
specific and target-specific model fit indices in the Multilevel Latent Growth 
Model (MLGM) with unbalanced design. As the use of MLGMs is relatively new 
in applied research domain, this study helped researchers using specific model 
fit indices to evaluate MLGMs. Our simulation design factors included three 
levels of number of groups (50, 100, and 200) and three levels of unbalanced 
group sizes (5/15, 10/20, and 25/75), based on simulated datasets derived from 
a correctly specified MLGM. We evaluated the descriptive information of the 
model fit indices under various simulation conditions. We also conducted 
ANOVA to calculated the extent to which these fit indices could be influenced 
by different design factors. Based on the results, we made recommendations for 
practical and theoretical research about the fit indices. CFI- and TFI-related fit 
indices performed well in the MLGM and could be trustworthy to use to evaluate 
model fit under similar conditions found in applied settings. However, RMSEA-
related fit indices, SRMR-related fit indices, and chi square-related fit indices 
varied by the factors included in this study and should be used with caution for 
evaluating model fit in the MLGM.
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Introduction

Social science researchers are often interested in understanding how characteristics of 
individuals or entities change over time (Wang et  al., 2015). These characteristics could 
be  observations about general behavior or overall academic performance, or they could 
be observations about specific constructs, such as depression, communication skills, attitudes 
toward teachers or parents, or math ability (Baumert et  al., 2012). Longitudinal studies 
describe the changing pattern of characteristics of interest. Longitudinal studies also investigate 
the questions such as of how change comes about, how much change occurs, how the change 
process might differ across observations, and the determinants of that change over a set period.

If research questions consider both change over time and nested data, the use of Multilevel 
Latent Growth Model (MLGM) have been advocated as a method for analysis. MLGM, an 
multilevel structure equation model (SEM) extends the Latent Growth Model (LGM) model 
by accommodating the dependence between observations due to nested longitudinal data (Shi 

OPEN ACCESS

EDITED BY

Holmes Finch,  
Ball State University, United States

REVIEWED BY

Steffen Zitzmann,  
University of Tübingen, Germany
Nathan Helsabeck,  
The Ohio State University, United States

*CORRESPONDENCE

Qingqing Liu  
 qingqingliu@btbu.edu.cn

RECEIVED 17 January 2024
ACCEPTED 08 April 2024
PUBLISHED 03 May 2024

CITATION

Pan F and Liu Q (2024) Evaluating fit indices 
in a multilevel latent growth model with 
unbalanced design: a Monte Carlo study.
Front. Psychol. 15:1366850.
doi: 10.3389/fpsyg.2024.1366850

COPYRIGHT

© 2024 Pan and Liu. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 03 May 2024
DOI 10.3389/fpsyg.2024.1366850

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2024.1366850&domain=pdf&date_stamp=2024-05-03
https://www.frontiersin.org/articles/10.3389/fpsyg.2024.1366850/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2024.1366850/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2024.1366850/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2024.1366850/full
mailto:qingqingliu@btbu.edu.cn
https://doi.org/10.3389/fpsyg.2024.1366850
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2024.1366850


Pan and Liu 10.3389/fpsyg.2024.1366850

Frontiers in Psychology 02 frontiersin.org

et al., 2019). The nested longitudinal data include repeated measures 
for each individual nested within the groups, thus forming a three-
level structure. Based on previous research (e.g., Longford and 
Muthén, 1992; Linda et  al., 1993), the three-level structure can 
be specified with a two-level model. In this two-level model, individual 
related parameters are estimated in the within-level model, and group 
related parameters are evaluated in the between-level model. MLGM 
can output different parameters for different levels, allowing 
researchers to separately study different levels.

Combining both the benefits of multilevel models and LGM, 
MLGM is ideally suited for addressing the research questions 
concerning multilevel longitudinal data (Hsu et al., 2016). A MLGM 
combines advantages of LGM (e.g., ability to incorporate indirect 
effects, complex measurement error structures, and multiple group 
analysis) while also correcting extent of clustering (Palardy, 2008). 
MLGM investigate both observations and group trajectories within 
one analysis. In MLGM, the individual level model and group level 
model have different latent intercepts and latent slopes, so individual 
level and group level can have different growth patterns (Rappaport 
et  al., 2019). Further, MLGMs can include characteristics of both 
observation and group levels to explain the influence of various 
characteristics on: the change patterns of two levels, the change of 
measured attributes of observations within each group, and the change 
of all observations’ measured attributes (Hsu et al., 2016). In addition, 
compared to LGM, which only considers the means of measured 
attributes of time points, MLGM measures both the means of different 
times points and the means of different groups; this can assist 
researchers’ understanding of the overall status of the measured 
attributes of different groups. Muthén (1997) compared the model 
estimation results of MLGM, such as model fit indices and standard 
errors of parameters, to results of other SEM models. Compared to 
LGM and multilevel Confirmatory Factor Analysis, MLGM computed 
the best model evaluation information, indicating that MLGM was the 
appropriate hypothesized model for multilevel longitudinal data.

Figure  1 shows a two-level linear growth MLGM with four 
constant growth time points. IW (η1) represents the intercept of an 
individual’s growth trajectory and LW (η2) represents the slope of an 
individual’s growth trajectory. Y1-Y4 represent four continuous 
outcomes for individuals, and ε1–ε4 represent the degree of deviation 
between the observed outcome and the expected outcome of 
individuals. Λ represents the factor loading for individual-level; φ 
represents the factor variances and covariances for individual-level; θε 
represents the error variances and covariances for individual-level. η 
is the latent variable means for individual-level. IB (η1) represents the 
intercept of a group’s growth trajectory and LB (η2) represents the 
slope of a group’s growth trajectory. Y1–Y4 represent four continuous 
outcomes for groups, and ε1–ε4 represent the degree of deviation 
between the observed outcome and the expected outcome for groups. 
Λ represents the factor loading for group-level; φ represents the factor 
variances and covariances for group-level; θε represents the error 
variances and covariances for group-level. η is the latent variable 
means for group-level. Under this condition, both group-level and 
individual-level’s matrices Λ will be fixed. The matrices φ and the 
matrix θε of both levels will be estimated. Typically, factor loadings of 
different levels are set to be  equal to obtain unbiased parameter 
estimates and statistical inferences (Muthén, 1997).

