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Introduction: This study analyzes the existing academic literature to identify 
the effects of artificial intelligence (AI) on human resource (HR) activities, 
highlighting both opportunities and associated challenges, and on the roles of 
employees, line managers, and HR professionals, collectively referred to as the 
HR triad.

Methods: We employed the scoping review method to capture and synthesize 
relevant academic literature in the AI–human resource management (HRM) 
field, examining 27  years of research (43 peer-reviewed articles are included).

Results: Based on the results, we propose an integrative framework that outlines 
the five primary effects of AI on HR activities: task automation, optimized HR 
data use, augmentation of human capabilities, work context redesign, and 
transformation of the social and relational aspects of work. We also detail the 
opportunities and challenges associated with each of these effects and the 
changes in the roles of the HR triad.

Discussion: This research contributes to the ongoing debate on AI-augmented 
HRM by discussing the theoretical contributions and managerial implications 
of our findings, along with avenues for future research. By considering the 
most recent studies on the topic, this scoping review sheds light on the effects 
of AI on the roles of the HR triad, enabling these key stakeholders to better 
prepare for this technological change. The findings can inform future academic 
research, organizations using or considering the application of AI in HRM, and 
policymakers. This is particularly timely, given the growing adoption of AI in 
HRM activities.
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1 Introduction

The emerging ecosystem of work is changing and becoming more 
complex, varied, and adaptive than the traditional work environment. 
The workplace is transformed by emerging technologies that give rise 
to new ways of working. One of the most disruptive technologies of 
the 21st century is artificial intelligence (AI) (Wamba et al., 2021). AI 
is defined as “a system that can reason and learn to imitate human 
intelligence, particularly in repetitive, rule-based tasks, with greater 
precision, speed and cost savings” (Kondapaka et al., 2023, p. 283). 
Duan et  al. (2019, p.  63) would add that “there is no commonly 
accepted definition of AI. It is normally referred to as the ability of a 
machine to learn from experience, adjust to new inputs and perform 
human-like tasks.” Indeed, there is a diversity of AI techniques such 
as, for example, machine learning (ML), deep learning (DL), or more 
recently popularized, generative AI (Zhuhadar and Lytras, 2023). 
First, ML encompasses all approaches that enable machines to learn 
from data without being programmed by humans to do so (Jakhar and 
Kaur, 2020). Second, DL is a more complex form which “involves 
deducing high-level abstract information from a vast dataset through 
machine learning” (Delbecq and Devillard, 2019, p.  13). More 
specifically, the algorithms mimic the architecture of the biological 
neural networks of the human brain (Jakhar and Kaur, 2020). Third, 
generative AI has gained popularity since the official release of 
ChatGPT in November 2022 (Budhwar et al., 2023). It is also a subfield 
of AI that “focuses on generating content or solutions from a model 
learned from data” (Marchenoir, 2023, p. 36). The aim is to enable 
machines to produce original and creative content, often by mimicking 
existing patterns and styles but going beyond prediction as done by 
search engines like Google (Budhwar et al., 2023). This new content 
created by generative AI can include text, audio, video, images, 
software code, and simulations (Budhwar et al., 2023). However, care 
must be  also taken not to confuse simple automation and 
AI. Automation has been around for centuries and means that 
machines are replicating human tasks, but AI requires that the 
machines also replicate human thinking. In fact, automation can 
incorporate AI, but not necessarily (Mateu and Pluchart, 2019).

In recent years, AI has attracted increasing attention from both 
practitioners and researchers (Quan and Sanderson, 2018; Haenlein 
et al., 2019; Davenport et al., 2020; Rampersad, 2020; Robinson et al., 
2020), and has become one of the most prominent research topics in 
business (Zhang et al., 2020). Today, AI is used and actively studied in 
many fields such as Health (e.g., Khalighi et  al., 2024), Emotional 
recognition (e.g., Gursesli et al., 2024), and Education (e.g., Rahiman and 
Kodikal, 2024). But what do we know about the associated changes in 
the HR field? Human resource management (HRM) is one of the 
management fields that can be significantly impacted by revolutionary 
techniques such as AI, identified as a megatrend in this discipline 
(Harney and Collings, 2021). Indeed, despite the rapid growth of interest 
in the AI–HRM field, the academic literature related to this topic remains 
incomplete. In fact, the latest studies (published after 2021) have not 
been considered in recent reviews (Qamar et al., 2021; Budhwar et al., 
2022; Gélinas et al., 2022; Vrontis et al., 2022; Basu et al., 2023; Pereira 
et al., 2023), and the effects of AI on the roles of the HR triad remain 
unknown, leaving more questions than answers (Minbaeva, 2021; Grote 
et al., 2023). The specific roles and shared responsibilities of each of these 
key actors remain unidentified, preventing them from being prepared 
for this technological change. For instance, HR professionals are unable 

to know exactly what is being disrupted by AI or how to successfully use 
this technology in their activities (Minbaeva, 2021).

Therefore, we raise the following question: What do we know 
about the effects of AI on HR activities and the roles of the HR triad? 
To answer this question, a scoping review of the current AI–HRM 
literature proves beneficial, as it offers a unique synthesis and original 
insights for future research (Kunisch et al., 2018; Klein and Potosky, 
2019), suggesting necessary future developments (Dwertmann and 
van Knippenberg, 2020). Additionally, a scoping review is timely, 
considering that AI has reached development levels that potentially 
make it a valuable partner for HR (Zhang et al., 2020). Indeed, recent 
advancements in supercomputing power and big data technologies 
seem to have enhanced AI capabilities (Duan et al., 2019).

