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Introduction:With the rapid expansion of online education, there is a burgeoning

interest within the EdTech space to o�er tailored learning experiences that cater

to individual student’s abilities and needs. Within this framework, knowledge

tracing tasks have garnered considerable attention. The primary objective of

knowledge tracing is to develop a model that assesses a student’s proficiency

in a particular skill based on their historical performance in exercises, enabling

predictions regarding the likelihood of correct responses in future exercises.

While existing knowledge tracing models often incorporate information such

as students’ exercise answering history and skill mastery level, they frequently

overlook the students’ mental states during the learning process.

Methods: This paper addresses this gap by introducing a novel psychological

factors-enhanced heterogeneous learning interactive graph knowledge tracing

model (Psy-KT). This model delineates the interactions among students,

exercises, and skills through a heterogeneous graph, supplementing it with

four psychological factors that capture students’ mental states during the

learning process: frustration level, confusion level, concentration level, and

boredom level. In the modeling of students’ learning processes, we incorporate

the forgetting curve and construct relevant cognitive parameters from the

features. Additionally, we employ the Item Response Theory (IRT) model to

predict students’ performance in answering exercises at the subsequent time

step. This model not only delves into the psychological aspects of students

during the learning process but also integrates the simulation of forgetting,

a natural phenomenon in the learning journey. The inclusion of cognitive

parameters enhances the description of changes in students’ abilities throughout

the learning process. This dual focus allows for a more comprehensive

understanding of students’ learning behaviors while providing a high level of

interpretability for the model.

Results and discussion: Empirical validation of the Psy-KT model is conducted

using four publicly available datasets, demonstrating its superior performance in

predicting students’ future performance. Through rigorous experimentation, the

integration of psychological and forgetting factors in the Psy-KT model not only

improves predictive accuracy but also enables educators to o�er more targeted

tutoring and advice, enhancing the overall e�cacy of the learning experience.
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psychological factors, knowledge tracing, Graph Neural Network, Item Response

Theory, learning process

Frontiers in Psychology 01 frontiersin.org

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2024.1359199
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2024.1359199&domain=pdf&date_stamp=2024-05-10
mailto:zfwang@ccnu.edu.cn
mailto:cyzeng@hbut.edu.cn
https://doi.org/10.3389/fpsyg.2024.1359199
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpsyg.2024.1359199/full
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Wang et al. 10.3389/fpsyg.2024.1359199

1 Introduction

In the contemporary landscape of education, the prevalence

of online education platforms has witnessed a substantial increase

(Adedoyin and Soykan, 2023). These platforms, initially designed

for college students acquiring various skills, have evolved into

comprehensive systems catering to primary and high school

students, augmenting their understanding of textbook knowledge

(Wang et al., 2023c). A growing number of students are opting for

diverse education platforms to acquire knowledge and refine their

skills in this era of information-driven education.

Within the dynamic realm of online education, the imperative

lies in optimizing learning modes to align with the evolving

needs of students. For instance, subject-specific education modes

can be enhanced by tailoring them to accommodate the

Ebbinghaus forgetting curve, thus facilitating the development of

distinct learning modes tailored to different subjects (Su et al.,

2023). Moreover, recognizing the inherent diversity in students’

comprehension levels for various types of knowledge, coupled

with disparate learning methods and varying degrees of practice,

underscores the need for online education platforms to prioritize

personalized student development (Wang et al., 2023b).

A pivotal aspect in this context is the knowledge tracing task, a

mechanism designed to predict a student’s proficiency in handling

subsequent tasks by modeling the evolving state of their knowledge

during the skill-learning process. Originating in 1994, this task

was initially conceptualized using HiddenMarkovModels (Corbett

and Anderson, 1995). Subsequent research ushered in the era of

deep learning models for knowledge tracing, exemplified by the

Deep Knowledge Tracing model (DKT; Piech et al., 2015) and

the Convolutional Knowledge Tracing model (CKT; Shen et al.,

2020), both markedly outperforming traditional knowledge tracing

models.

In 2019, Nakagawa et al. introduced a paradigm shift by

incorporating graph structures into the knowledge tracing task,

resulting in the Graph Neural Network based Knowledge Tracing

model (GKT; Nakagawa et al., 2019). This innovative approach

not only validated the efficacy of graph structures but also

offered a fresh perspective on constructing the relationships

between skills and exercises. Subsequent research endeavors have

witnessed further enhancements in the performance of knowledge

tracing models based on graph structures (Li and Wang, 2023b),

thereby catalyzing the advancement and innovation in this field.

This progression not only attests to the continuous evolution

of knowledge tracing techniques but also underscores their

instrumental role in shaping the future of educational technology.

1.1 The motivation

The psychological state of students plays a pivotal role in

shaping their learning processes and, consequently, influencing

their educational outcomes. Past research has consistently

underscored the impact of students’ perceptions and experiences

on their learning performance (Burden, 1994). Crucial components

of students’ psychology include their emotional states, motivation

levels, and interest in the subject. The ability of students to

actively engage in their learning and effectively navigate challenges

encountered during their studies directly correlates with their

overall learning outcomes.

Research conducted by Obergriesser and Stoeger has

highlighted the significance of self-efficacy (an individual’s

confidence in successfully completing a task) and anxiety

in determining students’ likelihood of underachievement

(Obergriesser and Stoeger, 2015). Notably, interventions tailored

to address these psychological factors have been shown to positively

impact students across varying academic abilities (Dignath and

Büttner, 2008). Research by Matthew Owens and his team has

shown that anxiety and working memory capacity (WMC) interact,

influencing cognitive test outcomes differently depending on the

individual’sWMC. Individuals with lowWMC experience a decline

in test scores as anxiety increases, whereas those with high WMC

see the opposite effect (Owens et al., 2014). These findings highlight

the significant role of psychological factors like self-efficacy and

anxiety not just in influencing academic performance but also

in affecting diverse student populations differently. Additionally,

these factors do not function independently; rather, they interplay,

collectively shaping students’ performance and development.

Recognizing the pivotal role of students’ psychological states

in the learning process, it becomes imperative to deepen our

understanding and attentiveness to this aspect for the development

of effective teaching strategies and the enhancement of education

quality.

Furthermore, the interaction between learners and educational

resources is pivotal in formative assessments. This interaction not

only enables teachers to gauge students’ progress and needs but also

supports learners in self-assessment and in fine-tuning their study

strategies. However, much of the prior research has emphasized the

influence of students’ cognition and experiences on their academic

outcomes, primarily by enhancing knowledge tracing models

through a representation of the relationships between skills and

exercises (Lyu et al., 2022). This optimization has progressed from

initially utilizing Long Short-Term Memory (LSTM) networks to

analyze answer sequences to currently employing graph structures

that map out the intricate dynamics between exercises and

skills (Li and Wang, 2023a). Additionally, there is ongoing

work to improve the representation of students’ skill mastery,

encapsulating it within hidden states of student knowledge

(Wang et al., 2023a). Modeling the complex heterogeneous

interactions of learner, exercise, and knowledge throughout the

learning process can significantly improve our understanding

and optimization of educational practices, thereby boosting

learning efficiency.

This paper considers students’ psychological states during

exercise answering as noteworthy features to be considered.

Therefore, building upon previous research, it incorporates these

psychological factors into knowledge tracing tasks to pursue

a more comprehensive description of students’ states. In real-

world educational settings, the pursuit of efficient educational

practices often aligns with the desire for credible and convincing

outcomes. The inclusion of psychological factors in the model

not only enhances its interpretability but also renders educational

interventions more effective, catering to the diverse needs of

students. Consequently, this paper advocates for the integration of

students’ psychological factors into knowledge tracing models to

Frontiers in Psychology 02 frontiersin.org

https://doi.org/10.3389/fpsyg.2024.1359199
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Wang et al. 10.3389/fpsyg.2024.1359199

enrich their descriptive capacity and elevate their practical efficacy

in educational contexts.

1.2 Our solution

To enhance the optimization of our model, this paper

introduces the integration of psychological factors into the

knowledge tracing framework to provide a nuanced depiction of

students’ mental states during online learning.

Firstly, our approach begins by examining the complex

heterogeneous relationship among “student-exercise-skill.” To

capture the intricate interconnections among “student-exercise-

skill,” we construct a heterogeneous graph, employing a graph

convolutional network specifically designed for such structures.

This network efficiently integrates data from both nodes and

their neighbors, enabling a comprehensive understanding of the

local interactions among students, exercises, and skills. The

convolutional operations on this heterogeneous graph allow the

model to discern interactions at multiple levels, substantially

improving its capacity to represent data.

Secondly, recognizing the natural occurrence of forgetting

during online learning, we incorporate a forgetting function into

the model to simulate the forgetting behavior during learning

process. This inclusion enables the model to adapt more effectively

to the dynamic nature of students’ long-term learning on the

one hand and provide a quantitative explanation for forgetting

behaviors in online learning on the other hand.

Thirdly, we delineate students’ knowledge states by

constructing a directed sequential graph that abstracts their

learning sequences. This graph captures the temporal relationships

within students’ processes of answering exercises, with each step

depicted through nodes and edges. We introduce a graph gating

neural network to handle the complexities of these temporal

relationships. This network utilizes both the structural and

temporal characteristics of the graph to dynamically adjust

information transfer at each node, thus enhancing the model’s

ability to monitor and adapt to changes in a student’s knowledge

state during the learning sequence.Furthermore, during this

analytical phase, the exercise sequences are not only considered in

isolation but are also enriched with data on students’ psychological

factors, such as emotions and cognition. This comprehensive

approach allows the model to more accurately reflect the students’

learning states, taking into account psychological impacts on

learning behaviors. This not only deepens the understanding of the

learning process but also enriches the model’s ability to predict and

support students’ learning needs effectively.

Finally, we employ the Item Response Theory as the

predictive layer for learning performance, which generates accurate

predictions of students’ performance on subsequent exercises.

IRT is particularly effective due to its commendable quantitative

accuracy in forecasting learning outcomes and its compatibility

with the forgetting function. Furthermore, the cognitive parameters

within the IRTmodel provide significant insights into the cognitive

attributes of both learners and learning resources, enhancing the

model’s explanatory power.

