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In the social sciences, accurately identifying the dimensionality of measurement 
scales is crucial for understanding latent constructs such as anxiety, happiness, 
and self-efficacy. This study presents a rigorous comparison between 
Parallel Analysis (PA) and Exploratory Graph Analysis (EGA) for assessing the 
dimensionality of scales, particularly focusing on ordinal data. Through an 
extensive simulation study, we  evaluated the effectiveness of these methods 
under various conditions, including varying sample size, number of factors 
and their association, patterns of loading magnitudes, and symmetrical or 
skewed item distributions with assumed underlying normality or non-normality. 
Results show that the performance of each method varies across different 
scenarios, depending on the context. EGA consistently outperforms PA in 
correctly identifying the number of factors, particularly in complex scenarios 
characterized by more than a single factor, high inter-factor correlations and 
low to medium primary loadings. However, for datasets with simpler and 
stronger factor structures, specifically those with a single factor, high primary 
loadings, low cross-loadings, and low to moderate interfactor correlations, PA 
is suggested as the method of choice. Skewed item distributions with assumed 
underlying normality or non-normality were found to noticeably impact the 
performance of both methods, particularly in complex scenarios. The results 
provide valuable insights for researchers utilizing these methods in scale 
development and validation, ensuring that measurement instruments accurately 
reflect theoretical constructs.
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1 Introduction

In the social sciences, particularly within psychological and educational research, 
measurement instruments, or scales, play a pivotal role in assessing latent constructs such as 
anxiety, happiness, and self-efficacy, which cannot be directly observed (Hayton et al., 2004; 
Costello and Osborne, 2005; Cho et al., 2009). These scales are essential for quantifying and 
analyzing various facets of human behavior. A critical aspect of developing and utilizing a scale 
is the understanding of its dimensionality, which refers to the number and types of latent 
factors that impact the observed variables. Accurate determination of a scale’s dimensionality 
is crucial, as it ensures the instrument’s alignment with its conceptual framework and 
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theoretical foundations (Hayton et al., 2004; Costello and Osborne, 
2005; Cho et al., 2009).

Exploratory factor analysis is a widely used technique in scale 
development. Its employment helps researchers to identify the number 
of underlying factors influencing observed variables (Costello and 
Osborne, 2005). The literature suggests several criteria for this 
purpose, including eigenvalues greater than one (Kaiser, 1960), the 
scree test (Cattell, 1966), the minimum average partial (MAP) 
correlation procedure (Velicer, 1976), parallel analysis (PA) (Horn, 
1965; Hayton et al., 2004), revised parallel analysis (Green et al., 2012) 
and, more recently, exploratory graph analysis (EGA) (Golino and 
Epskamp, 2017). PA is often cited as one of the most reliable methods 
for assessing dimensionality (Hayton et  al., 2004; Costello and 
Osborne, 2005; Goretzko et al., 2021), consistently outperforming 
other criteria in analyzing continuous (Crawford et  al., 2010; 
Auerswald and Moshagen, 2019), dichotomous, and ordinal data 
(Tran and Formann, 2009; Yang and Xia, 2015). EGA, introduced by 
Golino and Epskamp (2017) and further investigated in subsequent 
studies (Golino et al., 2020; Cosemans et al., 2022), employs network 
analysis techniques to visualize and determine data set dimensionality. 
It has shown effectiveness for continuous and dichotomous data, 
suggesting a novel approach to factor analysis that could supplement 
or, in some cases, replace traditional methods.

Despite these advancements, a significant gap remains in the 
empirical examination of PA and EGA, especially concerning their 
application to ordinal data—typical in Likert-scale assessments in 
education and psychology. The main challenge involves accurately 
identifying the dimensionality of scales utilizing ordinal responses 
without assuming an underlying normally distributed latent variable. 
Given these considerations, our study aims to thoroughly evaluate the 
effectiveness of PA and EGA in retaining the dimensionality of both 
unidimensional and multidimensional scales, with a specific emphasis 
on simulated ordinal data characterized by diverse underlying 
distributions. The study aims to provide practitioners with 
comprehensive insights, thereby aiding in the selection of the most 
appropriate dimensionality assessment techniques for their studies.

