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E�ciency of computerized
adaptive testing with a
cognitively designed item bank

Hao Luo and Xiangdong Yang*

Department of Educational Psychology, Faculty of Education, East China Normal University, Shanghai,

China

An item bank is key to applying computerized adaptive testing (CAT). The

traditional approach to developing an item bank requires content experts to

design each item individually, which is a time-consuming and costly process.

The cognitive design system (CDS) approach o�ers a solution by automating

item generation. However, the CDS approach has a specific way of calibrating

or predicting item di�culty that a�ects the measurement e�ciency of CAT. A

simulation study was conducted to compare the e�ciency of CAT using both

calibration and prediction models. The results show that, although the predictive

model (linear logistic trait model; LLTM) shows a higher root mean square

error (RMSE) than the baseline model (Rasch), it requires only a few additional

items to achieve comparable RMSE. Importantly, the number of additional items

needed decreases as the explanatory rate of the model increases. These results

indicate that the slight reduction in measurement e�ciency due to prediction

item di�culty is acceptable. Moreover, the use of prediction item di�culty can

significantly reduce or even eliminate the need for item pretesting, thereby

reducing the costs associated with item calibration.
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1 Introduction

An item bank is key to applying computerized adaptive testing (CAT). The traditional

method of developing an item bank requires content experts to meticulously design

hundreds or thousands of high-quality items, and research has shown that developing a

professional item bank costs hundreds or even thousands of dollars per item (Wainer,

2002). Therefore, the traditional method of developing an item bank is time consuming

and costly, which seriously restricts the application of CAT.

One hopeful alternative is algorithmic or automated item-generation techniques

for item development (Luecht, 2012). Item generation may produce a large number

of items efficiently and quickly because of the generation rules behind the item

design. Item generation can even reduce or eliminate the need for pretesting

because item parameters can be predicted based on item design parameters. Item

generation was divided into strong-theory and weak-theory item generation according

to whether the item generation rules strictly rely on cognitive process models. Weak-

theory item generation can efficiently produce CAT items through the “replacement

set procedure” (Millman and Westman, 1989), but the items generated are very

similar, and this method is limited by the quality of the items in the existing test.
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In contrast, the Cognitive Design System (CDS) approach to

strong-theory item generation not only increases the efficiency of

CAT item development but also improves the construct validity of

the items, which is crucial for the practical application of CAT.

However, the CDS approach has a specific way of calibrating or

predicting item difficulty that affects the measurement efficiency of

CAT. Specifically, the CDS approach (Embretson, 1998) constructs

an item bank in CAT (cognitively designed item bank) that differs

from traditional item banks. Traditional item banks usually assume

that items are independent of each other and use a single-level

item response theory (IRT) model (e.g., Rasch, 2PL) to estimate

item parameters. Instead, based on the item generation perspective,

researchers have different ways. For example, a hierarchical item

family model or cognitive IRT model can be used (Embretson

and Yang, 2007). Therefore, the first research question is whether

the use of these models for item parameter calibration affects

the recovery of theta (θ) in CAT compared to traditional IRT

models. In addition, models containing item design parameters,

such as the linear logistic trait model (LLTM), can be used to

predict item difficulty. If the predicted difficulty is used instead of

the calibrated difficulty, the uncertainty in the predicted difficulty

may reduce the accuracy of the item parameters, reducing the

measurement efficiency of the CAT. However, using predicted

difficulty can improve the efficiency of item development, reduce

costs, and even eliminate the need for item pretesting. Therefore,

there is a trade-off between the efficiency of item development

and the measurement accuracy of CAT. The second research

question is how much uncertainty in the predicted difficulty

is acceptable.

These two research questions are very necessary and realistic,

facilitating the integration of the CDS approach into CAT

frameworks, which ultimately leads to enhanced efficiency,

improved construct validity in item bank development, and

cost reduction. The article is structured to first discuss the

CDS approach to developing item banks, then explore the

models used for calibrating or predicting item difficulty, and

finally conclude with the design and results of a Monte Carlo

simulation study.