The terms balanced and unbalanced are frequently encountered 
with longitudinal analysis approaches. A balanced design describes 
multilevel longitudinal data in which equal observations are planned 
to be measured at the different groups, whereas an unbalanced design 
occurs when the number of observations planned to be measured at 
each group is not the same. It is common to encounter an unbalanced 
design in empirical situations (Graham and Coffman, 2012). For 
example, states’ educational policies may have a general requirement 
for the number of students in each class or school. The students in 
each class or school will fluctuate around this general number. 
Consider that policy states the number of students in each class to 
be 20; however, the actual number of students could be 18, 19, 20, or 
21 per classroom.

When researchers are evaluating an MLGM, typical SEM model fit 
indices are relied upon and commonly accepted cutoff values (or “rules 
of thumb”) are used for interpretation (e.g., Hu and Bentler, 1999). One 
common approach to evaluate MLGM is to use typical SEM model fit 
indices (e.g., the root mean square error of approximation [RMSEA], 
comparative fit index [CFI], Tucker–Lewis index [TLI], and 
standardized root mean square residual [SRMR]) to assess the model 
fit. However, there are problems with using typical SEM fit indices to 
judge the MLGM fit. The typical SEM fit indices are likely to 
be dominated by large sample size (Yuan and Bentler, 2000; Ryu and 
West, 2009; Hox et al., 2010) and are more sensitive to misspecification 
in the within-level model (Hsu et al., 2015). In MLGM, individual (i.e., 
within) level has much larger sample size than group (i.e., between) 
level. As a solution to the problems of typical SEM model fit indices 
when using MLGM, researchers have developed level-specific and 
target-specific model fit indices to detect whether the poor fit of the 
hypothesized MLGM comes from individual level model or group level 
model (Hsu et al., 2015).

There is little guidance for researchers interested in using 
level-specific and target-specific model fit indices for unbalanced 
MLGM. With balanced data, as each cluster has constantly 
measured attributes, one covariance and one mean structure could 
represent the relationship between subjects within each cluster. 
The mean structure of balanced data is calculated by summing the 
values of all individuals in the cluster to divide the fixed number 
of individuals (Distefano, 2016). However, as each cluster in 
unbalanced data do not have same numbers of subjects, one mean 
structure could not stand for mean structure of all clusters. Each 
cluster’s covariance is also different due to different numbers of 
measured attributes. The non-constant covariance structure 
within each level may cause a severe concern, especially if separate 
trajectories for subjects and clusters are of interest (Grund et al., 
2018). Different number of subjects in each cluster may cause 
misspecification of mean and covariance structures for each level 
required by the model estimation (e.g., Laird 1988; Little and 
Rubin, 2019) and result in low statistical power for overall MLGM 
estimation (Diggle, 2002). Therefore, this study aims to fill the 
gaps in these literature. There has not been any study of what 
happens under the ‘best’ circumstances (i.e., correctly specified 
model). In this study, a correctly specified MLGM was simulated 
considering two design factors: different group sizes and 
unbalanced observation sizes to investigate the performance of 
different model fit indices under these different conditions.
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Literature review

Investigating fit of MLGM Designs

Level-specific fit indices for MLGM
A partially saturated model (PS model) has been proposed to 

obtain the level-specific fit indices (Ryu and West, 2009). A PS model 
means that in an MLGM, either a within-level model or a between-
level model is a saturated model. A PS model can be obtained by 
correlating all the observed variables and allowing all the covariances 
or correlations to be freely estimated at the between-level or within-
level model. Ryu and West (2009) demonstrated that the PS method 
calculates level-specific fit indices with reasonable non-convergence 
rates and low Type I error rates. With a high non-convergence rate, a 
model fails to achieve equilibrium during analysis (Hox et al., 2010). 
Ryu and West (2009) indicated that PS model generated low 
non-convergence rate and was appropriate to generate level-specific 
fit indices. Using PS method, Ryu and West calculated the between-
level specific fit indices (PS_B) and within-level specific fit indices 
(PS_W), meaning that different levels will be evaluated by different fit 
indices (Ryu and West, 2009; Hsu et al., 2015).

Previous literature, investigating level-specific fit indices’ 
performance, has been conducted for different multilevel SEMs 
(MSEM): multilevel confirmatory factor analysis, multilevel path 
models, multilevel nonlinear models, and MLGM (Ryu, 2014; 
Schermelleh-Engel et al., 2014; Hsu et al., 2016). Ryu and West (2009) 
simulated a multilevel confirmatory factor, indicating that within-level 
specific fit indices correctly indicated the within-level model’s poor 
model fit, and between-level specific fit indices successfully detect the 
lack of fit in the between-level model. Based on Ryu and West (2009) 
results, Ryu (2014) illustrated the level-specific model evaluation using 
empirical data and provided recommendations to researchers 

interested in using level specific fit indices for MSEM. As an extension 
of the above two studies, Hsu et al. (2016) considered the impact of 
intraclass correlation coefficients (ICCs) on the performance of level-
specific fit indices in simulated MSEM. The ICC is defined as the ratio 
between group-level variance and total variance (Cohen et al., 2013). 
Hsu et al.’s results showed that the ICC does not significantly affect the 
effectiveness of between-level specific model fit indices. ICC did not 
influence all within-level fit indices. When ICC was very low, CFIPS_W 
and TLIPS_W can still detect the misspecification for between-level 
models, whereas SRMRB and RMSEAPS_W did not work.

Only one study to date has concentrated on the level-specific fit 
indices in MLGM (Hsu et al., 2019). In line with Wu and West 
(2010) study, this simulation study extended Wu and West (2010) 
single level LGM to a two-level MLGM model with the same 
accelerating quadratic trajectory and time points. The estimated 
MLGM had five time points, and each time point was assumed to 
be on a standardized scale (i.e., M = 0 and SD = 1). The parameter 
settings were simulated based on empirical data from the 
Longitudinal Surveys of Australian Youth (LSAY); Following Wu 
et al. (2015) simulation study, Hsu et al. (2019)’s study simulated the 
number of clusters (NC) as, 50, 100, 200, and cluster sizes (CS) were 
designed into three levels, 5, 10, and 20. The results showed that 
CFI-and SRMR-related fit indices were not affected by small NC or 
CS. The RMSEA-related fit indices were likely to be influenced by 
small NC or CS. TLI-related fit indices needed a moderate NC (100) 
and CS (10). The results also indicated that within-level specific fit 
indices, RMSEAPS_B, CFIPS_B, and TLIPS_B, were not sensitive to the 
misspecified between-covariance structure, whereas SRMRB was 
recommended to detect this misspecification. As for the 
misspecified between-mean structure, RMSEAPS_B, CFIPS_B, and 
TLIPS_B were suggested. Among them, RMSEAPS_B was recommended 
as it was found to be more sensitive to detecting misspecification.