2 Parallel analysis and exploratory 
graph analysis

Parallel Analysis (PA) is used to determine the appropriate 
number of factors in a dataset, ensuring that the factors extracted are 
based on the intrinsic properties of the data rather than on random 
chance. It generally involves generating random data sets, calculating 
their eigenvalues, and comparing these to the eigenvalues of the actual 
data. Factors are retained if their eigenvalue exceeds the threshold set 
by random eigenvalues. Different implementations of PA exist, some 
considering the 95th percentile, others the mean of the random 
eigenvalues as the cutoff. Commonly, PA employs principal 
components analysis, often found more effective than common factor 
analysis (Ruscio and Roche, 2012; Auerswald and Moshagen, 2019). 
The suitability of Pearson vs. polychoric correlations for PA, especially 
with ordinal data, is debated, with a preference often given to 
polychoric correlations (Timmerman and Lorenzo-Seva, 2011; 
Garrido et al., 2013).

Exploratory Graph Analysis (EGA) is a more recent approach that 
diverges from traditional factor analysis methods and is rooted in 

network analysis (Golino and Epskamp, 2017). Unlike factor analysis, 
which presupposes a common cause for observed variables, network 
analysis takes the perspective that the co-occurrence of human 
behaviors or psychopathology symptoms arises from mutual influence 
among these observed variables (Christensen and Golino, 2021). In 
EGA, variables are conceptualized as nodes within a network, and the 
associations between variables are depicted as edges in the network 
structure. Through the clustering of these nodes, EGA identifies latent 
factors or communities of variables without explicitly assuming latent 
variables. This usually involves computing partial correlations using a 
Gaussian Graphical Model with GLASSO regularization and the 
Extended Bayesian Information Criterion (EBIC) algorithm for model 
selection (Golino and Epskamp, 2017). Subsequently, a community 
detection algorithm is applied to group items into clusters, with these 
clusters being shown to correspond to latent factors (Christensen and 
Golino, 2021). While the original EGA algorithm had a tendency to 
identify multiple factors even in cases where data were generated from 
a unidimensional structure, Golino et  al. (2020) addressed this 
limitation by developing a new EGA algorithm specifically tailored to 
handle unidimensional structures. It is this refined approach that 
we employ in the current study.

3 Methods

3.1 Simulation design

To comprehensively evaluate the performance of both EGA and 
PA, we devised a simulation design, closely aligned with previous 
simulation studies (Goretzko and Bühner, 2020, 2022). Our 
simulations included datasets with sample sizes of 300, 600, or 1,000 
observations, reflecting the range typically encountered in real-world 
research settings. We varied the number of latent factors, generating 
scenarios with one, two, or four underlying factors, covering 
unidimensional and multidimensional structures. Primary loadings, 
chosen from a uniform distribution, ranged from 0.35 to 0.80, 
categorized as small (0.35–0.50), medium (0.50–0.65), and high (0.65–
0.80). Similarly, cross-loadings ranged from 0 to 0.40, categorized as 
small (0–0.10), medium-sized (0.10–0.20), and high (0.20–0.30). This 
variation captured different levels of factor saturation and specificity, 
crucial for evaluating method sensitivity to variable-factor 
associations. We  also considered orthogonal and oblique factor 
structures, with inter-factor correlations set to 0, 0.3, or 0.6. 
Additionally, we manipulated the number of manifest variables by 
including either five or 10 indicators per factor, and varied the number 
of categories per variable, utilizing either four or five categories, to 
closely resemble real-world scenarios encountered in psychological 
and educational measurement and scale development studies.

A population correlation matrix was created for each data set 
based on the following decomposition:

 ΤΣ = ΛΦΛ + Ψ

where Λ  represents the factor loading matrix, which contains the 
loadings of observed variables on the latent factors, Φ  denotes the 
factor correlation matrix, a symmetric matrix with ones on the 
diagonal and the correlations between different factors on the 
off-diagonal, Ψ  is the covariance matrix among residuals. The 
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diagonal elements of Ψ  are the unique variances of each variable and 
are calculated by subtracting the variance attributed to the factors (the 
diagonal elements of ΤΛΦΛ ) from the total variance of each variable.