This study aims to examine the impact of AI on HR activities 
(both in terms of opportunities and challenges) and on the roles of 
each actor of the HR Triad. To this end, we grounded our work on the 
HR activities identified by Jackson et al. (2018), which include: (1) 
workforce planning; (2) job analysis and competency modeling; (3) 
recruitment and selection; (4) talent retention; (5) training and 
development; (6) performance management; (7) compensation; and 
(8) workplace safety, health, and wellbeing. Jackson et al. (2018, p. 19) 
argued that ensuring the positive, rather than destructive, effects of 
such HR practices necessitate the involvement of the three key players 
of the HR triad, “which consists of HR professionals, line managers, 
and all the other employees who are affected by HR policies and 
practices.” Therefore, our analysis focuses on the roles of these three 
groups particularly impacted by AI.

In doing so, this present study makes four major contributions to 
the field of organizational psychology and HRM. First, a core 
contribution of our review is mapping the developments covered in 
the AI–HRM literature in an integrative way, allowing for the 
identification of what has been studied as well as the gaps present in 
the scientific literature. By synthesizing and organizing existing 
research, this study provides a comprehensive overview of the current 
state of knowledge in this domain and what remains to be  done. 
Second, this study contributes to a better understanding of the positive 
(opportunities) and negative (challenges) effects of AI on HR 
activities, which are often treated separately in the literature and are 
frequently juxtaposed between optimistic and pessimistic viewpoints. 
By examining these effects holistically, this study provides a nuanced 
understanding of the complex relationship between AI and HRM, 
offering insights into both the potential benefits and risks associated 
with the implementation of AI technologies in HR activities. Finally, 
this study contributes to the literature by identifying the effects on the 
roles of each stakeholder within the HR triad (employees, managers, 
and HR professionals). By delineating the specific impacts of AI on 
each group, this study provides valuable guidance for practitioners 
and organizations seeking to navigate the changing landscape of HRM 
in the era of AI. Additionally, by highlighting the roles and 
responsibilities of different stakeholders, this study empowers 
individuals within the HR triad to proactively adapt to technological 
advancements and leverage AI tools effectively in their respective roles.

2 Review methodology

We conducted a scoping review of the AI–HRM literature to 
uncover the contributions of this emerging subfield, which has 
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emerged in response to the significant need for organizations to adopt 
AI. A scoping review is a “review that seeks to explore and define 
conceptual and logistic boundaries around a particular topic with a 
view to informing a future predetermined systematic review or 
primary research” (Sutton et al., 2019, p. 211). In other words, this type 
of review provides an initial indication of the potential size of the 
literature available on a particular topic (Paré et al., 2015). The main 
distinction from the systematic review methodology is that “scoping 
reviews do not aim to produce a critically appraised and synthesized 
result/answer to a particular question, and rather aim to provide an 
overview or map of the evidence” (Munn et  al., 2018, p.  3). This 
approach is particularly useful for identifying and analyzing knowledge 
gaps in bodies of literature that have not yet undergone comprehensive 
reviews (Munn et al., 2018), typically to inform future research or 
policy. We  conducted the systematic scoping review in line with 
existing guidelines (Arksey and O’Malley, 2005; Peters et al., 2015).

The present review of the AI–HRM literature seeks to answer the 
following research questions: How is AI affecting, (RQ1) HR activities 
(in terms of opportunities and associated challenges) and (RQ2) the 
roles of the HR triad?

2.1 Search strategy, article screening, and 
selection

To complement recent reviews, we  broadened our search to 
include academic studies published before January 10, 2023 (the date 
on which we performed the data extraction) without specifying a start 
date. Moreover, we limited our inclusion to articles published in peer-
reviewed journals to ensure a certain level of result quality (Clark and 
Wright, 2007). The research was restricted to four disciplines 
[management, HRM/industrial relations (IR), psychology, and 
information systems (IS)] that are likely to provide particularly 
relevant insights into the AI–HRM field through their complementary 
perspectives and their regular engagement with the HRM literature. 
Indeed, our intention was not only to identify conceptual gaps but also 
to venture into new fields that have emerged at the intersection of 
these disciplines.

The inclusion and exclusion criteria were determined to 
adequately address the initial research questions (Paré et al., 2015). For 
inclusion in the review, studies had to (1) focus on AI, (2) concern HR 
activities, (3) be  related to the fields of management, HRM/IR, 
psychology, or IS, (4) be published in a peer-reviewed journal, (5) 
be published before January 10, 2023, (6) be empirical studies, and (7) 
be written in English. The search string was formulated to capture all 
terms associated with two key search topics—AI (e.g., machine 
learning) and HR activities (e.g., recruitment) (see Table 1).

To carry out the scoping review, we conducted keyword searches 
on titles, abstracts, and full texts in the following research databases: 
ABI/Inform (ProQuest), Business Source Premier (EBSCO), PsycInfo 
(PsycNet), and Academic Search Premier (EBSCO). We  used 
Covidence to collect articles and to generate a flow diagram of the 
scoping review process (see Figure 1). Initially, 11,405 articles were 
retrieved from the databases for potential inclusion (1,970 duplicates 
were removed). A first round of selection was conducted after 
reviewing the titles and abstracts of 9,413 articles to remove those that 
did not meet the inclusion criteria. A second round of selection 
occurred after a full-text review of the remaining articles (n = 811), 

with 768 studies excluded for not meeting the inclusion criteria. Our 
final sample comprised 43 peer-reviewed articles published across 
38 journals.

2.2 Data extraction and analysis

The first author (JD) extracted pertinent information (e.g., article 
references, the first author’s country of origin, research method, and 
sample) from the final set of 43 studies using a standardized data 
extraction form (Supplementary Appendix). This process provided an 
overview of the selected studies. The content of the selected articles 
was thoroughly analyzed using Max QDA. A thematic analysis of 
these articles resulted in their classification into eight different HR 
activity categories according to their topics. The second author 
independently coded 20% of the articles (randomly selected) to verify 
the quality of the first author’s coding, following recommendations by 
several scholars (e.g., O’Connor and Joffe, 2020). The inter-judge 
agreement reached 95.7%, surpassing the 85 to 90% threshold 
recommended by the previous literature (Miles et  al., 2020). The 
authors discussed any remaining discrepancies to reach an agreement, 
allowing the first author to code the remaining articles consistently.