Through these methodologies, we aim to create a robust,

comprehensive model that not only predicts learning outcomes

with high accuracy but also incorporates a nuanced understanding

of the psychological factors influencing students during online

learning. This integrated approach ensures a deeper insight into

the educational process, significantly contributing to the fields of

educational technology and psychology.

1.3 Summary of contribution

This paper introduces several significant contributions to the

field of knowledge tracing through the development of the Psy-KT

model, outlined as follows:

1. Comprehensive integration of psychological factors: The

Psy-KT model introduces a nuanced approach by incorporating

psychological aspects such as frustration, concentration,

confusion, and boredom levels into the learning process analysis.

This incorporation aims to provide a more comprehensive

understanding of students’ emotional and cognitive states

during learning. Alongside psychological factors, the model

includes a forgetting curve to account for skill decay over time,

thus addressing a critical aspect of long-term learning retention.

It also incorporates exercise difficulty characteristics and

leverages the Item Response Theory to enhance the accuracy

of predicting students’ future responses, thereby significantly

improving the model’s predictive performance.

2. Innovative use of a heterogeneous learning interactive graph:

The Psy-KTmodel employs a heterogeneous learning interactive

graph that captures the complex interrelations among students,

exercises, and skills within a learning environment. This graph

provides a dynamic and detailed representation of students’

progression through exercise sequences, depicted through nodes

and edges that map each response step. To manage the temporal

complexities embedded in these interactions, a graph gating

neural network is introduced. This network is specifically

designed to utilize the graph’s structural and temporal data,

dynamically adjusting information transfer at each node. Its

adaptability is crucial for accurately reflecting changes in the

learning process and responding to individual student needs.

3. Empirical validation and superior performance: Through

extensive experimentation using four publicly available

datasets, the Psy-KT model has demonstrated superior

performance compared to existing knowledge tracing models.

The enhancement in performance is largely attributed to

the model’s unique features, including the integration of

psychological factors, the application of a forgetting function,

and the use of IRT for predictions. These features collectively

improve the model’s adaptability and depth of understanding

regarding the complexities of student learning processes. This

leads to a marked improvement in performance, highlighting

the effectiveness of combining psychological insights with

advanced data modeling techniques in educational settings.

2 Related work

This section aims to provide an overview of pertinent models

in the related domains. The discussion will commence with an

exploration of models related to Graph Neural Networks, followed
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by an examination of current popular models employed for

cognitive diagnostics. The following section will culminate with a

review of models that have demonstrated noteworthy results in the

realm of knowledge tracing.

2.1 Graph Neural Networks

A graph structure, representing non-Euclidean data

structures like transportation networks or chemical molecules, is

characterized by nodes and edges denoted as G = (V ,E), where

V is the set of nodes, and E is the set of edges (Wu et al., 2021).

Beyond nodes and edges, graphs can incorporate attributes such

as weights, orientations, and labels, enriching their applicability to

real-world problems. For instance, in a social network, a graph can

depict users and their connections, with nodes representing users,

edges denoting relationships, and weights indicating connection

frequencies.

To extend deep learning to graph-structured data, Gori et al.

introduced the Graph Neural Network (GNN), designed to process

graph structures directly (Gori et al., 2005). Their experiments

showcased the applicability of GNN to various practical graph

structures, including directed, undirected, and cyclic graphs.

Building upon the GNN foundation, subsequent studies drew

inspiration from Convolutional Neural Networks (CNNs), leading

to the emergence of graph convolutional networks. These models

can generally be categorized into spectral-based and spatial-based

approaches (Wu et al., 2021). Spectral-based methods leverage

the eigenvalue decomposition of the Laplace matrix to introduce

convolution operations in the frequency domain. Exemplary

models include those proposed by Bruna et al. (2014) and

Defferrard et al. (2016), proficient in capturing global information

across entire graph structures. In contrast, spatial-based methods

focus on the local structure between a node and its neighbors.

Notable models in this category include those introduced by

Atwood and Towsley (2016) and Niepert et al. (2016), which

aggregate information from neighboring nodes to model the local

context of each node.

The evolution of Graph Neural Networks has marked a

prominent research direction in deep learning. Models like Graph

Sample and Aggregation (GraphSAGE; Hamilton et al., 2017), and

Graph Attention Network (GAT; Veličković et al., 2018), have

expanded the frontiers of graph data processing. Innovations such

as attention mechanisms and sampling strategies in these models

enhance the capability for representation learning in graph data,

providing a robust tool for diverse applications in the knowledge

tracing field.

2.2 Cognitive diagnosis

Cognitive diagnosis aims to delve into students’ cognitive states

during the learning process to evaluate their learning abilities

and offer personalized support. Representative models, rooted in

previous research, encompass the Item Response Theory and the

Deterministic Input, Noisy “And” model (DINA). The former

synthesizes students’ abilities and the exercise parameters in the

learning process, while the latter delineates the specific knowledge

mastery state of students. The interplay of these two models has

propelled the diversification and evolution of cognitive diagnostic

theories.

1. Item Response Theory: Item Response Theory, also known as

Latent Trait Theory, posits that individuals possess latent traits,

suggesting a close connection between subjects’ response scores

on test items and these latent traits (Embretson and Reise, 2013).

In the context of knowledge tracing tasks, IRT is grounded in

the relationship between student ability and the probability of

correct answers.

Assuming a student’s ability is denoted by θ , the probability

function P(θ) evolves over time, representing the likelihood

that a student with a certain ability level will answer an

exercise correctly. This probability is calculated according to

Equation (1) (Moustaki and Knott, 2000).

P (θ) = c ∗ (1− c)

1+ e−α(θ−β)
(1)

In this equation, α represents the differentiation of the

exercise, indicating the exercise’s ability to discern between

students’ levels. β denotes the difficulty of the exercise, where

an increase in β necessitates higher θ for a higher probability

of a correct answer. The parameter c is the guessing parameter,

signifying the probability that a student can answer an exercise

correctly by guessing. For the purposes of this paper, c is set to

0, indicating that students cannot answer the exercise correctly

by guessing alone. This formulation provides a nuanced

understanding of how student ability, exercise differentiation,

difficulty, and guessing interact in the context of IRT for

knowledge tracing tasks.

2. Deterministic Input, Noisy “And” model: The DINA model

serves as a discrete cognitive diagnostic model, conceptualizing

a student as a multidimensional vector of knowledge mastery,

diagnosed based on their actual response outcomes (de la Torre,

2009). The model introduces the potential response (ηij) of

student i in exercise j, as defined by Equation (2).

ηij =
K∏

k=1
α
qjk

ik
(2)

Here, αik denotes the student i’s mastery of skill k. If ηij = 1,

it indicates a correct answer, implying mastery of all skills in

exercise j. Conversely, if ηij = 0, it signals an incorrect answer,

signifying a lack of mastery in at least one skill within exercise j.

TheDINAmodel integrates the question-skill correlationmatrix

(Q) and the student answer matrix (X) to model a student’s

response. It introduces test item parameters, namely (slip, guess),

resulting in Equation (3) to estimate the probability [Pj(αi)] of a

student’s ability to answer exercise j correctly (de la Torre, 2009).

Pj (αi) = P
(
Xij = 1

∣∣αi

)
= g

1−ηij
j

(
1− sj

)ηij (3)

In addition to these cognitive diagnosis models, other notable

models like the Grade Response Model (GRM; Samejima, 1969),

and the Fuzzy Cognitive Diagnosis Model (FuzzyCDM; Liu et al.,
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2018), have been developed for static characterization of students’

abilities, offering deeper insights into their knowledge states.

However, in the dynamic process of teaching and learning, where

students are consistently engaging with exercises, their cognitive

levels are in a state of flux. To address this dynamic nature, it

is imperative to continuously update students’ states and employ

a dynamic approach for a more robust and accurate assessment

process.

2.3 Knowledge tracing

In the evolution of knowledge tracing tasks, models have

primarily fallen into two categories: traditional methods and deep

learning methods. This section exclusively focuses on the latter,

delving into the advancements brought about by deep learning in

the context of knowledge tracing.

1. DKT: The integration of deep learning into knowledge tracing

tasks was pioneered by Piech et al. with the introduction of Deep

Knowledge Tracing, a Recurrent Neural Network (RNN) based

model (Piech et al., 2015). DKT deploys a substantial number

of neurons to capture temporal dynamic structures, utilizing

a sequence of historical student interactions as input. This

approach enables the model to dynamically learn from evolving

student knowledge states during the learning process. The

model transforms sequences of students’ historical interactions

into corresponding output sequences by navigating through

a series of hidden knowledge states, ultimately providing

probabilities for correct exercise responses. While DKT marked

a significant advancement over traditional knowledge tracing

models, it presents certain limitations, such as neglecting the

phenomenon of forgetting during the learning process and

exhibiting poor interpretability. Subsequent research endeavors

have sought to address these shortcomings and enhance the

overall performance of DKT. Several research teams have

engaged in iterative improvements and optimizations in their

subsequent works to refine and build upon the foundation laid

by DKT.

2. DKT+: Due to the limitations of the algorithm used in DKT,

it fails to consider long-term historical data, resulting in

fluctuation phenomena where a student’s latent state does not

gradually increase or decrease over time but experiences sudden

spikes or drops. Another issue in DKT is the inability to

reconstruct input information, where a student performs poorly

on exercises involving skill si, yet the model predicts a high level

of mastery for skill si. The DKT+ model is proposed to address

these issues by incorporating three regularization terms into the

loss function of DKT (Yeung and Yeung, 2018). These three

regularization terms are reconstruction error r and fluctuation

measures ω1 and ω2.

3. KPT: The Knowledge Proficiency Tracing (KPT) model is

constructed based on Probabilistic Matrix Factorization (PMF;

Huang et al., 2020). This model associates exercises with

skill vectors, establishing a correspondence between the two.

The KPT model uses PMF technology to model students’

answering behaviors, inferring their proficiency level for

each skill.

4. AKT: The Attention-based Knowledge Tracing (AKT) model

introduces attention mechanisms and assumes that a student’s

learning process is transient, with knowledge decaying over

time (Ghosh et al., 2020). This model comprises four modules:

embedding based on the Rasch model, exercise encoder, skill

encoder, and knowledge retriever. AKT not only captures

global relationships without considering the length of answer

sequences but also enhances interpretability by integrating the

Rasch psychometric model.