To simulate ordinal data, the typical approach starts with 
generating continuous data from a multivariate normal distribution, 
which then is discretized into a specified number of ordinal categories. 
In other words, observed ordinal data usually are assumed to reflect 
normally distributed unobserved continuous variables that have been 
discretized. In this study, we varied the underlying distribution of the 
continuous variable to examine its impact on estimation performance, 
given the common but questionable assumption of underlying 
normality in polychoric correlations. This assumption is particularly 
dubious in the social sciences, where variables frequently deviate from 
normal distribution, potentially biasing the polychoric correlation 
estimates (Foldnes and Grønneberg, 2020).

Therefore, to investigate how different distributions impact 
estimation accuracy, we  generated continuous data from either a 
multivariate normal or a multivariate non-normal distribution, given 
the specific correlation matrix, Σ . To simulate the multivariate normal 
data, we utilized the mvtnorm package (Genz et al., 2023). In contrast, 
the multivariate non-normal data were simulated using the 
independent generator method, as implemented in the R package 
covsim (Grønneberg et  al., 2022), with predetermined univariate 
skewness and kurtosis set at 2 and 7, respectively. Following the 
generation of these distributions, we converted the continuous data 
into ordinal data by discretizing it either using symmetrical item 
distributions or (positively) skewed item distributions according to the 
procedure described by Yang and Xia (2015) and used in the simulation 
study of Goretzko and Bühner (2022). Specifically, for ordinal variables 
with four categories, symmetric thresholds were set at (−0.67, 0, 0.67) 
while asymmetric thresholds were (0, 0.43, 0.97). For variables with five 
categories, symmetric thresholds were (−0.84, −0.25, 0.25, 0.84), and 
asymmetric thresholds were set at (0.08, 0.25, 0.62, 1.11).

We determined the number of factors for PA and EGA using the 
polychoric correlation matrix in our estimation process. Initially, a 
comprehensive simulation was set up, encompassing 3,888 distinct 
conditions, each replicated 100 times. These conditions were 
systematically varied, considering factors such as sample size (three 
levels), number of indicators per factor (two levels), number of latent 
variables (three levels), levels of inter-factor correlations (three levels), 
primary loadings (three levels), cross-loadings (three levels), types of 
generated ordinal data (four levels determined by symmetrical or 
skewed distributions, with assumed underlying normality or 
non-normality), and the number of categories per variable (two 
levels). However, certain combinations were excluded due to 
irrelevance (e.g., conditions with one latent factor and non-zero inter-
factor correlations) or impossibility (e.g., conditions with certain high 
loadings and correlations that could yield improper solutions for Σ ). 
Consequently, the final set of conditions analyzed was reduced 
to 2,616.

3.2 Data analysis

All analyses in our study were carried out using R. For PA, 
we employed the fa.parallel() function from the psych package (Revelle, 
2023), setting cor to “poly” and fa to “pc.” For EGA, we used the EGA() 
function from the EGAnet package (Golino et al., 2020) with its default 

settings. After conducting the simulation, we utilized a logistic regression 
model with two-way interactions between the predictor “retention 
method” (categorized into two levels: EGA or PA) and each of the 
remaining variables to predict the probability of accurately identifying 
the number of factors in each scenario (refer to Supplementary Tables S1, 
S2). In this model, the dependent variable was a binary indicator 
reflecting the accuracy of each criterion in determining the correct 
number of factors (1 = correct, 0 = incorrect). The independent variables 
included dummy variables for sample size, variables per factor, inter-
factor correlations, primary and secondary factor loadings, number of 
categories, types of generated data, and the factor retention method 
(either EGA or PA), as well as interactions between each method and the 
remainder of the variables. The odds ratio was calculated for each 
predictor to measure the effect size. To ensure reproducibility, the dataset, 
complete simulation code, and results are available at the Open Science 
Foundation project for this paper.1

4 Results

Considering all conditions in the study, EGA achieved the highest 
accuracy, averaging 71.0%, outperforming PA, which had an overall 
accuracy of 54.5%. In terms of factor retention criteria, both methods 
were more prone to underfactoring, meaning they often suggested 
fewer factors than were actually present. EGA exhibited a lower 
tendency for underfactoring at 27.6%, in contrast to PA’s 44.8%. 
Overfactoring, or suggesting too many factors, was rare for both 
methods, occurring in 1.3% of cases for EGA and 0.7% for PA.