3 Results

3.1 Characteristics of the included studies

The articles included in this scoping review were published between 
1996 and 2022 (Figure 2). An exponential growth in the number of 
articles published on this topic is apparent from 2019 onward.

Among the empirical studies included, 26 are quantitative, 12 are 
qualitative, and five employ mixed-methods approaches (Figure 3).

TABLE 1 Search string used.

Search topic Search terms*

AI technologies

AI OR “Artificial Intelligence” OR “deep 

learning” OR “machine learning” OR 

“neural network”

HR activities

HR OR HRM OR “human capital” OR 

“human resource*” OR “human 

resource management” OR “talent 

management” OR recruitment OR 

hiring OR “skill* development” OR 

skill* OR career OR “performance 

appraisal” OR “performance 

management” OR reward OR 

compensation OR “health at work” OR 

“safety at work” OR “well-being” OR 

diversity OR “industrial relations” OR 

“labor relations” OR “HR balanced 

scorecard” OR “workforce analytic*” OR 

“HR analytic*” OR “job design” OR 

“work design” OR “HR planning” OR 

“workforce planning” OR “coaching”

*The asterisk indicates a wildcard character to ensure that associated terms are captured in 
searches (e.g., plural).
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According to the geographic origin of the first authors (Figure 4), 
the majority of studies were conducted in the USA (16.3%) and India 
(11.6%).

The second part of our results introduces the integrative 
framework of AI’s effects on HR activities and the roles of the HR triad 
(Figure  5). This structured framework proved instrumental in 
attaining our research objectives and guiding future research avenues.

3.2 (RQ1) The effects of AI on HR activities

Our scoping review identifies five principal effects of AI on HR 
activities: (1) AI automates specific tasks; (2) it can optimize the use 
of available HR data, maximizing their utility; (3) AI likely enhances 

human capabilities, enabling HR specialists to perform tasks beyond 
their standalone capacity; (4) AI is reshaping the labor context, both 
in terms of work form and content; and (5) the emergence of AI 
transforms the social and relational aspects of work, affecting 
interactions and worker experience. In the following paragraphs, 
we  will present in more detail the opportunities and challenges 
associated with these effects.

3.2.1 Opportunities

3.2.1.1 Task automation
Many opportunities associated with task automation have been 

identified in the reviewed literature. Among the positive impacts of 
AI-based technologies, the authors highlighted the replacement of 

FIGURE 1

Flow diagram of the scoping review process.
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repetitive tasks (Huang et al., 20191; Maity, 2019; Ruckenstein and 
Turunen, 2020). For instance, AI can instantly filter resumes and 

1 Included articles are identified by an asterisk.

rank the best candidates (Albert, 2019; Bongard, 2019; Chen, 2023). 
Benefits include reduced bias and human fatigue, improved 
diversity, lower costs, fewer errors, and the ability of HR 
professionals to concentrate on more strategic tasks (Albert, 2019; 
Altemeyer, 2019; Meduri and Yadav, 2021; Chen, 2023). One of the 
main advantages of AI in recruiting is the speed at which recruiters 

FIGURE 2

Evolution of the publications per year.

FIGURE 3

Country of origin (first author).
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can respond to candidates, significantly enhancing the candidate 
experience (Dickson and Nusair, 2010). AI can also automate the 
scheduling of calls, tests, interviews, or meetings (Albert, 2019). 
Additionally, AI’s role in training and development can eliminate 
tedious tasks, such as analyzing needs assessment surveys, 
scheduling training programs, or manually matching trainers and 
trainees (Maity, 2019).

3.2.1.2 Optimized use of HR data
The literature review also revealed that AI enables employees to 

perform tasks beyond their human capabilities, offering a 
technological advantage. Various authors have demonstrated that AI 
can predict the severity of occupational incidents (Kakhki et al., 2019), 
turnover intentions (Albert, 2019; Sajjadiani et al., 2019), and human 
performance (Sajjadiani et al., 2019), areas where HR professionals 

FIGURE 4

Methodology.

FIGURE 5

Integrative framework of the effects of AI on the HR activities and roles of the HR Triad.
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may struggle without technological assistance. AI tools can scan 
through multiple databases to search for candidates (e.g., LinkedIn, 
Glassdoor, etc.) much faster and more accurately than human 
recruiters (Albert, 2019). As a result, AI accelerates candidate searches, 
frees up recruiters’ time for more critical tasks, and improves both the 
quality and quantity of the talent pool (Albert, 2019; Kshetri, 2021). 
As a decision support tool, AI aids HR professionals in grounding 
their decisions on quantitative data rather than on qualitative personal 
judgments. During the selection process, AI can be employed in video 
interview analysis software to assess person–organization and person–
job fit (Albert, 2019; Suen et al., 2019). AI offers opportunities to 
reduce bias and discrimination and to improve candidate experience 
(Albert, 2019; Kshetri, 2021). Indeed, AI can significantly add value 
to businesses by optimizing the use of HR data (Meduri and 
Yadav, 2021).

3.2.1.3 Augmentation of human capabilities
Albert (2019) highlighted several AI applications in recruitment 

that enhance recruiters’ capabilities. First, the author presents a 
software that provides recommendations for optimizing job 
descriptions and tailors the language to different types of candidates 
(Albert, 2019). The benefits include improved diversity, reduced risk 
of direct discrimination, and increased candidate engagement 
(Albert, 2019). AI can also refine job postings by assisting recruiters 
in making accurate recommendations to relevant candidates 
(Albert, 2019).