5. DKVMN: Zhang et al. introduced the Dynamic Key-Value

Memory Network (DKVMN) model (Zhang et al., 2017).

This model employs a static matrix to store knowledge skills

and a dynamic matrix to store and update students’ states.

By leveraging the relationships between skills, the DKVMN

model provides a direct output indicating a student’s mastery

level for each skill. Despite its strengths, it is noteworthy

that the DKVMN network falls short in capturing long-term

dependencies within sequences.

6. GKT: Nakagawa et al. pioneered the incorporation of graph

structures into the knowledge tracing model, presenting the

Graph-based Knowledge Tracing model (Nakagawa et al.,

2019). In GKT, the relationships between knowledge points are

depicted by a directed graph denoted as G = V ,E,A, where

V signifies the set of nodes, E signifies the set of directed

edges, and A signifies the weight of each dependency. When

updating the network model based on the graph structure using

a multilayer perceptron, consideration is given not only to the

state of the node itself but also to the state of a specified number

of neighboring nodes. Subsequently, the updated embedded

representation is employed to predict the student’s performance

at the next time step.

7. GIKT: Yang et al. introduced the Graph-Based Interaction

Model (GIKT) as a novel approach to knowledge tracing (Yang

et al., 2021). This model employs a Graph Convolutional

Neural Network to facilitate the convergence of exercise and

skill representations within an exercise-skill relationship graph.

Additionally, a recursive layer is incorporated to enhance the

model’s capability to capture time-series variations and long-

term dependencies in knowledge states. The GIKT model

integrates two essential modules for improved predictive

accuracy. Firstly, the Historical Recap module is designed

to select the most pertinent hidden exercises from the

historical data concerning the current exercise. Secondly, the

Interaction module enables a two-way interaction among the

student’s current state, relevant historical exercises, the target

exercise, and the skill prediction. This interactive mechanism

significantly contributes to the final prediction, enhancing the

model’s overall predictive performance.

8. SGKT: Wu et al. introduced the Session Graph-Based

Knowledge Tracing (SGKT) model as outlined in their

work (Wu et al., 2022). The SGKT model employs a

meticulously crafted heterogeneous graph that encompasses

the elements “student-skill-exercise.” Through the application

of convolutional neural networks, embedded representations

of skills and exercises are derived from this graph. An

innovative feature of SGKT lies in its inclusion of a

forgetting mechanism, strategically integrated to simulate the

phenomenon of forgetting within the learning process. In
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addition to the convolutional neural networks, SGKT utilizes

a gated Graph Neural Network. This component plays a

crucial role in extracting the student’s hidden knowledge

state, contributing to the comprehensive understanding of

the student’s learning trajectory. The final prediction is

accomplished by combining the embedding representations of

skills and exercises, reflecting the model’s holistic approach to

knowledge tracing.

The evolution of knowledge tracing tasks has witnessed

remarkable advancements fueled by the integration of deep

learning methodologies. Researchers have actively explored the

fusion of neural networks and graph structures, striving for

enhanced precision in tracking students’ evolving knowledge states.

Noteworthy achievements have been made by these models,

particularly in accounting for the temporal dynamics inherent in

the learning process, the intricate exercise-skill relationships graph,

and the sequences of historical student interactions. Despite these

strides, challenges persist within the knowledge tracing landscape.

Issues such as model interpretability, treatment of long-term

dependencies, and the accurate representation of the forgetting

phenomenon during learning are focal points demanding further

attention and refinement. Addressing these challenges is crucial for

the continued advancement of knowledge tracing models in the

realm of education.

3 Problem definition

3.1 Notations and definitions

This section rigorously provides the formal definitions

of the psychological factors and interactive heterogeneous

graphs involved in knowledge tracing tasks, and establishes a

comprehensive set of mathematical notations used throughout the

paper, as summarized in Table 1.

3.1.1 Definition of psychological factors
Recognizing the pivotal role of students’ psychological states

in the learning process, this paper deems it essential to integrate

relevant features into the knowledge tracing model. The specific

definitions are expounded below.

Definition 1 (The frustration level): The frustration level is

an emotional indicator denoted as fru, reflecting the emotional

state of the student during an exercise. This encompasses feelings

of nervousness, worry, and uneasiness. The frustration level is a

critical factor influencing a student’s performance and motivation.

Students experiencing high frustration levels may encounter

learning disabilities, whereas moderate frustration levels could

positively impact concentration and performance.

Definition 2 (The confusion level): The confusion level serves

as a cognitive indicator denoted by conf , representing a student’s

ability to comprehend or solve an exercise. Throughout the learning

process, students may grapple with confusion, and the extent of

this confusion significantly influences their progress and learning

experience.

Definition 3 (The concentration level): The concentration

level is an attention indicator denoted as conc, gauging a student’s

TABLE 1 Definitions of mathematical notation used in this paper.

Notations Descriptions

S,E,K A set of students, a set of exercises, and a set of skills

X, P Answer records for a particular student, partial answer

records

si , ej , kq Students number i, exercises number j, skills number q

nt An exercise record answered by a student at a time step

att Time spent on exercise answered by a student at a time

step

frut The effect of average anxiety level on students at a time

step

conft The effect of average confusion on students at a time

step

conct The effect of average concentration on students at a

time step

bort The effect of average boredom on students at a time step

at Students’ answers to exercises at a time step

T Latest timestamp

pt Probability of a student can correctly answer the next

given exercise at timestamp t

V ,E The set of nodes and the set of edges in the SEK-HLIG

rse Relationship between students and exercises

rek Relationship between exercises and skills

m(x) Degree of memorization of a given knowledge skill

zi Feature information of the ith node in the SEK-HLIG

ẽ, k̃ GCN outputs high-dimensional feature information of

exercises and skills

ri Node information in the SE-SG

gi Student’s state representation as input to GRU

hi Student’s hidden knowledge state

h̃i Student’s hidden knowledge state with added

psychological features

Êi New student answer state processed by forgetting curve

di Exercise difficulty

ability to focus on an exercise. The concentration level holds

substantial importance in the learning context. Higher levels of

concentration facilitate enhanced knowledge absorption, while

distractions may lead to diminished learning outcomes.

Definition 4 (The boredom level): The boredom level, denoted

as bor, serves as an emotional indicator, revealing the degree to

which students experience boredom or lack intrinsic motivation

when engaging in exercises. Boredom in the learning context can

lead to diminished motivation and suboptimal learning outcomes.

Research findings indicate that students’ frustration levels

and concentration positively correlate with learning outcomes.

Conversely, boredom exhibits a weak negative correlation with

learning outcomes, akin to the relationship observed between

the level of confusion and boredom (Pardos et al., 2013).

These identified psychological factors not only impact students’
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performance but also significantly influence their overall learning

experience and motivation.

Integrating these psychological factors into the knowledge

tracing model enhances our understanding of their effects on

students’ learning outcomes. This incorporation contributes to

the overarching objective of personalized education, rendering the

knowledge tracing model more comprehensive in its analysis and

predictive capabilities.

Definition 5 (Forgetting factor): In the context of knowledge

tracing tasks, forgetting is the gradual loss of previously acquired

knowledge or skills over time, constituting a fundamental

psychological phenomenon. This paper introduces the forgetting

factor to simulate the dynamic nature of human learning and

memory, thereby enhancing the model’s ability to replicate the

phenomenon of memory decay and improving its interpretability.

The forgetting function (Chen et al., 2021), is expressed as in

Equation (4).

m (x) = a · exp−b·x + c (4)

Here, the parameters a, b, and c are fitting parameters, while

x represents the time interval in days between the initial time

and the current time. The function m(x) signifies the present

degree of memory retention for a specific knowledge point. Lower

values of m(x) indicate a higher degree of forgetting, with students

experiencing a rapid forgetting rate in the initial stages, followed by

a gradual slowing of the forgetting process.

Moreover, this paper posits that the psychological factors of

students during the learning process can influence the time taken to

answer an exercise. For instance, decreased concentration may lead

to increased time spent comprehending the exercise. Therefore,

this paper integrates the time att spent by the student to answer

the exercise with the psychological factors during the exercise

answering process. This synthesis is employed to characterize the

student’s hidden knowledge state in the scope of this paper’s work.

3.1.2 Definition of Heterogeneous Learning
Interactive Graph

Definition 6 (Student-Exercise-Skill Heterogeneous

Learning Interactive Graph (SEK-HLIG)): In the processing of

students’ exercise-answer sequences, we construct a heterogeneous

learning interactive graph denoted asHLIG = {V;E}, representing
the relationships between “student-exercise-skill.” The set of nodes

V includes three types: student s, exercise e, and skill k, denoted

as V = {s, e, k}. The set of edges E consists of two types: rse,

representing the relationship between a student and an exercise,

and rek, representing the relationship between an exercise and

a skill. Formally, E = {rse, rek}. The edge rse corresponds to the

exercise that a student answered, while rek corresponds to the skill

associated with the exercise.

To illustrate, consider an example of an SEK-HLIG, depicted in

Figure 1. In this graph, the set of students is {s1, s2, s3}, exercises are
{e1, e2, e3, e4}, and skills are {k1, k2, k3, k4}. Collectively, these nodes
form the set of all nodes V = {s1, s2, s3, e1, e2, e3, e4, k1, k2, k3, k4}.
For instance, student s1 answered exercises e1, e2, and e3. Exercise e1

FIGURE 1

An example of a Heterogeneous Learning Interactive Graph with

three student nodes, four exercise nodes, and four skill nodes. Two

types of edges connect the three types of nodes, representing the

corresponding relationships.

is associated with skill k1, while exercise e2 is associated with skills

k1 and k3, and exercise e3 is associated with skills k2 and k4.

Definition 7 (Student-Exercise Sequential Graph (SE-SG)):

In the context of a student’s individual instances of answering

exercises, we abstract the student’s response sequence into a

Student-Exercise Sequential Graph, denoted as SG = {eA, P}. Here,

eA = {eai |1 ≤ i ≤ n} represents the answering situation of the i-th

exercise, and P ⊆ X denotes the student’s partial answer sequence.