Table 1 shows the averaged accuracy of PA and EGA across a wide 
range of simulated conditions. Both methods showed high accuracy 
(often 100%) in identifying the correct number of latent factors in 
scenarios with well-defined factor structures (high loadings, low or no 
cross-loadings), particularly at larger sample sizes. Accuracy dropped 
significantly for both methods in scenarios with low loadings and high 
inter-factor correlations. This drop is more pronounced for PA, 
indicating EGA’s relative robustness in these conditions. Both methods 
experienced a notable decrease in accuracy in scenarios with 
non-normal or skewed data distributions.

Based on the logistic regression analysis, EGA consistently 
demonstrated higher predicted probabilities for accurately 
determining the number of factors in most scenarios examined in the 
study, compared to PA. Several predictors in the model were identified 
as highly influential, as indicated by their considerable odds ratios. 
Notably, the effects of some of the interactions involving each method 
(EGA or PA) and the levels of multiple factors were considered 
particularly large. These factors, ordered by effect size, included cross-
loadings, primary loadings, inter-factor correlations, the number of 
latent factors, the number of variables per factor, and the type of 
generated data. Conversely, the influence of sample size and the 
number of categories per variable was not substantial. Due to the 
overwhelming number of conditions, we visualize and describe here 
a selection of the most informative results.

Figure  1 illustrates the expected probability of accurately 
predicting the number of factors using EGA and PA across different 

1 https://osf.io/hb8tw
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TABLE 1 Mean accuracy (%) of Parallel Analysis and Exploratory Graph Analysis across selected conditions: influence of distribution type, number of 
factors, inter-factor correlations, variables per factor, factor loadings, cross-loadings and sample size.