3.2.1.4 Redesign of the work context
AI is becoming an increasingly significant characteristic of today’s 

work environment, impacting workers (Stamate et  al., 2021). In 
training and development, AI can transform the form and content of 
work, making training practices more intuitive and personalized and 
allowing them to be tailored to learners (Maity, 2019; Schermuly et al., 
2021). Although the introduction of AI in recruitment may cause 
anxiety, it does not significantly affect applicants (van Esch et  al., 
2019). Thus, organizations need not spend money to conceal their use 
of AI or to reduce anxiety levels among potential candidates (van Esch 
et  al., 2019). Instead, research suggests that organizations should 
promote the use of AI in their recruitment processes, which could lead 
to higher acceptance rates of job offers and more positive attitudes 
toward hiring organizations (van Esch et  al., 2019). Finally, 
AI-augmented HRM equips employees for higher value–added jobs 
(Sithambaram and Tajudeen, 2022).

3.2.1.5 Transformation of the social and relational aspects 
of work

Several reviewed articles indicate that AI is poised to create new 
forms of collaboration, such as highly efficient human–machine 
teams. Through interfaces that are yet to be  designed, computers 
might be considered “teammates” in these novel team configurations. 
Notably, humans could be tasked with explaining decision-making 
processes, aiding machines when they encounter obstacles (e.g., due 
to missing data), monitoring decisions made by machines, or even 
training machines (Prem, 2019; Ruckenstein and Turunen, 2020). For 
instance, AI can also strengthen the control employees have over 
machines (Rombão et al., 2020), as the technology remains notably 
less adept at performing tasks that require human intelligence. Huang 
et al. (2019) call this new form of human–machine collaboration “the 

Feeling Economy,” which relies on typically human soft skills, such as 
empathy and emotional intelligence. This evolving partnership is 
expected to be  beneficial; in fact, it could be  economically 
advantageous for humans to manage robots. Unlike humans, robots 
can operate around the clock without succumbing to psychological 
harm (Ruckenstein and Turunen, 2020). For example, chatbots can 
be  used in recruitment to engage candidates by providing quick 
responses to their queries at any time (Albert, 2019; Allal-Chérif et al., 
2021). AI-based chatbots also allow employees to share their opinions 
and concerns, leading to better engagement (Dutta et  al., 2022). 
Although AI can transform the relational aspect of the initial 
interview, AI-based interviewing is viewed as offering greater fairness, 
objectivity, and consistency compared to interviews conducted by 
humans (Kim and Heo, 2022). In training and development, AI 
represents an opportunity to democratize coaching in a cost-effective 
and scalable manner (Terblanche et al., 2022).

3.2.2 Challenges

3.2.2.1 Task automation
Paradoxically, while task automation offers many benefits, 

employees sometimes value certain repetitive tasks for the associated 
“brainless” time they provide, which can spur creativity (Einola and 
Khoreva, 2022). Consequently, finding the right balance in task 
automation presents a challenge. Additional challenges with task 
automation in recruiting include cost, privacy concerns, recruitment 
bias, and the potential for the replacement of recruiters (Chen, 2023). 
HR professionals, fearing job loss, may resist, partly due to their 
limited experience utilizing AI in their operations.

3.2.2.2 Optimized use of HR data
A primary challenge is that HR analytics has not evolved to the 

same extent as it has in marketing or finance (Lismont et al., 2017), 
which may limit the use of HR data in AI applications. Furthermore, 
employees might be reluctant to be monitored or to share personal 
information regarding their emotions or health due to privacy 
concerns (Mettler and Wulf, 2019). Persistent human distrust of AI, 
especially in sensitive areas, such as HRM, necessitates keeping a 
human in the decision-making loop (Bankins et  al., 2022). 
Paradoxically, as AI multiplies the options available, users may become 
overwhelmed by the perception of increased complexity (Lawler and 
Elliot, 1996). All of these challenges can lead to employee 
resistance to AI.

3.2.2.3 Augmentation of human capabilities
As employees are likely to increasingly collaborate with AI, they will 

need to leverage its advantages while compensating for its deficiencies 
by developing both technical (i.e., AI knowledge and data visualization) 
and non-technical skills (i.e., emotional intelligence and analytical 
abilities) (Sousa and Wilks, 2018; Moldenhauer and Londt, 2019). In 
other words, the “AI-hybridized workforce” (Moldenhauer and Londt, 
2019) must adapt its skills to ensure complementarity with AI.

3.2.2.4 Redesign of the work context
The AI-driven redesign of the work context may necessitate skill 

adaptation. Consequently, intelligent machines are sometimes viewed 
as competitors for jobs, which fosters resistance against AI. The 
potential inability of workers to transfer their existing skill sets to new 
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job requirements poses a significant challenge. Thus, retraining to 
acquire AI skills becomes a prerequisite for employability (Rajeshwari 
et al., 2019). However, it is more challenging for senior workers than for 
those under the age of 30 to retrain and subsequently find employment 
(Pulkka, 2019). Another major challenge for industries is the shortage 
of skilled workers (Baldegger et al., 2020) due to factors such as the 
retirement of baby boomers or a general disinterest in science and 
technology education. Moreover, our scoping review implies that AI 
will affect organizational cultures and structures. More specifically, AI 
is likely to replace certain fields of expertise, leading to changes in work 
and power dynamics (Sousa and Wilks, 2018), resistance to AI 
(Rajeshwari et al., 2019), and labor disputes (Moldenhauer and Londt, 
2019). Given the rapid pace of technological change (Sousa and Wilks, 
2018), developing an organizational culture that encourages continuous 
learning is essential for the successful implementation of 
AI. Additionally, AI’s impact on workers’ psychological health can 
be  either positive or negative, depending on its perception and 
acceptance (Stamate et al., 2021). Therefore, addressing the challenges 
that AI presents is crucial.