To illustrate this concept, consider the example of an SE-

SG shown in Figure 2. The answer sequence is transformed

into a graph structure, revealing the sequential relationships

between exercises and corresponding answers. For instance,

Student s1 exhibits an answer sequence of {e1, e2, e3, e4, e5, e3},
with corresponding answers being wrong, correct, wrong, wrong,

wrong, and correct. Similarly, Student s2 demonstrates an answer

sequence of {e1, e2, e3, e2, e4}, with corresponding answers being

correct, correct, wrong, wrong, wrong.

3.2 Problem formulation

In the Psy-KT model, the goal is to predict the future

learning performance pt+1 and track students’ evolving mastery

of skills over time 1 to t, based on student records st , exercise

records et , answering records at , psychological factors psyt =
{frut , cont , conf t , bort}, and time spent records att . The objective

is to predict the probability pt+1 of correctly answering a

new exercise et+1, enabling the development of personalized

learning strategies to enhance student’s learning efficiency. Unlike

traditional knowledge tracing tasks that focus solely on the

relationship between exercises and skills, this work integrates

psychological factors experienced by students during exercise
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FIGURE 2

Example of a Student-Exercise Sequential Graph abstracting the sequence of student answers into a graph structure, facilitating direct observation of

sequential relationships between exercises and their corresponding answers.

answering, thereby enhancing the knowledge tracing task. The

model incorporates Item Response Theory to predict learning

performance, improving interpretability.

The task is formally defined for a set of N students, denoted

as S = {s1, s2, s3, . . . , sN}. The n − th student’s learning record is

represented as X = {n1, n2, n3, . . . , nT}, with T indicating the latest

timestamp. A student’s answer record at timestamp t is denoted as

nt = {et , kt , att , psyt , at}, where:

• et ∈ {e1, e2, e3, . . . , em} represents the exercises the student
answered at timestamp t.

• kt ∈ {k1, k2, k3, . . . , kp} denotes the skill associated with the

exercise.

• att denotes the time spent answering the exercise.

• psyt = {frut , cont , conf t , bort} is a set of psychological factors
experienced by the student during the exercise, where frut ∈
[0, 1] represents the average level of frustration, conf t ∈ [0, 1]

represents the average level of confusion, conct ∈ [0, 1]

represents the average level of concentration, and bort ∈ [0, 1]

represents the average level of boredom.

• at ∈ {0, 1} indicates whether the student answered the

exercise correctly, with 0 indicating an incorrect answer and

1 indicating a correct answer.

4 The Psy-KT model

4.1 Model overview

This section provides a detailed overview of the Psy-KT

model. Figure 3 illustrates the structural components of the

proposed model, which encompasses five modules: (1) SEK-HLIG

EmbeddingModule, (2) SE-SG EmbeddingModule, (3) Knowledge

State Modeling Module, (4) Forgetting and Difficulty Analysis

Module, and (5) IRT Prediction Module.

Upon inputting students’ answer sequences into the model, the

SEK-HLIG Embedding Module employs a Graph Convolutional

Network (GCN) to learn the relationships between and within

exercises and skills in the SEK-HLIG. Simultaneously, the Gated

Graph Neural Network (GGNN) in the SE-SG Embedding

Module captures the hidden state of students based on SE-

SG. Learning interactive information related to students’ exercise

and answering behavior is acquired through the self-attention

module with a forgetting curve mechanism for exercise and skill

embedding representations. Subsequently, the Difficulty Analysis

Module examines the difficulty characteristics of current exercises

based on their inherent features. Finally, the IRT Prediction

Module computes the probability of students answering the next

exercise correctly. Algorithm 1 outlines the specific steps of the

implemented algorithm.

4.2 Student-Exercise-Skill Heterogeneous
Learning Interactive Graph Embedding
Module

This module utilizes a Graph Convolutional Network (GCN) to

derive embedding representations for exercises and skills from the

Student-Exercise-Skill Heterogeneous Learning Interactive Graph

(SEK-HLIG). In the SEK-HLIG, neighbor nodes of an exercise

consist of exercises that share the same skill or other exercises

answered by the same student. Similarly, the neighbor nodes of

a skill comprise other skills used by the exercise that employs

the skill. The GCN leverages these interaction paths defined in

SEK-HLIG to process the obtained information. The dissemination

process involves two types of matrices: an “exercise-exercise”

matrix, encompassing interaction paths for exercises sharing the

same skill or answered by the same student, and an “exercise-skill

matrix,” including interaction paths for other skills used in the

exercise that employs the skill.

In the context of the Student-Exercise-Skill Heterogeneous

Learning Interactive Graph Embedding Module, it is evident that

all three interaction paths discussed are linked to the exercise

node. Consequently, the nodes along these paths associated with

an exercise can collectively be termed as the neighboring nodes
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FIGURE 3

Schematic structure of the Psy-KT model network model. The model comprises five components, namely (1) SEK-HLIG Embedding Module, (2)

SE-SG Embedding Module, (3) Knowledge State Modeling Module, (4) Forgetting and Di�culty Analysis Module, and (5) IRT Prediction Module.

of that exercise. The aggregation process involves combining the

exercise node with its neighboring nodes. Notably, student nodes

are excluded from this aggregation process; their role is solely to

facilitate connections in the SEK-HLIG interactions.

The structure of the Graph Convolutional Network (GCN) is

visually represented in Figure 4. Upon inputting the interaction

path from SEK-HLIG into the GCN, the model aggregates

neighbor information to the node by traversing multiple

layers. Subsequently, it computes the output high-dimensional

information (ẽ, k̃) for exercises and skills through the convolutional

layer and the fully connected layer.

Within the convolutional layer of the GCN, the feature

information of the ith node in the graph, which represents an

exercise node ei or a skill node ki, is denoted as zi. The forward

propagation equation for this node is expressed in Equation (5).

z
(l)
i = σ


∑

j∈i
W l−1zl−1j + bl−1


 (5)

Here, σ signifies the nonlinear activation function ReLU, while

W l−1 and bl−1 represent the weight matrix and bias vector,

respectively. This equation encapsulates the fundamental process

by which the GCN’s convolutional layer operates, propagating

feature information of nodes within the graph.

4.3 Student-Exercise Sequential Graph
Embedding Module

This module employs the Gated Graph Neural Network

to derive the hidden state of students based on the Student-

Exercise Sequential Graph (SE-SG). The GGNN processes feature

information, and the corresponding schematic structure is

illustrated in Figure 5.

Within the SE-SG, node information is computed to obtain the

merged result ri using Equation (6).

ri = ei ⊕ ai (6)
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Data: The student’s exercise logs X in a system.

Result: The predicted probability pt+1 that the

student answers exercise qt+1 correctly.

1 Initialization SEK-HLIG;

2 ẽ, k̃← GCN(SEK −HLIG);

3 Ê← SF(ẽ, k̃);

4 output1 ← ẽ⊕ Ê;

5 Initialization SG by answering sequences;

6 while not reach the maximum Epochs E do

7 States extracted from the embedding matrix

based on the exercise index and the answer

index;

8 instate ← exercisestate + answerstate;

9 gi ← Concat(MI
i (W

I instate + bI),MO
i (W

Oinstate + bO))+ instate;

10 hi ← GRU(gi);

11 τi ← Concat(hi, psyi);

12 ℓi ← tanh(W1τi + b1);

13 ρi ← tanh(W2τi + b2);

14 h̃i ← ρi · ((ℓi + 1)/2) · gi;
15 end

16 Get output2 which contains the output state h̃i for

each time step;

17 Compute d← ẽ;

18 α← sigmoid(Wα(z
t
i ⊕ Ê)+ bα);

19 θ ← tanh(Wθ h̃
t
i + bθ );

20 β ← tanh(Wβd
t
i + bβ );

21 pt+1 = sigmoid(Wp(α(θ − β))+ bp);

Algorithm 1. The proposed Psy-KT method for understanding the

learning process.

Here, ⊕ denotes the bitwise summation, while ei and ai represent

an exercise and its corresponding answer in SE-SG, respectively.

The computation of the new state representation gi is derived

from the merged node information ri. Given that SE-SG is a

directed graph, both the incoming and outgoing edges of a node

are considered in this process. The formalized expression for gi is

defined in Equation (7).

gi = concat
{
MI

i

(
[r1, r2, . . . , rn]W

I + bI
)
, (7)

MO
i

(
[r1, r2, . . . , rn]W

O + bO
)}

Here,MI
i ,M

O
i ∈ R1×n represents the corresponding row i in the

exercise-answer matrix, WI ,WO ∈ R
d×d are the weight matrices,

and bI , bO ∈ R
d are the bias vectors.

4.4 Knowledge State Modeling Module

The process of updating the hidden knowledge state, denoted as

hi, involves the Gated Recurrent Unit (GRU) unit, where relevant

information, including psychological features (psyi) and time spent

by the student in answering an exercise (ati), is incorporated. The

resulting new hidden knowledge state, h̃i, is computed through

FIGURE 4

Schematic structure of the GCN network. Comprising three key

components: the aggregation layer, convolutional layer, and fully

connected layer, it ultimately outputs high-dimensional information

for exercises and skills.

a series of equations. Initially, the relevant state information is

combined to form τi in Equation (8).

τi = concat
{
hi, psyi, ati

}
(8)

Subsequently, the learning gains are formalized in Equation (9),

recognizing that not all learning gains lead to an increase in student

knowledge. Equation (10) is introduced to control the quantity of

knowledge that students acquire:

ℓi = tanh
(
W1τ i + b1

)
(9)

ρi = sigmoid
(
W2τi + b2

)
(10)

Here, W1,W2 ∈ R
d×d represent the weight matrices, and

b1, b2 ∈ R
d represent the bias vectors.

The computation of h̃i is expressed in Equation (11). To ensure

that ℓi remains positive, a linear transformation is applied since the

range of tanh is (−1, 1). The learning gain at a specific timestamp is

obtained by multiplying ℓi and ρi, and the overall learning gain is

derived by multiplying with gi:

h̃i = ρi · ((ℓi + 1)/2) · gi (11)

In the Gated Graph Neural Network, the hidden knowledge

state h̃i is updated iteratively, with gi serving as input to each GRU

unit, and h̃i as the output. The node information is updated using

Equation (12):

rti = rt−1i ⊕ gt−1i (12)

The calculation of the Gated Recurrent Unit (GRU) unit

involves several distinct steps to update the hidden state at each

time step. These steps are outlined as follows:

1. Reset gate: This gate determines how the previous hidden state

should be considered at the current time step and is formalized

in Equation (13).