Distribution N  =  300 N  =  1,000

# factors rho Load Cross PA5 P10 EGA5 EGA10 PA5 PA10 EGA5 EGA10

Normal

1 0 Low —

99 99 97 41 100 100 100 100

Normal skewed 91 100 100 26 100 100 98 100

Non-normal 100 100 100 92 100 100 100 100

Non-normal skewed 100 99 95 67 100 100 100 100

Normal

1 0 High —

100 100 100 100 100 100 100 100

Normal-skewed 100 100 100 100 100 100 100 100

Non-normal 100 100 100 100 100 100 100 100

Non-normal skewed 100 100 100 100 100 100 100 100

Normal

2 0 Low —

98 100 84 89 100 100 100 100

Normal-skewed 95 99 81 86 100 100 100 100

Non-normal 100 100 99 99 100 100 100 100

Non-normal skewed 97 99 97 95 100 100 100 100

Normal

2 0 High —

100 100 100 100 100 100 100 100

Normal-skewed 100 100 100 100 100 100 100 100

Non-normal 100 100 100 100 100 100 100 100

Non-normal skewed 100 100 100 100 100 100 100 100

Normal

2 0.6 Low Low

6 43 71 73 18 94 91 100

Normal-skewed 7 33 69 61 17 91 99 100

Non-normal 4 52 68 92 13 100 86 100

Non-normal skewed 5 33 65 74 9 98 79 100

Normal

2 0.6 High Low

81 100 99 100 100 100 100 100

Normal-skewed 73 100 100 100 99 100 100 100

Non-normal 63 100 98 100 98 100 100 100

Non-normal skewed 59 100 97 100 96 100 100 100

Normal 2 0.6 High High 0 3 0 71 0 21 0 88

Normal-skewed 0 27 1 72 0 73 1 86

Non-normal 0 0 0 0 0 0 0 0

Non-normal skewed 0 0 0 0 0 0 0 0

Normal 4 0 Low — 80 98 83 91 100 100 100 100

Normal-skewed 67 98 74 88 100 100 100 100

Non-normal 95 100 96 100 100 100 100 100

Non-normal skewed 87 97 89 100 100 100 100 100

Normal 4 0 High — 100 100 100 100 100 100 100 100

Normal-skewed 100 100 100 100 100 100 100 100

Non-normal 100 100 100 100 100 100 100 100

Non-normal skewed 100 100 100 100 100 100 100 100

Normal 4 0.6 Low Low 0 0 13 52 0 41 5 99

Normal-skewed 0 0 16 44 0 3 31 95

Non-normal 0 0 20 87 0 2 31 100

Non-normal skewed 0 0 24 60 0 1 39 99

(Continued)
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conditions: the true number of factors, the type of generated data, and 
the magnitudes of both primary factor loadings and inter-factor 
correlations. Based on the figure, as the inter-factor correlations (rho) 

increase, the expected probability of correctly predicting the number 
of factors tends to decrease for both methods. This trend is consistent 
and expected since higher inter-factor correlations can obscure the 

TABLE 1 (Continued)

Distribution N  =  300 N  =  1,000

# factors rho Load Cross PA5 P10 EGA5 EGA10 PA5 PA10 EGA5 EGA10

Normal 4 0.6 High Low 1.5 99 100 100 63 100 100 100

Normal-skewed 0.5 94 100 100 35 98 100 100

Non-normal 0.5 55 90 100 0 100 78 100

Non-normal skewed 1 55 90 100 2 12 91 100

Normal 4 0.6 High High 0 0 0 0 0 0 0 0

Normal-skewed 0 0 0 0 0 n/a 0 n/a

Non-normal 0 n/a 0 n/a 0 n/a 0 n/a

Non-normal skewed 0 n/a 0 n/a 0 n/a 0 n/a

Each value corresponds to the mean accuracy in factor retention after 100 reps. Distribution, Symmetrical or skewed distributions, with assumed underlying normality or non-normality; # 
factors, Number of latent factors (1, 2 or 4); rho, Interfactor correlations (0 or 0.6); Load, Primary loadings (low or high); Cross, Cross-loadings (low or high); PA5, Parallel Analysis for 
datasets with five variables per factor; PA10, Parallel Analysis for datasets with 10 variables per factor; EGA5, Exploratory Graph Analysis for datasets with five variables per factor; EGA10, 
Exploratory Graph Analysis for datasets with 10 variables per factor; N, Sample size (300 or 1,000); n/a, Impossible to generate data for this scenario.

FIGURE 1

Expected probability of correctly predicting the number of factors by Exploratory Graph Analysis (EGA) and Parallel Analysis (PA) across various 
conditions: true number of factors (1, 2, or 4), type of generated data (symmetrical or skewed item distributions with assumed underlying normality or 
non-normality), level of factor loadings (low, medium or high), and level of inter-factor correlations (rho  =  0, 0.3, or 0.6).
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distinctiveness of factors, making it more challenging to identify the 
correct number. PA outperforms EGA in terms of predicted accuracy 
when the factor solution is unidimensional, regardless of the 
magnitude of primary loadings and the data generation process. 
However, its performance clearly deteriorates as the number of factors 
increases to 4. Moreover, in conditions where latent factors are 
orthogonal, that is when rho = 0, both EGA and PA demonstrate their 
highest probabilities of making correct predictions. However, as rho 
increases, EGA seems to maintain a better performance over PA. This 
difference between the two methods becomes more pronounced when 
primary factor loadings are low or medium, favoring 
EGA. Additionally, conditions with skewed item distributions 
stemming from either normal or non-normal underlying continuous 
variables present considerable difficulties for both methods, 
particularly in cases with high inter-factor correlations (rho = 0.6) and 
low primary loadings. However, in these scenarios EGA clearly 
outperforms PA.