3.2.2.5 Transformation of the social and relational aspects 
of work

The implementation of AI-assisted HRM carries costs, including 
potential negative human impacts (Dickson and Nusair, 2010). 
Transforming the application process into a purely transactional model 
risks losing the nuanced analysis that a human review can provide, 
overcoming technology’s limitations (e.g., atypical resumes) (Dickson 
and Nusair, 2010). Acikgoz et al. (2020) noted that AI-based interviews 
are perceived as less fair, both procedurally and interactionally, compared 
to traditional human-conducted interviews. However, applicants have 
reported more issues with automated job interviews than with 
automated screening procedures (Wesche and Sonderegger, 2021). 
Chatbots may be perceived as impersonal, leading some candidates to 
be skeptical (Allal-Chérif et al., 2021; Kim and Heo, 2022; Weiss et al., 
2022). Furthermore, AI assistance in recruitment can result in conflicts 
of control and power between humans and autonomous recruitment 
systems (Chen, 2023). To address these challenges, it seems important 
that policies adequately regulate the use of AI in HR (Prem, 2019).

3.3 (RQ2) Changes in the roles of the HR 
triad

The following paragraphs detail the changes induced in the roles 
of the HR triad.

3.3.1 HR professionals
The reviewed articles suggest that HR professionals should 

recognize the impact of AI on employees. In this transformation of the 
workplace, organizations are responsible for ensuring training, internal 
transfers, and job placements (Sousa and Rocha, 2019; Bankins et al., 
2022). Since the acceptance of AI is an essential condition for its 
successful implementation in organizations (van Esch and Black, 2019), 
HR professionals will play a decisive role in promoting this technology 
among employees (Islam et al., 2022). Preparing employees, managers, 
and themselves for the changes AI will bring is vital to preventing 
resistance. To this end, HR professionals should: (1) consider how to 
integrate AI into their business models; (2) hire technology-savvy staff 

to reduce resistance to change and drive innovation (Albert, 2019); and 
(3) allow managers and workers to familiarize themselves with 
potential AI-driven solutions (Kolbjørnsrud et  al., 2017). HR 
professionals must understand the opportunities and challenges of 
AI-enabled HRM to leverage this technology wisely (Dickson and 
Nusair, 2010). They also need to update their skills, capabilities, and 
competencies (Nankervis et al., 2021). For example, the role of training 
designers becomes more strategic, as AI’s involvement could render 
decisions about training needs, delivery, and trainer selection more 
prescriptive or suggestive (Maity, 2019). Finally, HR professionals play 
an important role in guiding the development of AI toward responsible 
and less biased outcomes (Wesche and Sonderegger, 2021), sharing 
their knowledge with AI developers throughout the technology’s 
development (Soleimani et al., 2022).

3.3.2 Line managers
Managers must adapt to AI, as it will significantly alter both their 

work and that of their direct reports (Kolbjørnsrud et  al., 2017). 
Empirical evidence suggests that with advancements in AI, managerial 
roles tend to shift toward being more people-oriented, with less 
emphasis on thinking-focused tasks (Huang et al., 2019). As their roles 
evolve alongside emerging technologies, line managers also need to 
understand what AI can and cannot do (Rajeshwari et al., 2019). This 
knowledge will help them identify how AI can add value to their 
businesses (Rajeshwari et  al., 2019). Albert (2019) offered several 
pieces of advice to managers on their role in integrating AI. First, 
managers should exercise caution when choosing AI products due to 
potential technical issues or compatibility problems with the 
organization, thus necessitating thorough evaluation before purchase 
(Albert, 2019). Managers should also embrace AI adoption promptly, 
as there are disadvantages not only for early adopters but also for late 
adopters, who may find it more challenging to catch up (Albert, 2019). 
However, managers’ readiness and enthusiasm for AI vary considerably 
across organizational levels and countries, which can greatly limit their 
organizations’ ability to adopt AI (Kolbjørnsrud et al., 2017).

3.3.3 Employees
AI is increasingly integrated into HR activities, whether candidates 

like it or not, and is revolutionizing the way they must present 
themselves, which appears to be particularly beneficial for minorities 
and disadvantaged groups (Albert, 2019). Employees need to 
understand how to appeal to both machine and human interviewers 
(Dickson and Nusair, 2010). In essence, they are responsible for 
deciphering what the system is looking for to increase their chances of 
being hired (e.g., by adopting appropriate body language during video 
screenings). The role of employees involves becoming more aware of 
possible changes (Dickson and Nusair, 2010) in the work context in 
order to improve their skills in line with these developments (Jaiswal 
et al., 2022), thereby remaining competitive in the labor market.

4 Discussion

4.1 Theoretical implications and agenda for 
future research

In conjunction with previous investigations specifically addressing 
AI and HRM (e.g., Parry and Battista, 2019; Kaur et al., 2021; Qamar 
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et  al., 2021; Tuffaha and Perello-Marin, 2021; Votto et  al., 2021; 
Budhwar et al., 2022; Garg et al., 2022; Gélinas et al., 2022; Palos-
Sánchez et al., 2022; Vrontis et al., 2022; Pereira et al., 2023; Alsaif and 
Sabih Aksoy, 2023; Basu et al., 2023; Bujold et al., 2023; Chowdhury 
et al., 2023; Jatobá et al., 2023; Kaushal and Ghalawat, 2023; Malik et al., 
2023; Pan and Froese, 2023; Prikshat et al., 2023), we provide several 
contributions to the academic field. First, to our knowledge, our 
scoping review is the most inclusive so far, as we expanded our data 
extraction across four disciplines (management, HRM/IR, psychology, 
and IS). Moreover, our review is unique in covering an extensive period 
(1996 to January 2023). Beyond its temporal scope, a core contribution 
of our review is mapping the developments covered in the AI–HRM 
literature in an integrative way. The proposed integrative framework 
identifies five main effects of AI on eight existing HR activities, as well 
as the associated opportunities and challenges. This represents a 
distinct contribution of our scoping review, since it is the only one to 
utilize these eight HR activities proposed by Jackson et  al. (2018), 
offering a comprehensive overview of the field. Hence, we contribute 
to the literature on AI-augmented HRM, which lacks a theoretical 
foundation and remains fragmented and incomplete (Prikshat et al., 
2021). Our data provide valuable insights into how HRM is likely to 
evolve, suggesting new directions for future research. We also note that 
the methodology of the scoping review serves as an initial step prior to 
conducting a systematic review (Munn et al., 2018). In this connection, 
the results of our work can inform the formulation of specific questions 
for future systematic reviews.