FIGURE 1

Two-level multilevel latent growth model.
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Target specific fit indices for MLGM

In addition to level-specific fit indices, our research also evaluated 
the performance of target-specific fit indices. Target-specific fit indices 
for MLGM examine whether the misspecification comes from the 
covariance structure or the mean structure of between-level or within-
level model (DiStefano et al., 2013). Hsu et al. (2019) extended the 
investigation of target-specific fit indices’ performance from the 
context of LGM to MLGM. The authors outlined a practical way to 
compute the target-specific fit indices for the between-level covariance 
structure fit indices and the between-level mean structure fit indices. 
The target-fit indices for MLGM only need to be estimated at the 
between-level model. Because fixing the means of growth factors at 
zero, the misspecifications of the whole MLGM could only 
be attributed to the within-covariance structure (Muthén, 1997). The 
fit indices for between-level covariance structure (T_S_COV) include 
χ2

T_S_COV, RMSEAT_S_COV, CFIT_S_COV, TLIT_S_ COV, and SRMRT_S_COV, and 
the fit indices for the between-level mean structure (T_S_MEAN) has 
χ2

T_S_ Mean, RMSEAT_S_ Mean, CFIT_S_Mean, TLIT_S_Mean, and SRMRT_S_Mean.

Based on Wu and West (2010) and Ryu and West (2009) research, 
Hsu et al. (2019) generated T_S_MEAN fit by saturating the within-level 
model and the covariance structure of the between-level model. T_S_
COV fit indices were created by saturating the within-level model and 
the mean structure of the between-level model. The researchers studied 
the influence of the sample size, cluster size, and type of misspecification 
on the sensitivity of target-specific fit indices for MLGM. The results 
indicated that RMSEAT_S_COV, CFIT_S_COV, and TLIT_S_ COV showed higher 
sensitivity to misspecified between-variance structure than RMSEAPS_B, 
CFIPS_B, and TLIPS_B. In addition, the RMSEAT_S_COV yielded a higher 
sensitivity than the other two fit indices. χ2

T_S_COV is also favored because 
of its high statistic power using for different sample size conditions. 
SRMRT_S_COV is not recommended when the cluster size is less than 5. As 
for a misspecified between-mean structure, RMSEAT_S_ Mean, CFIT_S_Mean 
and TLIT_S_Mean did not show a higher sensitivity than RMSEAPS_B, 
CFIPS_B, and TLIPS_B. Hsu et al. (2019) recommended researchers use 
RMSEAPS_B, CFIPS_B, and TLIPS_B to detect misspecified between 
structures. Both SRMRT_S_mean and SRMRB are not recommended because 
they had means and variances close to 0.

Recommended fit indices for each data type

Fit indices Different multilevel SEMs Sample size 
(<10)

Structure Low ICC 
(<0.5)

Level-

specific fit 

indices

RMSEAPS_B multilevel confirmatory factor analysis, multilevel path 

models, multilevel nonlinear models, balanced MLGM

No Small Sample Detect misspecified between-mean 

(most recommend)

Did not 

work

RMSEAPS_W multilevel confirmatory factor analysis, multilevel path 

models, multilevel nonlinear models, balanced MLGM

No Small Sample Not sensitive unrelated

CFIPS_B multilevel confirmatory factor analysis, multilevel path 

models, multilevel nonlinear models, balanced MLGM

Yes Small Sample Detect misspecified between-mean 

(recommend)

work

CFIPS_W multilevel confirmatory factor analysis, multilevel path 

models, multilevel nonlinear models, balanced MLGM

Yes Small Sample Not sensitive unrelated

TLIPS_B multilevel confirmatory factor analysis, multilevel path 

models, multilevel nonlinear models, balanced MLGM

Moderate Sample Detect misspecified between-mean 

(recommend)

work

TLIPS_W multilevel confirmatory factor analysis, multilevel path 

models, multilevel nonlinear models, MLGM

Moderate Sample Not sensitive unrelated

SRMRB multilevel confirmatory factor analysis, multilevel path 

models, multilevel nonlinear models, MLGM

Yes Small Sample Detect misspecified between-

covariance (not recommend)

Did not 

work

SRMRW multilevel confirmatory factor analysis, multilevel path 

models, multilevel nonlinear models, MLGM

Yes Small Sample Not sensitive unrelated

Target-

specific fit 

indices

RMSEAT_S_COV LGM, balanced MLGM Not influence Detect Misspecified between-

covariance (recommend)

unrelated

RMSEAT_S_Mean LGM, balanced MLGM Not influence Detect misspecified between-mean unrelated

CFIT_S_COV LGM, balanced MLGM Not influence Detect Misspecified between-

covariance

unrelated

CFIT_S_Mean LGM, balanced MLGM Not influence Detect misspecified between-mean unrelated

TLIT_S_COV LGM, balanced MLGM Not influence Detect Misspecified between-

covariance

unrelated

TLIT_S_ Mean LGM, balanced MLGM Not influence Detect misspecified between-mean unrelated

SRMRT_S_COV LGM, balanced MLGM No Small Sample Not sensitive unrelated

SRMRT_S_Mean LGM, balanced MLGM Not influence Not sensitive unrelated
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Unbalanced design for MLGM

As researchers can rely on level-specific and target-specific model 
fit indices to judge an MLGM model’s acceptability, testing if the level-
specific and target-specific fit indices perform acceptably under 
MLGM with an unbalanced design is needed. Previous studies 
investigating the level-specific and target-specific model fit indices for 
MLGM have only examined a balanced design. Few studies 
concerning the MLGM model fit when unbalanced designs are 
present. Studies have used the effect of estimation direct maximum 
likelihood (direct ML) to address unbalanced issues in MLGM (Ryu 
and West, 2009). Direct ML conceptualizes the unbalanced design as 
a form of missing data. However, direct ML can only provide 
traditional model fit indices for MLGM and could not output level-
specific and target-specific model fit indices.

For a balanced MLGM with G balanced groups, each group has n 
observations. The total sample size N equals nG. The MLGM defines 
the within group covariance matrix as SPW and the between group 
covariance matrix as S*B. The formulas for the SPW & S*B covariance 
matrices are:

 
SPW

Y Y Y Y

N G
g
G

i
n

gi g gi g
=

−( ) −( )
−

∑ ∑
′

 
S B

n Y Y Y Y

G
n
G

g g
∗ =

−( ) −( )
−

∑
′

1
.