The expected probabilities of correctly predicting the number of 
factors for different patterns of cross-loadings, inter-factor 
correlations, true number of factors and type of generated data are 
shown in Figure 2. Both methods show a decrease in the probability 
of correctly predicting the number of factors as cross-loadings 

increase from low to high. However, EGA’s decline is less steep 
compared to PA. This suggests that EGA may be more robust to the 
presence of cross-loadings, maintaining higher accuracy despite these 
complexities in the factor structure. However, in scenarios 
characterized by high cross-loadings, the efficacy of both methods 
markedly deteriorates. Last, the effect of item skewness or underlying 
non-normality on the performance of both methods is more 
pronounced at high inter-factor correlations (rho = 0.6) and medium 
or high cross-loadings.

As shown in Figure 3, the performance of both EGA and PA 
improves when the number of variables per factor rises from 5 to 10. 
PA closely matches EGA’s performance when there are 10 items per 
factor and high primary loadings.

5 Discussion

The paper evaluates the effectiveness of EGA and PA in assessing 
scale dimensionality in social sciences, with a focus on ordinal data. 
This study aims to demonstrate how these methods perform in real-
world settings, where assumptions of normality may not hold. These 
findings are crucial for psychology and education researchers using 

FIGURE 2

Expected probability of correctly predicting the number of factors by EGA and PA across various conditions: true number of factors (2 or 4), type of 
generated data (symmetrical or skewed item distributions with assumed underlying normality or non-normality), level of cross-loadings (low, medium, 
or high), and level of inter-factor correlations (rho  =  0, 0.3, or 0.6).
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these tools for scale development and validation, ensuring accurate 
representation of theoretical constructs.

Based on the simulation results, the choice between EGA and PA 
should be informed by the specific characteristics of the measurement 
scale under investigation. The performance of PA in identifying the 
correct number of factors significantly declined in scenarios with 
more than a single factor, high inter-factor correlations, moderate to 
high cross-loadings, or when the primary loadings were not 
substantial. This finding is not surprising because as factors become 
more correlated, the magnitude of the first eigenvalue will increase, 
while the remaining eigenvalues will decrease, resulting in the 
extraction of fewer factors (Cho et al., 2009).

On the contrary, EGA consistently demonstrated higher predicted 
accuracy than PA when the factor structure was less clear. This result 
is consistent with earlier simulation studies that contrasted EGA and 
PA in the context of both continuous and binary data (Golino and 
Epskamp, 2017; Cosemans et al., 2022). Item skewness and underlying 
non-normality were found to noticeably impact the performance of 
both methods, particularly in data with more complex factor structure.

Overall, for measurement scales that are simpler in nature, 
characterized by unidimensionality, minimal cross-loadings, higher 
factor loadings, and numerous items per factor, PA is the preferred 

method. For scales with more complex factor structures, however, 
EGA proves to be  a more appropriate choice. Additionally, EGA 
demonstrates less variability in its performance across various levels 
of inter-factor correlations and cross-loadings, indicating greater 
consistency. This can be especially beneficial in exploratory studies 
where the factor structure is not well known.

In this study, while we meticulously analyzed the performance of 
PA and EGA using various simulated conditions, certain 
methodological limitations are noteworthy. The nature of the 
generated data, particularly our assumptions about normality and 
skewness, might also limit the applicability of our findings to real-
world datasets, as simulated conditions cannot fully capture the 
complexity of actual data. Furthermore, the scope of our findings is 
primarily confined to the scenarios we  analyzed, which may not 
encompass all possible variations encountered in practical 
applications. As such, our conclusions should be considered within 
the context of these specific conditions and factors. Future research 
directions should focus on extending this work by testing these 
methods under a broader range of conditions, such as scenarios with 
model misspecification and real-world data, to further validate and 
refine our understanding of PA and EGA’s performance. This approach 
would not only help in addressing the current study’s limitations but 

FIGURE 3

Expected probability of correctly predicting the number of factors by EGA and PA across various conditions: true number of factors (1, 2, or 4), type of 
generated data (symmetrical or skewed item distributions with assumed underlying normality or non-normality), level of factor loadings (low, medium, 
or high), and variables per factor (5 or 10).
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also contribute to the robustness and applicability of these methods in 
diverse research settings.
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