Our study’s results can contribute to the development of several 
key HRM theories. On the one hand, the research paths we propose 
relate specifically to theories that focus on the individual level. First, 
the conservation of resources (COR) theory could be used to analyze 
the effects of AI on HR activities. The various opportunities associated 
with each of the five effects of AI on HR activities presented in our 
results can be analyzed from a resource perspective. For instance, AI’s 
role in automating routine tasks raises the following question: Does 
AI serve as an additional resource for the key players in the HR triad? 
In this context, the job demands–resources (JD-R) theory could also 
be employed to assess both resources (opportunities identified) and 
demands (challenges identified). This theory could help explore the 
impact of AI usage in HR activities on the wellbeing and job 
performance of the HR triad. Furthermore, the introduction of AI is 
likely to influence the distribution of power by modifying the roles 
and responsibilities of the HR triad’s key actors. Power theory may 
prove helpful in understanding how these changes affect power 
dynamics within organizations and the implications for power 
relations. Do these changes introduce new demands or resources? Will 
business experts be sidelined in favor of data scientists? As shown by 
our results, the integration of AI may also lead to changes in job roles. 
Employing identity theory could be valuable in investigating whether 
the advent of AI in HR activities alters the identities of the HR triad’s 
key players. If so, does this change in identity constitute a demand or 
a resource? These changes in roles and responsibilities may also raise 
issues related to meaning and the identities of these actors. 
Sensemaking theory could offer valuable insights into how the HR 
triad actors interpret these changes and make sense of the impact of 
AI on their roles. Furthermore, the integration of AI into HR activities 
may require employees to acquire new skills. Human capital theory 
supports the notion that ongoing investments in training and 
development are crucial to adapting to technological advancements 

and maximizing the potential benefits of the technology. Therefore, 
exploring this research avenue using this theory could shed light on 
the unique implications of AI. Motivation theory posits that employees 
are motivated by job enrichment and opportunities for skill 
development (Gould, 2024). Applying this theory could reveal how AI 
can enhance, rather than impede, job roles, considering that without 
motivated and well-trained employees, organizations are likely to fail 
in implementing AI successfully. Furthermore, the integration of 
digital solutions can damage employees’ perceptions of their skills and 
autonomy at work (Shulzhenko, 2024). Thus, empirical research is 
needed on how AI impacts employees’ satisfaction and needs 
(Shulzhenko, 2024), which could be accomplished with the help of 
self-determination theory.

On the other hand, certain research paths pertain specifically to 
organization-centered theories. For example, future studies should 
employ contingency theory to examine how organizational structures 
can adapt to remain competitive and sustainable in response to the use 
of AI in HRM activities. In fact, contingency theorists argue that the 
most effective organizational structure depends on various factors, 
such as technology and the external environment (Garavan and 
O’Brien, 2024). At the same time, incorporating AI into HR activities 
may require adjustments to the organizational structure, a topic that 
warrants further investigation. Finally, another avenue of research 
could be specifically applying the adoption of AI as a source of work 
transformation within the emergent theoretical model of HR 
ecosystem alignment proposed by Yalenios and d’Armagnac (2023), 
who also employ contingency theory. This approach would enable 
researchers to better understand the dynamic effects of this 
technological change in the HR ecosystem.

This scoping review has highlighted current gaps in the scientific 
literature. For example, future research should focus more closely on 
the effects of AI implementation on occupational health (e.g., on 
workplace wellbeing and distress). Further investigation is also needed 
regarding the effects of AI on other HR activities, such as performance 
management, talent retention, and compensation. More generally, it 
would be interesting to explore whether AI will redefine HR activities, 
the processes involved, and the sectors most affected.

Empirical research is essential for gaining a deeper understanding 
of the five effects of AI on HR activities identified in this scoping 
review. For example, how can the right balance in automating tasks 
be achieved? What are the consequences of replacing repetitive tasks? 
(E.g., Is the level of fatigue higher? Is employee satisfaction higher?) 
Regarding the optimized use of HR data, the international HR tech 
market was estimated at $32.58 billion in 2021 and is expected to 
reach $76.5 billion by 2031, which represents a growth of 9.2% over a 
decade (Research and Markets, 2023) and shows significant market 
interest. The pressing questions now include the extent to which 
companies can utilize HR data, what employees are willing to accept 
in this context, and how the legal aspects of this usage can 
be delineated. Although AI has demonstrated its ability to augment 
human capabilities, more research is needed to better understand the 
complementarity between humans and machines. In fact, this 
complementarity is essential because, as Hamouche et  al. (2023) 
pointed out, it could threaten the sustainability of employees’ skills 
and future career prospects. Another complex challenge for 
organizations is the redesign of the work context. There is a need for 
more research on how organizations can adapt their structures, 
cultures, and power distributions. Indeed, several studies (e.g., Di Vaio 
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et al., 2020; Zarifis and Cheng, 2023) have shown that the changes 
brought about by AI can significantly impact organizations’ business 
models. More investigation into this area is recommended, as 
suggested by Budhwar et al. (2023). Furthermore, the specific effects 
of AI on HR business models require further exploration, although 
some research groups have begun to examine this issue (e.g., 
Minbaeva, 2021). Understanding how employees perceive 
personalization (whether as genuine added value or overly intrusive) 
is also crucial. Additionally, the transformation of the social and 
relational aspects of work, identified in this scoping review, deserves 
more attention. Questions surrounding the dehumanization of work, 
for instance, would benefit from further investigation. Ultimately, the 
inquiry into whether AI will redefine HRM—and if so, how—
remains open.