In the above two equations, Ygi represents for the response for 
each observation, Yg represents the mean response of n observations 
in each group, and Y  indicates for the mean response of all N 
observations in the data.

In an unbalanced MLGM situation, as groups have unequal 
numbers of individuals, SPW may still represent the within group 
covariance matrix because the SPW formula directly pools together 
all observations, regardless of group size. S*B, however, cannot 
represent the covariance matrix for each group because each group 
could have a distinct group size, n. Different S*B matrices will 
be calculated for each group. In this way, the aggregate covariance 
for unbalanced multilevel data no longer represents sufficient 
statistics for model estimation and may cause problems for 
model estimation.

Although unbalanced multilevel longitudinal data is common 
with many educational research applications, there is not yet a 
study that has investigated the influence of unbalanced multilevel 
longitudinal data on model fit indices of MLGM. Hox and Maas 
(2001) simulated an unbalanced multilevel data at one time point 
to investigate the performance of a multilevel confirmatory factor 
model with unbalanced data. The results indicated that 
unbalanced data had little impact on the accuracy of parameter 
estimates of the within level model. However, for the between 
level, the variances of model fit indices tended to 
be underestimated, so the standard errors of parameter estimates 
were too small to be  accepted. As the Hox and Maas (2001)’ 
investigation conducted with model at only one time point, results 
will not improve in a MLGM situation. Model estimation for 
MLGM, including model fit, parameters estimation, and standard 

errors, may be substantially biased if the unbalanced nature is 
not considered.

The following research questions were examined using a 
Multilevel Latent Growth Model with an unbalanced design. This 
study examined the performance of different level-specific and target-
specific model fit indices when evaluating unbalanced MLGM with 
different sampling errors

 (1) How are level-specific and target-specific fit indices impacted 
by sampling error and unbalanced design?

 (2) Do the level-specific and target-specific fit indices demonstrate 
reasonable sensitivity to sampling error and unbalanced design?

Methods

Population model

A Monte Carlo study was performed to evaluate the performance 
of both level-specific fit indices (χ2

PS_B, RMSEAPS_B, CFIPS_B, TLIPS_B, 
SRMRB, χ2

PS_W, RMSEAPS_W, CFIPS_W, TLIPS_W, SRMRW) and target-
specific fit indices (χ2

T_S_COV, RMSEAT_S_COV, CFIT_S_COV, TLIT_S_COV, 
SRMRT_S_COV, χ2

T_S_MEAN, RMSEAT_S_Mean, CFIT_S_Mean, TLIT_S_ Mean, and 
SRMRT_S_Mean) in a two-level correctly specified MLGM (Jiang, 2014). 
The design factors include the number of groups and unbalanced 
group sizes.

Based on previous research, parameter settings from the LSAY 
(Longitudinal Study of American Youth) was used to simulate the 
correctly specified MLGM model (Hsu et al., 2019). The parameters 
used for the population model are based on one MLGM study of 
LSAY, which contains 3,102 students from grade 7 to grade 11 nested 
within 52 schools (Hsu et al., 2019). In line with previous MLGM 
simulation studies (Wu and West, 2010), a five-wave MLGM model 
was measured in this research. The five-time points, denoted as V1–
V5, were assumed to be  continuous data distributed on the 
standardized scale (i.e., Mean = 0 and SD = 1). The intraclass 
correlation coefficients (ICCs) of five-time points ranged from 0.15 to 
0.19, showing that cluster-level should not be ignored in this MLGM 
study (Hox et al., 2010). In the between-level model, the parameter 
settings for the mean structure and covariance structure are presented 
in matrices αB and ΦB, and mean structure and covariance structure 
in within model are presented in matrices αW and ΦW.

 

αB =
−

















49 96

4 32

0 13

.

.

. .

 

αW =
















0
0
0

 

ΦB =
















16 2 2 82 0

2 82 0 61 0

0 0 0 02

. .
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.
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Φw =
















71 45 6 76 0

6 76 14 76 0

0 0 0 070

. .

. .

.

According to Wu and West (2010) in the SEM framework, the 
general population quadratic model for the population does not 
consider the covariance between the intercept and slope and 
covariance between linear and slope. In this way, we  set the 
nondiagonal values in the matrix at both between-level and within-
level be zero for simplicity.

The error variances for five-time points of between level model are 
set to 11.91, 15.25, 10.32, 12.59, and 1.93 and are uncorrelated over 
time. The error variances for five-time points of within level model are 
set to 1.80, 1.28, 0.06, 0.54, and 0.31, and these scores are also 
uncorrelated over time (Kwon, 2011).

The estimation of all the population models was carried out in Mplus 
7.11 (Muthén and Muthén, 2017), using maximum likelihood estimation 
with robust standard errors (ESTIMATOR = MLR). The maximum 
number of iterations were set to 100 (ITERATIONS = 100) with 95 
convergence criterion set to 0.000001 (CONVERGENCE = 0.000001). 
MLR are robust to non-normality and non-independence of observations 
when used with TYPE = COMPLEX (Muthén and Muthén, 2017). Our 
simulated datasets contain small sample sizes, which were non-normal 
samples. The students of simulated datasets are nested within each 
cluster, meaning the datasets are non-independence. MLR was the 
appropriate estimator for Mplus (Pornprasertmanit et al., 2013).

Design conditions: NG and unbalanced GS

NG conditions were based on Wu et al. (2015) studies, and set at 
50, 100, and 200. To maximize the effect of imbalance, the group sizes 
were chosen to be as different as possible. The highest number 200 
conforms to Boomsma’s (1983) recommended lower limit for 
achieving good maximum likelihood estimates with normal data. The 
lower values 50 and 100 have been chosen because, in empirical 
multilevel modeling, it is hard to collect data from as many as 200 
groups (Hox and Maas, 2001).