ωt
i = sigmoid

(
Wω · [rti , h̃t−1i ]

)
(13)
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FIGURE 5

Schematic structure depicting the student’s hidden state through the GGNN network. The learning sequence is abstracted into a graph structure,

where information is extracted and merged. The resulting output from the GGNN network serves as the student’s hidden features.

2. Update gate: The update gate dictates how to combine the new

candidate hidden state with the current hidden state to update

it for the current time step. The computation is expressed in

Equation (14).

ξ ti = sigmoid
(
Wξ · [rti , h̃t−1i ]

)
(14)

3. Candidate hidden state: This is a temporarily calculated value

serving as an intermediate result for updating the hidden state

in Equation (15).

γ t
i = tanh

(
Wγ · [rti ,

(
ωt
i ⊙ h̃t−1i

)
]
)

(15)

4. Update hidden state: This step is responsible for updating the

hidden state and is computed in Equation (16).

h̃ti =
(
1− ξ ti

)
⊙ h̃t−1i + ξ ti ⊙ γ t

i (16)

Here, Wω ,Wξ ,Wγ ∈ R
d×2d denote parameters trainable by

the model, and ⊙ denotes the inner product. These sequential

computations collectively facilitate the propagation of information

between nodes in the GRU, following the underlying graph

structure.

4.5 Forgetting Module

The preceding SEK-HLIG Embedding Module, utilizing

Graph Convolutional Networks (GCN), has successfully obtained

embedded representations of exercises and skills. However, the

intricacies of the student learning process extend beyondmastering

skills and linking exercises to relevant skills; the phenomenon of

forgetting after learning is a crucial aspect of semantic information.

This module is introduced to capture semantic details related

to students’ exercise-answering processes, aiming to enrich the

embedded representations of exercises and skills and provide a

more comprehensive understanding of students’ learning journeys.

Within this module, the forgetting function is expressed by

Equation (17):

Ê =
{
fi

(
a ∗ exp−b∗x + c

)
|i ∈ 1, 2, . . . , t − 1

}
(17)

Here, Ê signifies the new student answering state calculated by

the forgetting function, with a, b, c being learnable parameters, and

x representing the interval between the ith timestamp and the initial

timestamp. fi ∈ F denotes the answering state of the student at a

specific timestamp, which can be computed using Equation (18):

A =
(
EWQ

) (
EWK

)T
√
bk

(18)

In this equation, A represents the attention matrix,

WQ,WK ,WV are weight matrices, E = {ei|i ∈ [1, 2, . . . , t − 1]}
corresponds to the student’s responses to exercises, and

√
bk

acts as the scaling factor, ensuring stability in the attentional

weights by balancing their scaling. The expression of E enables the

calculation of correlations between different components, aiding

in determining the critical elements for the task.

The attention weights are utilized to compute the softmax

function in Equation (19):

F = softmax
(
A

(
EWV

))
(19)
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Once the attention weight matrix A is determined, it is applied

to the value matrix EWV to derive the final feature representation

of the student’s answering state. This module plays a crucial

role in capturing the temporal dynamics of learning, specifically

addressing the phenomenon of forgetting, and contributes to a

more nuanced understanding of the evolving knowledge states of

students.

4.6 Di�culty Analysis Module

In real-world educational scenarios, the complexity of

individual exercises tends to vary significantly, exerting a

notable influence on students’ proficiency in answering them

accurately. The difficulty of an exercise is intrinsic to the exercise

itself and remains independent of the student’s mastery of

corresponding knowledge and skills. Therefore, the exercise

difficulty is determined by leveraging the feature information of

the nodes in SEK-HLIG, as outlined by Equation (20):

di =Wdzi + bd (20)

In this equation, Wd represents the weight matrix, bd denotes

the bias vector, and zi encapsulates the feature information

of the ith node. This calculation ensures that the exercise

difficulty is solely derived from the inherent characteristics of

the exercise, untethered from individual student competencies in

the corresponding knowledge and skills. The Difficulty Analysis

Module provides a crucial mechanism for objectively assessing and

categorizing the complexity of exercises, contributing to a more

nuanced understanding of the educational environment.

4.7 IRT Enhanced Prediction Module

The Item Response Theory model, rooted in psychological

theory, explores the correlation between students’ abilities and

the accuracy of their responses. This model incorporates three

key parameters, which are exercise differentiation coefficient (α),

student’s ability (θ), and exercise difficulty (β), calculated through

Equations (21)–(23).

α = sigmoid
(
Wα

(
zti ⊕ Ê

)
+ bα

)
(21)

θ = tanh
(
Wθ h̃

t
i + bθ

)
(22)

β = tanh
(
Wβd

t
i + bβ

)
(23)

Here, Wα , Wθ , and Wβ are learnable weight parameters,

while bα , bθ , and bβ are learnable bias parameters. The exercise

differentiation coefficient (α) reflects the quiz exercise’s ability to

distinguish the student’s level, dependent not only on the student’s

ability but also intricately tied to the exercise itself. This parameter

is defined through the node feature information zti . The enhanced

student answering state (Ê) captures semantic information gleaned

from the process of answering exercises. The student’s ability (θ) is

defined exclusively through the student’s hidden knowledge state

h̃ti . The exercise difficulty (β) is considered solely in relation to

the exercise and is defined through di calculated by the difficulty

analysis layer.

According to IRT theory, the probability pt+1 that a student

correctly answers an exercise in the subsequent timestamp is

calculated by Equation (24):

pt+1 = sigmoid
(
Wt+1 [(α (θ − β))]+ bt+1

)
(24)

Here, Wt+1 and bt+1 are learnable parameters. pt+1 ∈ [0, 1], and

when pt+1 ∈ [0, 0.5], the student is deemed to have answered

incorrectly, while pt+1 ∈ (0.5, 1] indicates a correct response.

To optimize the model, the loss function is defined as

Equation (25), where yt+1 denotes the actual label and pt+1 denotes
the model-predicted result:

Loss = −
∑

t

[
yt+1log

(
pt+1

)
+

(
1− yt+1

)
log

(
1− pt+1

)]
(25)

Minimizing this loss function aims to enhance the model’s

predictive accuracy for diverse exercises, thereby improving the

overall learning process performance. This optimization facilitates

the personalized education system in better understanding and

adapting to individual student states, enabling more effective

learning support and guidance.

5 Experiments

This section outlines the experiments conducted to evaluate

the Psy-KT model’s performance in comparison to five existing

knowledge tracing models across four publicly available datasets.

The overarching goal is to substantiate the efficacy of the proposed

framework in the knowledge tracing task. The experiments

seek answers to four Research Questions (RQ), elucidating

different facets of the model’s performance and contributing to a

comprehensive understanding of its strengths and contributions.

• RQ1: How does the performance of our proposed Psy-KT

model compare to state-of-the-art KT methods?

• RQ2: What is the significance of introducing psychological

factors to model learning performance in the Psy-KT model?

• RQ3: What is the impact of incorporating the forgetting

function into the Psy-KT model on modeling the learning

process?

• RQ4: Is the ItemResponse Theory effective inmaking learning

performance predictions, and how should it be interpreted?

5.1 Datasets

This section outlines the datasets used in our experiments,

emphasizing their characteristics and the rationale behind their

selection. Four public datasets were employed, each serving a

specific purpose in evaluating the Psy-KT model. Two datasets

included psychological indicators, allowing us to investigate the

impact of such factors on students’ responses. To assess the

model’s performance in the absence of psychological indicators,
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TABLE 2 Statistics of the datasets used for the experiments.

Items Assist12 Assist17 Assist09 Algebra05

Number of

students

28,834 1,709 4,151 174

Number of

skills

245 102 138 26

Number of

exercises

50,988 3,162 16,891 1,021

two additional datasets without such features were included for

comparative analysis. Table 2 presents key statistics for these

datasets.

Assist2012–2013: This dataset comprises student exercise data

collected on the ASSISTments platform during the 2012–2013

school year. It includes psychological factors such as average

frustration level, confusion level, concentration level, and boredom

level during exercise answering (Wang et al., 2015). In our work,

we processed this dataset by treating skills as null and removing

erroneous data (e.g., negative answer times). After processing, the

dataset consists of 28,834 students, 245 skills, and 50,988 exercises,

along with corresponding data on answer times and psychological

factors.

Assist2016–2017: Collected in 2017 on the ASSISTments

platform, this dataset provides additional data related to

psychological factors. We selected mean values from this data as

features. Similar to Assist2012–2013, the dataset was processed,

resulting in 1,709 students, 102 skills, and 3,162 exercises, along

with data on answer times and psychological factors.

Assist2009–2010: Collected during the 2009–2010 school year

on ASSISTments, this dataset lacks psychological factor data and

serves as a control. Processed similarly to Assist2012–2013, it

comprises 4,151 students, 138 skills, and 16,891 exercises.

Algebra2005–2006: Provided by the Carnegie Corporation,

this dataset contains data generated by students in a math course

(Lalwani and Agrawal, 2019). Similar to Assist2009–2010, it serves

as a control and lacks psychological factors. After processing, the

dataset consists of 174 students, 26 skills, and 1,021 exercises.

Our study is centered on integrating psychological factors into

the modeling of learning processes. Consequently, the accuracy

and objectivity with which psychological features are collected

in the datasets are critical to this research. The psychological

factor data in the ASSISTment dataset is collected through the

construction of an emotion detector (San Pedro et al., 2013),

which encodes students’ emotional or behavioral states such as

boredom, frustration, engaged concentration, confusion, off-task

behavior, gaming, or any other arbitrary states (Pardos et al.,

2013). The construction of this emotion detector is divided into

two parts: first, observations of students are made using an

Android app and their states are labeled, and then these labels

are used to create an automated emotion detector that can be

applied to large-scale log files. During the observation phase,

two coders simultaneously coded the same student and achieved

good consistency (compared to random; San Pedro et al., 2013).

Furthermore, the ASSISTment dataset has been extensively applied

across numerous studies, encompassing a broad range of areas

such as psychometrics, learning analytics, personalized education,

and the evaluation of teaching effectiveness. This widespread use

underscores its significance and impact within the domains of

psychological and educational research, establishing it as a widely

acknowledged and utilized data resource.