Recent reviews have investigated AI in the HR context, yet none 
focused on the interplay between AI, HR activities, and the HR triad. 
The reviewed literature appears to overlook how AI affects employees’ 
roles, even though this group may be  critical for AI’s successful 
implementation. Our review aggregates existing knowledge on this 
topic by identifying the effects on the roles of each stakeholder within 
the HR triad (employees, managers, and HR professionals). This 
integrative synthesis notably shows how AI innovations can either 
augment the knowledge and skills of HR triad actors or render them 
obsolete (Paschen et al., 2020). Furthermore, future research should 
examine workers’ apprehensions and expectations concerning AI to 
better structure AI–human collaboration and management strategies 
for successful AI implementation. Conducting case studies on 
organizations that showcase their HR strategies in relation to AI 
would enrich the AI–HRM interface literature by documenting 
effective practices and pitfalls, offering valuable lessons for other 
organizations. As AI becomes increasingly integrated into the 
workplace, supporting employees through the ensuing changes will 
be crucial for organizations. Many questions remain, such as how 
managers should address employee resistance to AI, whether this 
resistance differs from that encountered with previous technologies, 
and why. Additionally, research is needed to elucidate the factors 
contributing to the social acceptance of AI at work. Future studies 
should attempt to explain AI’s impact on leadership and managerial 
roles, including how managers adapt to sharing leadership and 
decision-making with AI.

Our scoping review indicates a shift toward a more strategic role for 
the HR function. The literature reviewed suggests that HR practitioners 
are tasked with facilitating the social acceptance of AI, ensuring its 
ethical use, managing new hybrid teams (human–machine), and 
upskilling employees (as well as themselves). HR professionals play a 
pivotal role in ensuring the effective application of AI in HRM. Their 
centrality is underscored by the need to bridge the gap between 
individuals, businesses, society, and governments regarding AI 
(Minbaeva, 2021). Many questions remain, particularly regarding how 
HR practitioners will align the diverse stakeholders (managers, 
employees, etc.) involved in AI-augmented HRM. Scholars might 
explore how the four roles of HR professionals outlined in Ulrich (1996) 
recognized HR model (strategic partner, change agent, administration 
expert, and employee champion) evolve with AI integration. There 
could be connections between these roles and the impacts of AI on HR 
activities identified in our scoping review, such as task automation’s link 
to the administration expert role. Is AI transforming the HR profession 

or merely evolving it? If so, how? Future research could also examine 
how HR professionals might steer the responsible development of AI. Is 
it a matter of including an HR professional in the technology 
development team? What are some other ways of accomplishing this? 
What criteria should HR professionals consider to ensure that AI is 
developed responsibly? Further study is needed to shed light on how 
the HR triad responds to these accumulated challenges, as our data 
suggest that HR professionals may also need to address their own 
resistance to AI. Therefore, organizational change management may 
emerge as one of several critical skills for successfully integrating AI in 
the workplace (Giraud et  al., 2022). More research is required to 
comprehend how HR professionals can identify AI’s impacts on 
employees and support them through this technological transformation.

Given the potential for AI to be  a particularly disruptive 
technology (Harney and Collings, 2021), further empirical 
investigations of its individual and collective effects appear 
necessary. To this end, our scoping review contributes original 
insights by examining the various opportunities and challenges AI 
presents for each actor in the HR triad. Minbaeva (2021) argued that 
focusing solely on individuals might be too narrow a perspective, 
urging HRM researchers to consider broadening their scope to 
include interactions between machines and individuals. Indeed, the 
process through which AI and HR may be able to cooperate appears 
to be  the principal factor in successful AI implementation 
(Makarius et  al., 2020). Acknowledging the HR ecosystem and 
other environmental factors “appears crucial when explaining HRM 
practitioners’ roles” (Vincent et al., 2020, p. 465), notably when it 
comes to AI implementation. For this line of research, focusing on 
the potential role of unions—considering their significant influence 
in the HR ecosystem, yet their absence in the reviewed literature—
could provide valuable insights into the use of AI in HR, its impact 
on employees, and its ethical use. Multilevel investigations of the 
AI–HRM literature are therefore promising research paths, notably 
to elucidate the mechanisms or “black box” through which HR 
practices alleviate or aggravate AI impacts on individuals, teams, 
and organizations. Since AI is set to become a partner at work, 
gaining a better grasp of how this technology affects teamwork 
becomes imperative. As suggested by Grote et al. (2023), future 
research should focus on AI as teammates, human–AI team 
processes and emergent states, and human–AI team effectiveness. 
Analyzing the differences between human–AI teams compared to 
human-only teams would also be important. Such research would 
help to better introduce human–AI teaming into organizations. 
Although several authors (Plastino and Purdy, 2018; Britt, 2019) 
recommend an organizational culture open to AI, no identified 
study truly describes what characterizes this type of culture or how 
to implement it. Finally, future studies should distinguish the 
differing challenges AI in HR presents for large organizations 
versus SMEs.

The reviewed articles confirm that ethical concerns often arise 
with the organizational use of AI (Malik et al., 2020). Thus, our work 
contributes valuable insights into theoretical reflections on AI ethics 
in organizational contexts (Dwivedi et al., 2021). As the way to bridge 
legal gaps regarding the misuse of AI is still under debate (Buchholtz, 
2020) and remains to be  addressed by incoming regulations, 
companies may have to bear the responsibility for the ethical 
implementation of AI (Helbing, 2019), at least temporarily.
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In conclusion, our reflections led us to propose a research agenda 
that addresses the gaps identified from the current state of knowledge 
(Table 2).

4.2 Practical implications

The present study also has considerable implications for 
practitioners. To foster corporate innovation, creativity, and improved 
AI applications, we  encourage organizations to participate in 
upcoming research efforts in the AI–HRM field to leverage evidence-
based management.