As with Hox and Maas (2001) simulation study and the regression 
rule of thumb for multilevel research, each predictor requires at least 
10 observations (Bryk and Raudenbush, 1992). The averages of 
unbalanced CS conditions are manipulated into three levels, 10, 20, 
and 50. Unbalanced data were simulated as follows (Grilli and 
Rampichini, 2011). In each level, we employ two distinct group sizes, 
with exactly half the groups being small and the other half being large. 
I assigned small to half of the groups and large to the other half. The 
two numbers (large and small) were computed under the restriction 

that the coefficient of variation 
1

n
∗ ( )Var nj  is approximately 0.5 

(Grilli and Rampichini, 2011). The coefficient of variation indicates 
the degree of imbalance of the design, and 0.5 is a moderate degree of 
imbalance. We choose a moderate imbalance as our GS is relative 
small, and we do not want extremely small unbalanced influence the 
evaluation outcomes. The large group size is three times as large as the 
small group size. For unbalanced GS average is 10, small size is 5, and 
large sample size is 15; For unbalanced GS average is 20, small size is 
10, and large sample size is 30; For unbalanced GS average is 50, small 

size is 25, and large sample size is 75. These three levels of CS range 
are also consistent with two large-scale national educational databases: 
the Early Childhood Longitudinal Study (Tourangeau et al., 2009) and 
the Early Childhood Longitudinal Study (Tourangeau et al., 2015).

In this way, we have 9 total simulation conditions. Based on the 
recommendation that 1,000–5,000 replication is required to produce 
a stable result in Monte Carlo studies (Mundform et al., 2011), 1,000 
complete datasets based on population model were generated for each 
simulation condition. SAS 9.4 was used to simulate the datasets.

Data analysis and outcomes

First we  examined the descriptive information for model fit 
indices under different design factors. We also generated box plots to 
show the distribution of model fit indices under design factors. The 
second part of the analysis evaluated the sensitivity of both level-
specific and target-specific model fit indices to different design factors. 
ANOVA with an individual model fit index’s values as the dependent 
variables were conducted to evaluate influence of design factors. For 
ANOVA, we calculated the effect size, eta-squared (η2), by dividing 
the Type III sum-of-square attributable to each design factor or the 
interaction between factors by the corrected total sum-of-square. η2 
describes the proportion of the variability accounted for a particular 
design factor or interaction effect term. In this study, each simulation 
condition has the same number of simulated datasets, resulting in 
orthogonal design factors. In this way, the Type III sum-of-squares 
from different factors were additive and non-overlapping, meaning 
the η2 of each design factor could be calculated separately without 
considering other factors. Following Cohen (1988) study, 
we  considered a moderate η2 of 0.0588 to identify practically 
significant design factors for the fit indices’ values. Note that when a 
fit index had a standard deviation close to 0, the impact of design 
factors on the fit index were trivial, even though the η2 s were larger 
than 0.0588. As for our analysis, when fit indices have extremely low 
variability, we regarded design factors do not affect the fit indices.

Calculate level-specific and target-specific 
fit indices

χ2 is commonly used because it is easier to compute than other 
model fit indices. It can also be used with categorical data and to check 
the if there is a “difference” between different groups of participants. 
Deviations from normality and small sample may result in poor χ2 
value even though the model is appropriately specified (Goos et al., 
2013). For well-fitted models, cut off values of SRMR are supposed to 
be  less than 0.05, and values as high as 0.08 are sometimes also 
deemed acceptable (Bentler and Dudgeon, 1996; Chou et al., 1998). 
However, when there are many parameters in the model and large 
sample sizes, SRMR also gives acceptable values even though the 
hypothesized model does not fit the dataset (Boulton, 2011). Unlike 
χ2 and SRMR, RMSEA is not affected by the sample size, which means 
that RMSEA can still evaluate the model with small sample sizes 
(Clarke et al., 2008). Even though TLI is not affected significantly by 
the sample size, the TLI value can show poor fit when other fit indices 
are pointing toward good fit in models where small samples are used 
(Bentler, 1990; Boulton, 2011).CFI is relatively independent of sample 
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size and yields better results for studies with a small sample size (Chen 
et al., 2012).

χ2
PS_B can be  obtained by specifying a hypothesized between 

model and saturating the within model (Hox et al., 2010). A saturated 
model can be seen as a just-identified model with zero degrees of 
freedom, and thus has a χ2 test statistic equal to zero. As a result, χ2

PS_B 
only reflect the model fit of the hypothesized between model (Hox 
et al., 2010). After χ2

PS_B is obtained, between-level specific fit indices: 
RMSEAPS_B, CFIPS_B, TLIPS_B, SRMRB can be computed, because these 
fit indices are calculated based on χ2PS_B. In the same way, within-level 
specific fit indices (χ2

PS_W, RMSEAPS_W, CFIPS_W, TLIPS_W, SRMRW) can 
be also be computed. Target-specific fit indices for the mean structure 
only (χ2

T_S_MEAN, RMSEAT_S_Mean, CFIT_S_Mean, TLIT_S_ Mean, and SRMRT_S_

Mean) can be  derived by saturating the covariance structure of the 
between level of MLGM, whereas target-specific fit indices for the 
covariance structure only (χ2

T_S_COV, RMSEAT_S_COV, CFIT_S_COV, TLIT_S_

COV, and SRMRT_S_COV) can be derived by saturating the mean structure 
of the between level of MLGM.

Results

Under the various design conditions, the convergence rates over 
the 1,000 replications were 100% across all cells in the design. Thus, 
even under the smallest sample size [number of groups (NG) = 50, 
with an unbalanced group size (GS) = 5], the analysis was unlikely to 
encounter convergence problems. Results were summarized across all 
replications. Traditional cutoff criteria of the fit indices used with 
typical SEM studies (e.g., RMSEA <0.06; CFI and TLI >0.95; SRMR 
<0.08; Hu and Bentler, 1999) were examined with simulated model to 
determine if these recommended levels were able to accurately 
identify correct models across different number of groups and 
unbalanced group sizes. Table 1 summarizes the means and standard 
deviations of all fit indices.