In summary, these datasets collectively provide a diverse and

comprehensive foundation for evaluating the performance of the

Psy-KT model under different contexts and conditions, enabling us

to draw meaningful conclusions about its effectiveness.

5.2 Comparison methods

In this section, we present the comparison methods employed

in our study, comprising five deep learning-based knowledge

tracing models DKT, DKT+, KPT, AKT, and DKVMN, and three

graph structure-based knowledge tracing models GKI, GIKT, and

SGKT. The primary aim of this comparative experiment is to

assess and contrast the performance of our proposed model against

the three aforementioned graph structure-based models. The

evaluation seeks to identify which model demonstrates superior

efficacy in the knowledge tracing task.

1. DKT: The DKT model (Piech et al., 2015) marks a

groundbreaking foray into applying deep learning to knowledge

tracing. Leveraging recurrent neural networks, it captures

students’ responses, utilizes numerous artificial neurons to

delineate temporal dynamics, and extracts potential knowledge

states from the data. The paper presents two types of recurrent

neural networks: a conventional sigmoid-based RNN and an

LSTM model. For our comparison experiment, we opted for

the RNN-based variant. The requisite dataset comprises three

columns: student ID, skill ID corresponding to the exercise, and

an indicator denoting correct or incorrect answers. Each row

encapsulates a piece of answer data.

2. DKT+: The DKT+ model, proposed in Yeung and Yeung

(2018), improves upon some issues present in the DKT model.

This model adds three regularization terms to the loss function

of the DKT algorithm to address issues of fluctuation and

reconstruction, while also considering the current interaction.

The dataset for this model comprises a triad, denoted as X =
quenum,E,A, where quenum is the number of exercises answered,

E denotes exercise IDs, and A denotes the set of responses to

each exercise. Each triad represents a sequence of answers for a

student.

3. KPT: The Knowledge Proficiency Tracing (KPT) model is

proposed based on matrix factorization. This model first

associates each exercise with a skill vector. Given the student’s

exercise feedback log and the Q-matrix (representing the

relationship between exercises and skills), KPT utilizes the Q-

matrix to map each student’s latent skill vector into the skill

space. It combines the prediction of students’ performance in

the next time step based on the learning curve and forgetting

curve. The input data for this model consists of two parts: the

Q-matrix, which represents the relationship between exercises

and skills, and the student’s answer data information. The

student’s answer data information is represented as X =
studentId, ProblemId,Answer, containing the unique identifier
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of the student and the exercises attempted by the student along

with their corresponding answers.

4. AKT: Due to the limitation of RNN used in DKT to handle

excessively long input sequences, an AKT model was proposed.

This model, regardless of input sequence length, directly

captures the relevance of each item in the input to obtain a global

relationship. The dataset required for AKT is a quaternion,

denoted X = quenum,E,K,A, containing the number of

exercises that have been answered, the set of exercise numbers

associated with those exercises, the skill numbers, and the

answers to each exercise. Each quaternion represents a sequence

of student answers.

5. DKVMN: The Dynamic Key-Value Memory Network (Zhang

et al., 2017) employs a static matrix called keys to store

knowledge skills and a dynamic matrix called values to store

and update mastery levels. These matrices collaborate to reveal

the fundamental skills of annotated exercises by students,

portraying the evolving knowledge state. The dataset required

for this model is in the same format as the dataset required for

DKT+ model.

6. GKT: The Graph-based Knowledge Tracing model (Nakagawa

et al., 2019) utilizes diverse techniques to aggregate neighboring

features for updating node features. In our comparison, we

employ Dense Graph computation based on a static approach.

The updated embedded representation is then used to predict

the student’s performance at the next step. The required data

structure for GKT does not demand extensive processing; it

only involves deleting duplicates and null data from the original

dataset.

7. GIKT: The Graph-based Interaction Knowledge Tracing model

(Yang et al., 2021) incorporates Graph Convolutional Networks

(GCN) to delineate the relationship between skills and exercises.

Introducing a History Recap module and an Interaction

module further details the relationships within the student-

exercise-skill triad. GIKT organizes the dataset as a quaternion,

denoted as X = quenum,K,E,A, encompassing the number

of exercises answered, the set of skill numbers associated

with those exercises, exercise numbers, and responses to each

exercise. Each quaternion represents a sequence of answers for

a student.

8. SGKT: The Session Graph-based Knowledge Tracing

model (Wu et al., 2022) conceptualizes the student answer

sequence as a Session Graph. It extracts the student’s hidden

learning state through Gated Graph Neural Networks and

acquires semantic descriptive information through Graph

Convolutional Networks (GCN) and a Self-attention

mechanism. The amalgamation of these components

is then employed for predicting the student’s answer.

The dataset structure for SGKT aligns with that of the

GIKT model.

5.3 Evaluation metrics and basic
parameterization

In this experiment, we employ several metrics, including AUC,

Accuracy, Precision, and F1-Score, to comprehensively evaluate the

performance of the models.

1. AUC: AUC (Area Under the Curve) measures the area under

the Receiver Operating Characteristic (ROC) curve, indicating

the area between the curve and the axes. A higher AUC

value suggests superior model performance, signifying better

discrimination between positive and negative cases. An AUC of

1 indicates perfect classification, while an AUC of 0.5 signifies a

model equivalent to random guessing.

2. Accuracy: Accuracy assesses the model’s ability to correctly

categorize samples and is calculated in Equation (26).

Accuracy = TP + TN

TP + TN + FP + FN
(26)

where TP is the number of samples correctly predicted as

positive, TN is the number of samples correctly predicted as

negative, FP is the number of samples incorrectly predicted as

positive, and FN is the number of samples incorrectly predicted

as negative. The numerator, TP + TN, represents the correctly

categorized samples, and the denominator, TP+TN+FP+FN,

represents the total number of samples.

3. Precisionclass: To assess the balance of model performance, we

use the class-specific Precision. It gauges the proportion of

samples predicted by the model as positive, which are indeed

positive examples. It is calculated in Equation (27).

Precisionclass =
TPclass

TPclass + FPclass
(27)

4. F1class: To assess the balance of model performance, we employ

the class-specific F1. It integrates the class-specific Precision and

Recall, effectively balancing false positives and false negatives.

With a range of 0 to 1, it is calculated using Equation (28).

F1class = 2 · Precisionclass + Recallclass

Precisionclass · Recallclass
(28)

This experiment was conducted on a server equipped with an

NVIDIA GeForce RTX 2080 Ti GPU, utilizing the Python 3.8 and

TensorFlow 2.4 framework along with the Adam optimizer for

model training. The dataset was split, allocating 80% for training

and 20% for testing purposes.

The essential parameters for the proposed Psy-KT model, as

outlined in this paper, are configured as follows:

• The maximum number of training times is 200.

• The learning rate is set to 0.00025.

• The learning rate decay factor is set to 0.92.

• Different training batches are set according to different

datasets. For example, it is set to 6 for the Assist12 dataset and

12 for the Algebra05 dataset.

• The Drop layer parameter was set to [0.8,0.8,1] to prevent

overfitting.

5.4 Experiment result and analysis

5.4.1 Main results (RQ1)
1. AUC: The outcomes of the experiment conducted on four

public datasets are summarized in Table 3. The Area Under

Frontiers in Psychology 14 frontiersin.org

https://doi.org/10.3389/fpsyg.2024.1359199
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Wang et al. 10.3389/fpsyg.2024.1359199

TABLE 3 The performance comparation beween the proposed Psy-KT

and the state-of-the-art (SOTA) methods in terms of AUC (%) on four

databases.

Methods Datasets

Assist12 Assist17 Assist09 Algebra05

DKT 72.6 66.2 71.2 72.7

DKT+ 73.4 65.7 73.5 61.6

KPT 67.2 75.2 75.6 73.2

AKT 73.0 73.8 69.6 75.7

DKVMN 74.6 63.9 73.1 74.8

GKT 75.7 76.2 72.9 73.9

GIKT 77.4 74.5 78.5 75.1

SGKT 81.4 76.5 79.6 77.4

Psy-KT 83.1 79.6 80.9 77.6

Bold indicates the best performance, and underline indicates the second-best performance.

the Curve (AUC) results demonstrate that SGKT exhibits

superior performance among existing knowledge tracing

models, consistently delivering commendable results across all

datasets, with a peak achievement of 81.4% on the Assist12

dataset. The Psy-KT model proposed in this paper outperforms

other models in terms of AUC. Across all four datasets, Psy-KT

consistently yields slightly higher AUC values than the SGKT

model. Specifically, Psy-KT exhibits a noteworthy improvement

of 1.7% on the Assist12 dataset, a substantial 3.1% increase on

the Assist17 dataset, a 1.3% gain on the Assist09 dataset, and

a 0.5% enhancement on the Algebra05 dataset. The Incomplete

Gamma Function IRT model demonstrates a modest increase of

0.2% in AUC.

Moreover, as visually represented in Figure 6, distinct

performance disparities emerge between datasets. Notably,

the AUC of the Psy-KT model exhibits more pronounced

improvements in datasets with emotional elements, such

as Assist12 and Assist17. This suggests that incorporating

emotional elements enhances the model’s ability to characterize

students’ learning processes.

2. Accuracy: The accuracy outcomes for each dataset are presented

in Table 4. The results indicate that SGKT outperforms the

GKT and GIKT models, securing the highest accuracy on

the Assist12 dataset. The proposed model exhibits superior

accuracy, surpassing SGKT in performance. Specifically, there

is a 0.2% improvement on the Assist12 dataset, a substantial

3% increase on the Assist17 dataset, a significant 5.3% gain on

the Assist09 dataset, and a 0.4% enhancement on the Algebra

dataset.

Furthermore, as visually depicted in Figure 7, the accuracy

of the Psy-KT model remains relatively stable across both

types of datasets. This stability suggests that the model

adeptly integrates both psychological and non-psychological

information, showcasing flexibility in adapting to diverse

data types. The model’s capacity to achieve stable accuracy

underscores its capability to avoid overreliance on psychological

factors alone for classification.