Given the ongoing development of AI, our results suggest that 
members of the HR triad need to regularly upskill to cope with AI 
integration effectively. This adaptation demands a robust hybrid HR 

approach (Makarius et  al., 2020). Therefore, the attraction and 
retention of employees and the roles of managers and HR professionals 
who are receptive to AI adoption could be critical for organizations 
seeking a sustainable competitive edge.

This study provides evidence that strengthens the legitimacy of HR 
professionals in AI-related transformations. HR professionals can 
facilitate AI adoption by training employees to utilize AI-powered tools 
and systems and collaborating with other departments (e.g., IT) to 
ensure seamless integration of AI solutions within the organization. 
However, the dual role of HR professionals—as both employees and HR 
specialists who support management—may complicate their ability to 
lead the technological change if they are not personally convinced of its 
benefits. Just as some companies have begun allocating resources to 
organizational change management in recent decades, we recommend 
that concerned organizations explicitly incorporate the strategic goal of 

TABLE 2 Future research agenda for the AI-HRM field.

Theoretical development Would AI redefine HRM and how?

Effects of AI on HR activities

Would AI redefine HR activities, how and in which sectors?

How can the right balance be found in automating tasks? What are the consequences of replacing repetitive tasks (e.g., Is the 

level of fatigue higher? Is employee satisfaction higher?)? Does AI dehumanize work?

What are the effects of AI on occupational health? How can AI improve employee mental health at work?

What are the effects of AI on performance management?

What are the effects of AI on talent retention?

What are the effects of AI on compensation?

Effects of AI on the roles of the HR triad

How do the members of the HR Triad manage the work with AI-augmented HRM?

How do line managers perceive the sharing of decision-making and power with AI?

Would resistance to AI be different from resistance to former technologies and why?

What are workers’ apprehensions and expectations of AI? How personalization is perceived by employees (is it a real added value 

or is it too intrusive)?

How should managers and HR professionals handle employee resistance to AI?

How is AI changing the four roles of the HR professionals (strategic partner, change agent, administration expert, employee 

champion)?

How HR professionals might guide the responsible development of AI? What are some other ways of doing this? What criteria 

should HR professionals use to consider that AI is being developed responsibly?

How HR practitioners are going to be able to align the multiplicity of stakeholders (managers, employees, etc.) involved in the 

AI-augmented HRM?

Effects of AI on teams

How can the integration of AI as teammates be optimized to enhance collaboration, understanding, and overall effectiveness 

within human-AI teams?

What are the differences between human-AI teams compared to human-only teams?

How to introduce human-AI teaming in organizations?

Effects of AI on the HR ecosystem

What is the role of organizations in helping the HR Triad to face the various challenges which were identified in the present 

article?

How can organizations foster an organizational culture that facilitate the integration of AI? How organizations can adapt their 

structure and the distribution of power?

What are the environmental factors to consider when studying the impact of AI on the HR ecosystem?

What is the role of unions in the use of AI in HR?

How far can companies go with the use of HR data? What are employees prepared to accept in this regard? How can the legal 

aspect of this use be framed?

What are the differing challenges of AI in HR between large organizations and SMEs?
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AI adoption into the missions of their HR departments or establish 
dedicated units. These units would bring together not only HR specialists 
and organizational psychologists but also IT specialists and data scientists.

AI adoption also provides HR professionals the opportunity to 
assume a more strategic role within organizations by leveraging data-
driven arguments. For instance, they could justify the need for 
investment in a specific HR activity (e.g., training) using data that 
quantify their arguments (e.g., “50% of workers with unique skills will 
leave the company within 5 years”). Another strategic decision-
making process that could be undertaken by HR professionals is the 
evaluation of different AI solutions available on the market to 
determine whether they meet the organization’s needs, considering 
factors such as cost, ease of use, data privacy, and security. However, 
for this to be feasible, HR professionals will need to develop technical 
skills that are currently far from widespread.

Additionally, our study shows that organizations need to consider 
the responsibilities associated with the ethical use of AI. Again, HR 
professionals in particular should be actively involved in this area, as 
they already deal with ethical and legal issues within organizations. 
This includes ensuring that AI systems are transparent and unbiased 
and comply with all laws and regulations. They should also ensure that 
the use of AI aligns with the organization’s values.

4.3 Limitations

Despite the strengths of the scoping review methodology, it is also 
important to acknowledge its limitations. First, like any scoping 
review (Grant and Booth, 2009), our work does not include a process 
of quality assessment. Indeed, a scoping review aims at providing a 
preliminary assessment of the potential size and scope of the available 
research literature (Grant and Booth, 2009). Second, the scope of our 
review is restricted to the selected keywords. Future research may 
choose to include more. Third, the articles included in this scoping 
review were sourced from four databases corresponding to four 
disciplines. Exploring additional databases and disciplines could 
reveal further contributions to the AI–HRM literature.

5 Conclusion

Drawing on empirical articles within the AI–HRM field, this 
scoping review outlines the current state of knowledge to further 
advance this field. Our work introduces an integrative framework 
detailing AI’s effects on HR activities and the roles of the HR triad. Our 
data reveal that the reviewed articles extensively cover five primary 
effects of AI on HR activities: task automation, optimized use of HR 
data, augmentation of human capabilities, redesign of the work 
context, and transformation of the social and relational aspects of work.

Our analysis provides a comprehensive overview of the evolving 
landscape of HR activities in the era of AI. Overall, AI is reshaping HR 
by offering powerful tools that enhance the efficiency, decision-
making, and employee experience of HR professionals. When properly 
implemented and balanced with human intervention, AI can become 
an invaluable asset in achieving organizational objectives.

However, it is important to ensure that AI is utilized ethically and 
responsibly and that it complements rather than substitutes the 

human aspect of HR. The goal is to deploy AI within the HR profession 
and its served populations sustainably.

To conclude, we call for further empirical investigations into AI 
adoption in HRM to deepen our understanding of this topic and enable 
scholars to assist employees, line managers, and HR professionals in 
the positive and sustainable implementation of AI in organizations.
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