Descriptive statistics in Table 1 showed that when NG increased 
from 50 to 200 and unbalanced GS increased from 5/15 to 25/75, 
χ2

PS_B and χ2
PS_W mean values and standard deviation values 

decreased. Both indices showed that the average estimated χ2
PS_B and 

χ2
PS_W approached the expected value (i.e., 4 degrees of freedom) 

when NG = 50 and unbalanced GS = 25/75. A total sample size over 
1,250 was necessary for χ2PS_w and χ2

PS_B to appropriately identify 
correct between-level and within-level models. For the χ2

T_S_COV and 
χ2

T_S_MEAN, the descriptive values mean of χ2
T_S_COV and χ2

T_S_MEAN did 
not approach acceptable model fit when total sample size increased. 
All means of RMSEAPS_B and RMSEAPS_W approached acceptable 
model fit (i.e., <0.06) and standard deviation values decreased as 
sample size increased. Also, all RMSEAT_S_COV mean values did not 
approach levels indicative of acceptable model under the tested 
sample sizes. For the RMSEAT_S_MEAN, values yielded an acceptable 
model, except under the smallest sample size condition (NG = 50, 
unbalanced GS = 5/15). The standard deviation of RMSEAT_S_COV and 
RMSEAT_S_MEAN decreased as sample sizes increased. Means of 
CFI-and TLI-related fit indices were indicative of good model fit 
(i.e., >0.95) under almost all simulation conditions. There was only 
one mean value, TLIT_S_COV, that yielded a value under the stated 
cutoff (NG of 50, unbalanced GS of 5/15). All means of SRMRB, 
SRMRw, and SRMRT_S_MEAN produced values indicating acceptable 

model fit (i.e., <0.08); however, means of SRMRT_S_COV were larger, 
approaching the cutoff of poor model fit under all simulation 
conditions. The standard deviations values of SRMRB and SRMRw 
were close to a value 0 and standard deviation of SRMRT_S_COV and 
SRMRT_S_MEAN were also small.

ANOVA review of conditions

To determine factors that affected model fit indices, a three-way 
ANOVA with 3 (NG: 50, 100, and 200) x 3 (unbalanced GS: 5/15, 
10/30, and 25/75) levels was conducted, with each fit index as the 
outcome variable. The η2 for each design factor is presented in 
Table 2. We provide a visual representation of the influential design 
factors on the fit indices’ values with boxplots in Figures  2, 3, 
respectively.

Based on η2 values in Table 2, only three indices: RMSEAPS_B, were 
impacted by NG, with η2 values of 0.06, 0.13, and 0.26, respectively. 
Further, the boxplots in Figure  2 showed that the RMSEAPS_B 
computed under all simulation conditions were large at lower sample 
sizes. As the NG increased, the median RMSEAPS_B decreased with 
values of 0.12, 0.04, to 0.001 associated with NG levels of 50, 100, and 
200, respectively. The interquartile ranges also became smaller, 
indicating the values of RMSEAPS_B were less dispersed.

SRMRB and SRMRW also demonstrated large variability under the 
simulation conditions (shown in Figure 3). As the NG varied from 50, 
100, to 200, the median SRMRB decreased from 0.007, to 0.005, to 
0.0035 and the median SRMRW decreased from 0.0025, to 0.0018, to 
0.001. The interquartile ranges of all SRMRB and SRMRW also 
became smaller.

In Table 2, η2 indicated that RMSEAPS_B, RMSEAPS_W, RMSEAT_S_

COV, SRMRB and SRMRW were impacted by unbalanced GS (η2 = 0.07, 
0.06, 0.06, 0.14 and 0.22). As the unbalanced GS varied from 5/15, 
10/30, to 25/75, the median RMSEAPS_B would show poor fit at the 
smallest level (0.08) but not at later levels (0.04, 0.001 for 10/30 and 
25/75, respectively). As the unbalanced GS increased, the median 
RMSEAPS_W decreased with values of 0.08, 0.01, to 0.001 and the 
median RMSEAT_S_COV decreased with values of 0.12, 0.09, to 0.064 
with unbalanced GS levels of 5/15, 10/30, and 25/75, respectively. Box 
plots are presented in Figure  4. The interquartile ranges of all 
RMSEAPS_B, RMSEAPS_W, and RMSEAT_S_COV also smaller, indicating 
the values of RMSEAPS_B, RMSEAPS_W, and RMSEAT_S_COV were less 
dispersed. Both the η2 and boxplots showed that RMSEAPS_B, 
RMSEAPS_W, and RMSEAT_S_COV were affected by factor unbalanced GS 
and may indicate values indicating poor model fit for a correctly 
specified model fit.

Figure 4 demonstrated the variabilities of SRMRB and SRMRW 
computed under all simulation conditions were large. As the 
unbalanced GS increased, the median SRMRB decreased (with values 
of 0.007, 0.005, to 0.0032) as did the median SRMRW decreased 
(values of 0.0024, 0.0018, to 0.001) for unbalanced GS levels of 5/15, 
10/30, to 25/75, respectively. The interquartile ranges of all SRMRB and 
SRMRW also became smaller, indicating the values of SRMRB and 
SRMRW were less dispersed. Both the η2 and boxplots showed SRMRB 
and SRMRW were affected by factor unbalanced GS. With increase of 
the unbalanced GS, SRMRB and SRMRW showed lower model fit 
values (Figure 5).
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TABLE 1 Descriptive statistics of model fit indices by NG and unbalanced GS for the accelerating growth trajectory.