3. Class-specific precision: The class-specific precision outcomes

for each dataset are displayed in Table 5. Examining Class 0

precision across all datasets, Psy-KT consistently achieves the

highest precision, indicating its exceptional performance in this

category and a high correctness rate. For Class 1 precision,

Psy-KT attains the highest precision on the Assist09 dataset.

However, as illustrated in Figure 8, SGKT outperforms on

the Assist12 and Algebra05 datasets, suggesting that dataset-

specific characteristics influence model advantages.

Considering the average precision values for both categories

collectively (Table 6), Psy-KT exhibits higher average precision

than models without psychological factors (GKT, GIKT, and

SGKT) on the Assist12 and Assist17 datasets. This implies that

the inclusion of psychological factors significantly enhances

performance on these datasets. On the Assist09 and Algebra05

datasets, performance is also improved to a certain extent

even in the absence of psychological features. This indicates an

overall superior performance and learning ability of the model,

allowing it to effectively capture dataset patterns and features

even without relying solely on psychological factors.

4. Class-specific F1-Score: The class-specific F1-Score metrics

across different datasets are presented in Table 7. Examining

Class 0, SGKT achieves the highest F1-Score on the Assist12

dataset, while the Psy-KT model outperforms on the remaining

three datasets. This suggests that the Psy-KT model exhibits a

balanced performance on Class 0 when considering Precision

and Recall together, resulting in a higher F1-Score. For Class 1,

the Psy-KT model attains the highest F1-Score on the Assist12

and Assist09 datasets, showcasing its effectiveness in classifying

this category. Both Psy-KT and SGKT achieve the highest F1-

Score on the Algebra05 dataset, indicating similar advantages in

handling Class 1 for this specific dataset.

Notably, as shown in Figure 9, the GIKT model secures the

highest F1-Score on the Assist17 dataset, which may be influenced

by the dataset’s specific nature and label distribution, making the

GIKT model more suitable for this type of data.

Considering the average F1-Scores for both categories together

(Table 8), the Psy-KTmodel performs relatively well on the Assist12

dataset with sentiment indicators but slightly lags behind the model

without psychological factors on the Assist17 dataset. This suggests

that the importance and influence of psychological factors may vary

across datasets, leading to performance differences.

The Psy-KT model exhibits commendable performance

across various evaluation metrics, notably demonstrating relative

strengths in handling datasets enriched with psychological factors.

Nevertheless, it is crucial to acknowledge that performance

disparities may be influenced by specific characteristics inherent to

each dataset, necessitating ongoing refinement and adjustment.

The inclusion of psychological factors in the model proves

to be beneficial, providing a more nuanced understanding of

students’ learning processes. This nuanced perspective enhances

the model’s effectiveness in predicting students’ future performance

in answering exercises, showcasing the potential of integrating

psychological considerations into knowledge tracing models.

As with any complex model, the Psy-KT’s performance is

context-dependent, and its optimal utility may vary across different

educational datasets. Future work should delve into further
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FIGURE 6

Visual comparison of AUC performance of the method proposed in this paper with the SOTA methods on four databases.

TABLE 4 The performance comparation beween the proposed Psy-KT

and the SOTA methods in terms of Accuracy (%) on four databases.

Methods Datasets

Assist12 Assist17 Assist09 Algebra05

DKT 70.3 65.2 68.7 62.8

DKT+ 71.2 66.1 66.0 68.9

KPT 70.3 69.1 71.1 68.4

AKT 73.7 66.5 70.7 67.0

DKVMN 72.5 65.5 68.6 63.4

GKT 72.4 70.4 68.9 62.1

GIKT 72.8 72.9 71.2 70.2

SGKT 78.3 71.3 71.8 76.8

Psy-KT 78.5 74.3 76.5 77.2

Bold indicates the best performance, and underline indicates the second-best performance.

refinement and exploration of the model’s parameters, considering

the intricate interplay between psychological features and diverse

dataset characteristics. This iterative process will contribute to a

more robust and versatile Psy-KTmodel, better equipped to handle

the nuances of various educational scenarios and student learning

contexts.

5.4.2 Convergence rate
This section compares the convergence rates of the Psy-KT

model across four distinct datasets to assess its performance. The

experimental results are visually represented in Figure 10. Analysis

of the outcomes reveals variations in losses across different datasets,

with the loss on the validation set generally exceeding that on the

training set. Both training and validation set losses exhibit a gradual

decline with increasing epochs, suggesting a progressive learning

process without apparent signs of significant overfitting.

While all four datasets demonstrate a tendency to converge

within different training epochs, there are notable differences

in the magnitude of the loss values. These variations may

be attributed to factors such as dataset characteristics, size,

and the uneven distribution of data. Notably, the validation

set losses on the Assist16 and Algebra05 datasets are

relatively high in this experiment. This indicates room for

improvement in the model’s generalization ability for these

datasets, highlighting a potential need for additional data

preprocessing efforts.

5.5 Validity analysis of psychological
factors (RQ2)

To ascertain the significance of psychological factors in

the knowledge tracing task, an assessment was conducted

by excluding the dataset’s instances containing psychological

factors within Assist12 and Assist17. The model’s performance

was subsequently evaluated on these modified datasets.

The results, depicted in Table 9, reveal that the removal of

psychological factors has a nuanced impact on the model’s

performance metrics.

Specifically, as shown in Figure 11, there is a significant

decrease in all metrics, particularly in AUC, when psychological

factors are excluded. Conversely, in datasets that include

psychological factors, the model demonstrates improved

performance in both AUC and Accuracy.

These findings suggest that the inclusion of psychological

factors in the knowledge tracing task positively contributes to

the model’s ability to describe students’ exercise-answering states.

This inclusion facilitates a more comprehensive understanding of

the students’ learning and exercise-answering processes, leading

to more accurate predictions of their knowledge tracing. The

enhancement in interpretability not only refines the model’s

predictive capabilities but also enriches its capacity to foresee

students’ future exercise-answering performance.
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FIGURE 7

Visual comparison of Accuracy performance of the method proposed in this paper with the SOTA methods on four databases.

TABLE 5 The performance comparison between the proposed Psy-KT and the SOTA methods in terms of class-specific precision (%) on four databases.

Methods

Datasets

Assist12 Assist17 Assist09 Algebra05

Class 0 Class 1 Class 0 Class 1 Class 0 Class 1 Class 0 Class 1

DKT 61.3 75.6 63.5 60.6 67.5 71.5 63.8 64.0

DKT+ 64.9 77.6 68.9 67.9 66.5 72.7 63.1 61.0

KPT 63.4 76.4 71.2 66.2 69.7 74.7 63.0 65.6

AKT 68.3 77.5 73.1 74.0 73.6 74.5 65.8 65.4

DKVMN 60.4 73.8 66.3 60.0 68.4 71.1 59.7 64.7

GKT 62.9 75.1 65.2 67.8 68.6 67.4 59.9 65.2

GIKT 64.6 74.4 74.6 69.2 74.7 70.3 62.1 79.4

SGKT 74.5 79.2 72.7 67.7 72.3 71.7 58.7 79.7

Psy-KT 80.7 78.0 75.2 70.9 75.7 76.9 67.4 78.8

Bold indicates the best performance, and underline indicates the second-best performance.

5.6 Validity analysis of forgetting curve
(RQ3)

To assess the impact of the forgetting curve within the Psy-

KT model, an alternative model without the forgetting curve

was developed. This model was applied to four distinct datasets,

and its performance was compared against the original model.

The evaluation focused on two key performance metrics, namely

Area Under the Curve (AUC) and Accuracy. Results, outlined in

Table 10, demonstrate a notable advantage of the model with the

forgetting curve across all datasets.

The AUC values for the model incorporating the forgetting

curve consistently outperform the model without it. This

enhancement is particularly evident in the Algebra05 dataset,

emphasizing the effectiveness of the forgetting curve in improving

the model’s performance. Similarly, the model with the forgetting

curve exhibits superior Accuracy, with a more pronounced

performance gap on the Algebra05 dataset.

While the impact of the forgetting curve varies across

datasets, as visually represented in Figure 12, the general

trend is a positive correlation between the presence of

the forgetting curve and improved model performance.

This observation underscores the forgetting curve’s

utility in simulating the forgetting process inherent in

students’ learning. Moreover, it contributes to the overall

interpretability of the model, aligning with the objective of

enhancing its ability to capture the nuances of the forgetting

phenomenon.
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FIGURE 8

Visual comparison of class-specific precision performance of the method proposed in this paper with the SOTA methods on four databases.

TABLE 6 The performance comparison between the proposed Psy-KT

and the SOTA in terms of average precision (%) on four databases.

Methods Datasets

Assist12 Assist17 Assist09 Algebra05

DKT 68.5 62.1 69.5 63.9

DKT+ 71.2 68.4 72.5 69.0

KPT 69.9 68.7 72.1 63.6

AKT 72.9 73.5 74.1 65.6

DKVMN 67.1 63.2 69.8 62.2

GKT 69.0 66.5 68.0 62.6

GIKT 69.5 71.9 72.5 70.8

SGKT 76.9 70.2 72.0 69.2

Psy-KT 79.4 73.1 76.3 73.1

Bold indicates the best performance, and underline indicates the second-best performance.

5.7 Validity analysis of IRT enhanced
prediction (RQ4)

To scrutinize the validity of the Item Response Theory and its

influence on predictive performance, an alternative model utilizing

a fully connected layer for predictions is devised. This model

is then compared against the IRT theoretical model on diverse

datasets, using AUC and Accuracy as evaluation metrics. The

results, detailed in Table 11, illuminate the effectiveness of the IRT

theoretical model.

The IRT model consistently outperforms the fully connected

layer model across all datasets, demonstrating its superior

predictive capabilities. Specifically, as visually represented in

Figure 13, the AUC values for the IRT model are significantly

higher, emphasizing its capacity to better capture the intricate

relationship between students’ abilities and their exercise-

answering performance. The superiority of the IRT model extends

to Accuracy as well, reaffirming its effectiveness in predicting

students’ exercise-answering performance.

These findings suggest that the IRT theoretical model is not

only adept at adapting to diverse datasets but also holds substantial

potential for practical applications in educational andmeasurement

contexts.

