Reading comprehension is one of the most important skills learned in school and it has an important contribution to the academic success of children with Autism Spectrum Disorder (ASD). Though previous studies have investigated reading comprehension difficulties in ASD and highlighted factors that contribute to these difficulties, this evidence has mainly stemmed from children with ASD and intact cognitive skills. Also, much emphasis has been placed on the relation between reading comprehension and word recognition skills, while the role of other skills, including fluency and morphosyntax, remains underexplored. This study addresses these gaps by investigating reading comprehension in two groups of school-aged children with ASD, one with intact and one with low cognitive abilities, also exploring the roles of word decoding, fluency and morphosyntax in each group’s reading comprehension performance.
The study recruited 16 children with ASD and low cognitive abilities, and 22 age-matched children with ASD and intact cognitive skills. The children were assessed on four reading subdomains, namely, decoding, fluency, morphosyntax, and reading comprehension.
The children with ASD and low cognitive abilities scored significantly lower than their peers with intact cognitive abilities in all reading subdomains, except for decoding, verb production and compound word formation. Regression analyses showed that reading comprehension in the group with ASD and intact cognitive abilities was independently driven by their decoding and fluency skills, and to a lesser extent, by morphosyntax. On the other hand, the children with ASD and low cognitive abilities mainly drew on their decoding, and to a lesser extent, their morphosyntactic skills to perform in reading comprehension.
The results suggest that reading comprehension was more strongly affected in the children with ASD and low cognitive abilities as compared to those with intact cognitive skills. About half of the children with ASD and intact cognitive skills also exhibited mild-to-moderate reading comprehension difficulties, further implying that ASD may influence reading comprehension regardless of cognitive functioning. Finally, strengths in decoding seemed to predominantly drive cognitively-impaired children’s reading performance, while the group with ASD and intact cognitive skills mainly recruited fluency and metalinguistic lexical skills to cope with reading comprehension demands, further suggesting that metalinguistic awareness may be a viable way to enhance reading comprehension in ASD.