Fit index NG 50 50 50 100 100 100 200 200 200

GS 5/15 10/30 25/75 5/15 10/30 25/75 5/15 10/30 25/75

χ2test statistics

χ2PS_B Mean 29.38 14.76 5.13 11.08 5.16 4.37 5.30 4.31 4.01

SD 240.63 68.62 8.89 46.92 4.42 3.14 4.85 3.01 2.83

χ2PS_W Mean 14.16 16.31 4.31 14.40 4.62 4.03 4.92 4.17 3.96

SD 32.34 164.39 3.34 93.74 3.77 2.91 3.94 3.03 3.01

χ2T_S_COV Mean 137.53 100.67 73.21 87.20 102.43 131.03 121.63 179.80 249.44

SD 729.46 532.83 23.19 58.96 38.77 28.76 39.91 36.79 39.47

χ2T_S_Mean Mean 80.33 26.39 23.57 22.75 25.71 35.74 27.49 40.92 62.85

SD 828.27 62.94 9.691 19.68 11.06 10.92 12.00 12.18 14.44

RMSEA-related fit indices

RMSEAPS_B Mean 0.054 0.027 0.008 0.027 0.010 0.005 0.010 0.005 0.003

SD 0.100 0.046 0.012 0.035 0.012 0.007 0.013 0.007 0.004

RMSEAPS_W Mean 0.045 0.024 0.007 0.027 0.008 0.004 0.009 0.005 0.003

SD 0.058 0.052 0.009 0.045 0.011 0.006 0.012 0.007 0.004

RMSEAT_S_COV Mean 0.144 0.098 0.061 0.102 0.081 0.059 0.089 0.078 0.059

SD 0.128 0.061 0.010 0.032 0.014 0.007 0.015 0.008 0.005

RMSEAT_S_Mean Mean 0.074 0.044 0.029 0.042 0.035 0.028 0.037 0.034 0.028

SD 0.124 0.029 0.009 0.022 0.011 0.005 0.011 0.006 0.004

CFI-related fit indices

CFIPS_B Mean 0.995 0.999 1.000 0.999 1.000 1.000 1.000 1.000 1.000

SD 0.035 0.008 0.000 0.005 0.000 0.000 0.000 0.000 0.000

CFIPS_W Mean 0.998 0.999 1.000 0.999 1.000 1.000 1.000 1.000 1.000

SD 0.007 0.016 0.000 0.010 0.000 0.000 0.000 0.000 0.000

CFIT_S_COV Mean 0.977 0.990 0.996 0.990 0.994 0.997 0.993 0.994 0.997

SD 0.061 0.033 0.001 0.006 0.002 0.001 0.002 0.001 0.001

CFIT_S_Mean Mean 0.991 0.998 0.999 0.998 0.999 0.999 0.999 0.999 0.999

SD 0.061 0.008 0.000 0.002 0.001 0.000 0.001 0.000 0.000

TLI-related fit indices

TLIPS_B Mean 0.972 0.994 1.000 0.996 1.000 1.000 1.000 1.000 1.000

SD 0.254 0.042 0.002 0.027 0.001 0.000 0.002 0.001 0.000

TLIPS_W Mean 0.989 0.994 1.000 0.994 1.000 1.000 1.000 1.000 1.000

SD 0.035 0.079 0.001 0.051 0.001 0.000 0.001 0.001 0.000

TLIT_S_COV Mean 0.924 0.970 0.990 0.973 0.982 0.990 0.979 0.983 0.990

SD 0.403 0.147 0.003 0.018 0.006 0.002 0.007 0.003 0.002

TLIT_S_ Mean Mean 0.959 0.994 0.997 0.995 0.996 0.998 0.996 0.997 0.998

SD 0.460 0.022 0.001 0.006 0.002 0.001 0.002 0.001 0.001

SRMR-related fit indices

SRMRB Mean 0.012 0.008 0.005 0.008 0.005 0.004 0.005 0.003 0.002

SD 0.009 0.005 0.003 0.005 0.003 0.002 0.003 0.002 0.001

SRMRW Mean 0.004 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.001

SD 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000

SRMRT_S_COV Mean 0.172 0.183 0.193 0.170 0.184 0.193 0.168 0.183 0.193

SD 0.042 0.027 0.019 0.029 0.019 0.013 0.021 0.012 0.009

SRMRT_S_Mean Mean 0.067 0.070 0.072 0.066 0.070 0.071 0.068 0.072 0.072

SD 0.035 0.030 0.021 0.028 0.021 0.015 0.021 0.014 0.011

RMSEA, root mean square error of approximation. CFI, comparative fit index. TLI, Tucker–Lewis index. SRMR, standardized root mean square residual. Subscripted PS, partially saturated 
model method. Subscripted TS, target-specific fit indices. Subscripted B, between-level model. Subscripted W, within-level model. Subscripted COV, fit index for evaluating between-
covariance structure. Subscripted MEAN, fit index for evaluating between-mean structure.
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Discussion

In practice, given that researchers are not aware if the model is 
correctly specified, researchers are recommended to use χ2

PS_B and 
χ2

PS_W when the sample size is large enough (NG > 100 and unbalanced 
GS > 10/30). Based on our findings, researchers need to be aware that 
using χ2

T_S_COV and χ2
T_S_MEAN will cause the over-rejection of correctly 

specified unbalanced MLGM. Based on these findings, χ2
T_S_COV and 

χ2
T_S_MEAN are not recommended to evaluate unbalanced MLGM. These 

findings are different from balanced MLGM study, where Hsu et al. 
(2019) showed that all χ2 test statistics, χ2

PS_B, χ2
PS_W, χ2

T_S_COV, and 
χ2

T_S_MEAN, can detect the misspecified balanced MLGM when NG is 
larger than 200 and GS is larger than 20. RMSEAPS_B and RMSEAPS_W 
are recommended to researchers to evaluate unbalanced MLGM with 
similar conditions used in the study. Based on our outcomes, 
RMSEAT_S_COV is not recommended to evaluate unbalanced 
MLGM. Researchers are recommended to use RMSEAT_S_MEAN when 
the sample size is large enough (NG > 50 and unbalanced GS > 5/15). 

Except TLIT_S_COV, all the other CFI-related fit indices and TLI-related 
fit indices are recommended to evaluate unbalanced 
MLGM. Researchers are recommended to use TLIT_S_COV when the 
sample size is large enough (NG > 50 and unbalanced GS > 5/15). 
SRMRB, SRMRw, and SRMRT_S_MEAN are recommended to evaluate 

FIGURE 2

Box plot of RMSEAPS_B values correctly specified MLGM models by 
NG (50, derived from 100, and 200).

FIGURE 3

Box plot of SRMRB and SRMRW values derived from correctly 
specified MLGM models by NG (50, 100, and 200).

TABLE 2 η2 values from ANOVA design by fit index.

Dependent 
variables

Number of 
group (NG)

Unbalanced 
group size (GS)

χ2test statistics

χ2PS_B 0.00 0.00

χ2PS_W 0.00 0.00

χ2T_S_COV 0.00 0.00

χ2T_S_Mean 0.00 0.00

RMSEA-related fit indices

RMSEAPS_B 0.06 0.07

RMSEAPS_W 0.05 0.06

RMSEAT_S_COV 0.02 0.06

RMSEAT_S_Mean 0.03 0.06

CFI-related fit indices

CFIPS_B 0.00 0.00

CFIPS_W 0.00 0.00

CFIT_S_COV 0.02 0.02

CFIT_S_Mean 0.00 0.01

TLI-related fit indices

TLIPS_B 0.00 0.00

TLIPS_W 0.00 0.00

TLIT_S_COV 0.00 0.00

TLIT_S_ Mean 0.00 0.00

SRMR-related fit indices

SRMRB 0.13 0.14

SRMRW 0.16 0.22

SRMRT_S_COV 0.00 0.02

SRMRT_S_Mean 0.00 0.01

RMSEA, root mean square error of approximation. CFI, comparative fit index. TLI, Tucker–
Lewis index. SRMR, standardized root mean square residual. Subscripted PS, partially 
saturated model method. Subscripted TS, target-specific fit indices. Subscripted B, between-
level model. Subscripted W, within-level model. Subscripted COV, fit index for evaluating 
between-covariance structure. Subscripted MEAN, fit index for evaluating between-mean 
structure. Highlighted (gray shaded cells) η2 ≥ 0.0.
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unbalanced MLGM. The means of SRMRT_S_COV had approached 
values did not approach the values indicative of good model fit (i.e., 
<0.08) under all simulation conditions.