5.8 Sensitivity analysis (RQ4)

The IRT theoretical model, incorporating parameters α, β , and

θ to quantify student ability, is a cornerstone of the constructed

model in this study for evaluating students’ future exercise-

answering performance. This section aims to elucidate the efficacy

of the IRT theoretical model in the context of knowledge tracing.

Specifically, a randomly selected exercise from the Assist12 dataset

is scrutinized to analyze how the three parameters within the IRT

theoretical model articulate student ability.

As per the model’s prediction, the probability of a student

correctly answering the selected exercise is determined to be 0.348.

The visualization results of the corresponding three parameters are

presented in Figure 14, where the horizontal coordinates denote

the multidimensional feature sequences for each parameter, and

the vertical coordinates depict the parameter values associated with

each feature.

The differentiation parameter α for exercise proficiency

fluctuates within the interval [0.15, 1.93], indicating varied

sensitivity to different features, reflecting nuanced distinctions in

students’ abilities. The parameter θ − β gauges the alignment

between a student’s ability and the exercise difficulty; in several
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TABLE 7 The performance comparison between the proposed Psy-KT and the SOTA methods in terms of class-specific F1-Scores (%) on four databases.

Methods

Datasets

Assist12 Assist17 Assist09 Algebra05

Class 0 Class 1 Class 0 Class 1 Class 0 Class 1 Class 0 Class 1

DKT 51.9 72.7 77.5 52.3 60.7 75.3 54.1 77.9

DKT+ 54.1 75.2 77.7 52.9 60.6 74.4 57.4 84.1

KPT 56.4 80.0 73.0 54.1 62.8 79.1 54.6 86.6

AKT 58.6 81.2 72.1 56.0 61.1 75.9 58.7 78.3

DKVMN 55.1 75.2 76.3 53.5 60.3 72.8 55.6 79.6

GKT 52.5 78.3 75.4 56.7 55.6 74.9 52.7 82.4

GIKT 53.5 81.9 79.3 61.0 59.2 79.6 54.3 85.9

SGKT 59.4 85.1 78.3 57.2 60.5 79.5 60.3 87.8

Psy-KT 56.7 85.7 82.2 54.3 65.7 82.1 62.3 87.8

Bold indicates the best performance, and underline indicates the second-best performance.

FIGURE 9

Visual comparison of class-specific F1 performance of the method proposed in this paper with the SOTA methods on four databases.

feature dimensions, the student’s ability falls below the difficulty

valuation (θ − β is a negative value), implying a high likelihood

of the student being unable to answer the exercise correctly. In

summary, the IRT module adeptly represents students’ abilities

across different feature dimensions, underscoring the model’s

effectiveness in knowledge tracing.

5.9 Di�erentiating the proposed model
from existing graph-based knowledge
tracing models

This section highlights the distinct features and advancements

of the Psy-KT model over other graph-based knowledge tracing

models, specifically GKT, GIKT, and SGKT, which were used in

comparative experiments.

1. Skill and exercise representation:GKT, as an initial exploration

into graph-based structures for knowledge tracing, utilizes

a basic model that primarily captures relationships between

skills. Subsequent models, including GIKT and SGKT, advance

this by incorporating heterogeneous graphs. In GIKT, nodes

represent exercises and skills, explicitly linking skills to exercises.

Both the SGKT and our Psy-KT models further enhance this

approach by using nodes that represent students, exercises, and

skills. This expanded node representation captures complex

interactions not only between students and exercises but

also between skills and exercises, providing a richer data

representation that facilitates a deeper understanding of

learning dynamics.

Frontiers in Psychology 19 frontiersin.org

https://doi.org/10.3389/fpsyg.2024.1359199
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Wang et al. 10.3389/fpsyg.2024.1359199

2. Modeling student states: The Knowledge State Modeling

Module in the Psy-KT model uses a Gated Graph Neural

Network (GGNN) that integrates students’ historical answer

data along with psychological factors. This integration enables

a comprehensive view of changes in student states during the

exercise answering process. The inclusion of cognitive and

psychological data aids in accurately determining students’

learning states and tailoring personalized support. In contrast,

GKT relies on simpler functions and Multi-Layer Perceptrons

(MLPs) to update student states. GIKT uses LSTM along with

a module for reviewing historical answers, whereas SGKT

TABLE 8 The performance comparison between the proposed Psy-KT

and the SOTA methods in terms of Average F1 (%) on four databases.

Methods
Datasets

Assist12 Assist17 Assist09 Algebra05

DKT 62.3 64.9 68.0 66.0

DKT+ 64.6 65.3 67.5 70.7

KPT 68.2 63.5 70.9 70.6

AKT 69.9 64.1 68.5 68.5

DKVMN 65.2 64.9 66.6 67.6

GKT 65.4 66.1 65.3 67.8

GIKT 67.7 70.2 69.4 70.1

SGKT 72.3 67.8 70.0 74.1

Psy-KT 71.2 68.3 73.9 75.1

Bold indicates the best performance, and underline indicates the second-best performance.

employs GGNNs, similar to Psy-KT but without incorporating

psychological factors.

3. Analysis of exercise difficulty: The Psy-KT model introduces

a novel Difficulty Analysis Layer following the construction

of the heterogeneous graph and the extraction of embedding

representations via a Graph Convolutional Network (GCN).

This layer evaluates features that indicate the difficulty level of

exercises, thereby enhancing the model’s capability to discern

varying difficulty levels. This feature distinctly improves the

accuracy of predictions concerning student performance, a

functionality not available in GKT, GIKT, or SGKT.

4. Prediction of student performance: For forecasting students’

future performance, Psy-KT integrates an ItemResponse Theory

(IRT) model, which not only increases prediction accuracy

but also adds to the interpretability of the results. GKT uses

a simpler approach by merging previous outputs through a

Sigmoid function. Both GIKT and SGKT extend the modeling

of student skills to historical answer records and apply attention

networks to compute dual attention weights for all interactions,

TABLE 9 AUC and Accuracy (%) of validating the role of psychological

factors in knowledge tracing tasks on the Assist12 dataset and the

Assist17 dataset, with psychological factors (with psy) and without

psychological factors (no psy), respectively.

Performance

Datasets

Assist12 Assist17

No Psy With Psy No Psy With Psy

AUC 78.8 83.1 70.9 79.6

Accuracy 74.2 78.5 73.7 74.3

Bold indicates the best performance.

FIGURE 10

Convergence trends of the Psy-KT model across the four datasets. Although all four datasets exhibit a convergence trend, di�erences exist in

convergence speed and loss magnitude.
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FIGURE 11

Visual representation of the results of validating the role of psychological factors in the knowledge tracing task on the Assist12 dataset and the

Assist17 dataset, with psychological factors (Psy) and without psychological factors (No_Psy), respectively.

TABLE 10 AUC and Accuracy (%) of validating the role of forgetting curves in a knowledge tracing task on four datasets.

Performance
Datasets

Assist12 Assist17 Assist09 Algebra05

AUC
No forget 57.3 61.1 66.9 53.7

With forget 83.1 79.6 80.9 77.6

Accuracy
No forget 67.8 63.0 64.9 61.4

With forget 78.5 74.3 76.5 77.2

Bold indicates the best performance.

FIGURE 12

Visual representation of the results validating the role of forgetting curves in a knowledge tracing task on four datasets. No_F_ stands for without

forgetting curves for Psy-KT, while F_ stands for Psy-KT with forgetting curves.

thus deriving predictions from weighted sums. Psy-KT’s use of

IRT stands out by providing a more structured and theoretically

grounded approach to predictions.

These distinctions underscore the innovative elements

of the Psy-KT model, demonstrating its superiority in

addressing the complexities of student learning processes

through enhanced modeling of interactions and state

changes, alongside a thoughtful consideration of instructional

content difficulty.

6 Conclusions and future work

This paper has introduced the Psy-KT model, a novel approach

that enriches knowledge tracing by integrating psychological

factors into the analysis of student learning. The model utilizes

a heterogeneous learning interactive graph to adeptly capture the

complex relationships among students, exercises, and skills. A key

innovation of Psy-KT is its incorporation of psychological factors,

which offers a more nuanced understanding of students’ states
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TABLE 11 AUC and Accuracy (%) of validating the role of prediction using IRT theoretical models in a knowledge tracing task on four datasets.

Performance
Datasets

Assist12 Assist17 Assist09 Algebra05

AUC
FC 54.2 51.3 53.5 51.2

IRT 83.1 79.6 80.9 77.6

Accuracy
FC 67.8 61.1 61.3 60.7

IRT 78.5 74.3 76.5 77.2

FC stands for Psy-KT using fully connected layer for learning prediction, and IRT stands for Psy-KT using IRT for learning prediction. Bold indicates the best performance.

FIGURE 13

Schematic representation of the results of validating the role of prediction using IRT theoretical models in a knowledge tracing task on four datasets.

FIGURE 14

Schematic of the quantization of the three parameters in the IRT model on a randomly selected exercise.

during their interactions with learning materials. The model also

features a forgetting curve that simulates the natural decay of

knowledge over time, thereby enhancing its realism and fidelity.

Furthermore, the integration of cognitive parameters and the Item

Response Theory model greatly enhances the interpretability and

utility of the tracing outcomes.

The performance of the Psy-KT model has been rigorously

evaluated across four public datasets, demonstrating its superiority
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over existing state-of-the-art knowledge tracing models. The

inclusion of psychological and forgetting factors notably improves

the model’s performance, indicating the value of these integrations.

Detailed comparative analyzes also affirm the effectiveness of

the IRT model within the Psy-KT framework, underscoring its

theoretical and practical contributions to the field.

Despite its strengths, the Psy-KT model encounters challenges

in performance consistency across different datasets and student

groups, highlighting the need for improved robustness and

adaptability. The model’s reliance on detailed psychological data,

which is often limited in availability, poses a significant constraint

on the scope of experimental validation and the depth of insight

that can be achieved. Addressing the nuanced categorization

of psychological factors and mitigating potential overfitting are

ongoing challenges.

Looking ahead, future research will focus on enhancing the

robustness of the model and expanding the methods for acquiring

and integrating psychological data into knowledge tracing. This

effort will involve overcoming obstacles related to privacy

concerns, data collection methodologies, and the application of

advanced data analytics. By navigating these challenges, we aim

to further refine the model’s accuracy and applicability, thereby

contributing more effectively to personalized education strategies

and interventions.
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