Our results differed from previous level-specific and target-
specific fit indices study conducted under balanced MLGM. Hsu et al. 
(2019) balanced MLGM study concluded that RMSEAPS_B, 
RMSEAPS_W, RMSEAT_S_COV, CFIT_S_COV, TLIT_S_COV, RMSEAT_S_Mean, and 
TLIT_S_ Mean were significantly influenced by NG and should not 
be  used. Hsu et  al. (2019) also concluded that CFIPS_B, TLIPS_B, 
RMSEAPS_W, CFIT_S_COV, TLIT_S_COV, RMSEAT_S_Mean, CFIT_S_Mean, and 
TLIT_S_ Mean were influenced by different GSs. A plausible explanation 
for the differences could be due to the unbalanced GS. Our study 
simulated three unbalanced GS, 5/15, 10/30, and 25/75. The balanced 
GS used in Hsu et al. (2019)’s design are: 5, 10, and 20. Hox and Maas 
(2001) investigated the performance of a MCFA (multilevel 
confirmatory factor model) on unbalanced data. The results indicated 
that unbalanced data had impact on the accuracy of model estimation 
of the between level model. As unbalanced MLGM have different 
between-level and within-level at each time point, the unbalanced 
data have an large influence on the model estimation of both levels.

Based on the results, we recommend researchers to collect at least 
50 for NG, regardless of the GS and if the MLGM design is unbalanced 
or balanced. When the NG is small, the amount of the sampling errors 
presents with the between-level related specific model fit indices will 
increase due to that small samples might commit a Type II error for 
χ2

PS_B. The large sampling error causes some between-level or target-
specific fit indices for the between-covariance or between-mean 
structure to fail to identify a correctly specified between-level model. 
In this way, between-level related specific model fit indices, χ2

PS_B, 

FIGURE 4

Box plot of RMSEAPS_B, RMSEAPS_W, and RMSEAT_S_COV values derived from correctly specified MLGM Models by unbalanced GS (5/15, 10/30, and 
25/75).

FIGURE 5

Box plot of SRMRB and SRMRW values derived from correctly 
specified MLGM models by unbalanced GS (5/15, 10/30, and 25/75).
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CFIPS_B, TLIPS_B, RMSEAPS_B, and SRMRB, require NG at least to 
be large enough (e.g., NG > 50) to be able to identify correctly specific 
MLGM with unbalanced design. However, if the NG cannot be at least 
50 NG, RMSEAPS_B, SRMRB and SRMRW are not recommended. 
Based on our results, χ2

PS_B and χ2
PS_W are not recommended with 

unbalanced MLGM designs when researchers have a NG smaller than 
50. If researchers have moderate NG (around 100 cases), 
we recommend researchers to collect a GS larger than 5/15.

The combination of NG and unbalanced GS determine the total 
sample size in MLGMs and may also influence the performance level-
specific and target-specific model fit indices. Pervious research illustrated 
that total sample size highly influenced the values of fit indices because 
of the issue of total sample size discrepancy, that is, the difference 
between a sample covariance matrix and the covariance matrix of the 
population (Marsh et al., 2014; Wu et al., 2009; Wu and West, 2010). 
When the total sample size is small, the discrepancy between the sample 

covariance matrix and the population covariance matrix will increase, 
and the discrepancy between a sample covariance matrix and covariance 
matrix reproduced by a correctly specified model will also increase. The 
large discrepancy will cause the fit indices to indicate poor fit for a 
correctly specified model. In contrast to the between-model evaluation, 
both NG and unbalanced GS jointly determine the sample size of the 
within-level model and influence the performance of within-level 
specific model fit indices. As for the effect of unbalanced GS, χ2

PS_W failed 
to identify correctly specified within-level model when the unbalanced 
GS was small (e.g., unbalanced GS < 10/30). When the unbalanced GS is 
small, the amount of the sampling errors calculated in within-level 
specific model fit indices increases. Based on the findings from our 
analysis and from previous research, we highly recommend applied 
researchers to collect average GS of 20 and consider NG when evaluating 
within-level related specific model fit indices, regardless of if the MLGM 
design is unbalanced or balanced.

Recommended fit indices for each data type

Fit indices Sample size large 
enough

All condition for 
unbalanced MLGM

Not recommend for 
unbalanced MLGM

Level-specific fit 

indices

χ2
PS_B √ (NG > 100 and 

unbalanced GS > 10/30)

χ2
PS_W √ (NG > 100 and 

unbalanced GS > 10/30)

RMSEAPS_B √

RMSEAPS_W √

CFIPS_B √

CFIPS_W √

TLIPS_B √

TLIPS_W √

SRMRB √

SRMRW √

Target-specific fit 

indices

χ2
T_S_COV √

χ2
T_S_Mean √

RMSEAT_S_COV √

RMSEAT_S_Mean √ (NG > 50 and unbalanced 

GS > 5/15)

CFIT_S_COV √

CFIT_S_Mean √

TLIT_S_COV √ (NG > 50 and unbalanced 

GS > 5/15)

TLIT_S_ Mean √

SRMRT_S_COV √

SRMRT_S_Mean √
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Limitations and future research 
direction

In the study, we set the coefficient of variation constant throughout 
different group sizes, meaning that conclusions are limited to only one 
degree of imbalance. Future study need to vary the degree of imbalance 
to check the influence of imbalance on the evaluation of model fit 
indices. Misspecifications for the between and within models were not 
modeled. As there is not yet literature informing researchers about the 
performance of different level-specific and target-specific model fit 
indices in unbalanced MLGM, a correctly specified MLGM was 
simulated to fill this gap as a first step. As misspecifications in MLGM are 
possible, this aspect deserves systematic investigation in future 
simulation studies. By investigating different misspecifications, we can 
study the indices’ sensitivity, which measures the extent to which specific 
fit indices could reflect the discrepancy between correctly specified 
models and misspecified hypothesized models. We expected desirable fit 
indices to demonstrate reasonable sensitivity to minor misspecifications 
and to be  able to detect moderate misspecifications at both levels. 
Besides, in our study, we considered a few numbers of design factors. 
Other design factors, such as a different number of time points and 
trajectories, can be manipulated in future studies.
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