2 Methods

2.1 Developing an item bank with a
cognitive design system approach

First, item design variables (construct-relevant design

variables) were proposed based on the cognitive model of the

measured construct at the task level. Second, these variables

can be combined to form several item generation rules. Finally,

algorithmic or automated generation of a large number of

items is achieved by changing construct-irrelevant design

variables under the same item generation rule. For a more

detailed development process (see Embretson, 1998). We have

also developed a mental rotation CAT item bank using the

Cognitive Design System approach, which is described in the

Supplementary material.

2.2 Models for calibrating or predicting
item di�culty

Cognitive IRT models include the LLTM and random-

effect LLTM (RELLTM; Janssen et al., 2004). The formula for

RELLTM is

P(Xij = 1|θi, qj, η) =
exp(θi −

∑K
k=0qjkηk + ej)

1 + exp(θi −
∑K

k=0qjkηk + ej)
,

ej ∼ N(0, σ 2
ε )

where qj is the loading of the K design variables on item j,

qj={qj0, qj1, qj2, . . . , qjK}, η is the regression coefficient of the K

design variables on item difficulty, η={η0, η1, η2, . . . , ηK}. qj0 is

fixed to 1 for each item, and η0 is the intercept. ej is the residual

of item j that cannot be explained by the K design variables,

and σ 2
ε is the residual variance. The explanatory rate of the item

design variables (R2) for item difficulty in RELLTM is calculated

as R2 = (σ 2
β
− σ 2

ε )/σ
2
β
, where σ 2

β
is the variance of difficulty

across all items. When the K item design variables fully explain

the variance of item difficulty, that is, ej= 0 for all items, RELLTM

becomes LLTM. It should be noted that LLTM cannot calibrate

the item difficulty directly; it needs to be predicted using the

item design variables. When all regression coefficients (ηk) and

intercepts (η0) are fixed to 0, the RELLTM is equivalent to the

Rasch model.

Hierarchical item family models include the Related

Siblings Model (RSM; Sinharay et al., 2003), Unrelated Siblings

Model (USM), and Identical Siblings Model (ISM). To be

consistent with the item parameters of the cognitive IRT

model, these three models are simplified versions that include

only the item difficulty parameter. The formula for RSM is

as follows:

P(Xijl = 1|θi, bjl) =
exp(θi − bjl)

1 + exp(θi − bjl)
, bjl ∼ N(ξl, σ

2
l ).

It is assumed that there are L different item families in the

item bank, and each item belongs to only one item family. The jl
denotes the test item j that belongs to the item family l (l =1, 2,...,

L). Since different items in the same item family share the same

item generation rules, it can be assumed that there is a connection

between all items belonging to item family l. This connection can

be due to the fact that the item difficulty parameter b follows a

normal distributionN(ξl, σ
2
l
), where ξl and σ 2

l
are themean and the

variance of this distribution, respectively. When there is no second

level, bjl ∼ N(ξl, σ
2
l
), the model is USM, which is equivalent to

the Rasch model. When set σ 2
l
= 0 for all item families, the model

is ISM.

In summary, there are five models (USM, ISM, RSM, RELLTM,

and LLTM) for item difficulty calibration or prediction, with the

first four belonging to calibrating item difficulty and LLTM to

predicting item difficulty. In addition, USM/Rasch was used as a

baseline model for comparison.
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2.3 Simulation process

Two research questions mentioned above were explored

through Monte Carlo simulation, and the simulation process is

divided into four steps.

Step 1: Simulating an item bank in CAT based on the cognitive

design system approach

First, this study assumes that all items in the item bank of

CAT are consistent with the RELLTM model. According to the

parameter settings of the RELLTM, the number of item families

in the item bank (e.g., 30 item families) and the number of items

within each item family need to be given, where the number of

items within each item family is fixed to be equal for simplicity

(e.g., each item family contains 10 items). Next, the number of

item design variables (e.g., three design variables) and the level of

each design variable need to be given. There is a restriction that

the levels of these design variables are multiplied to equal the total

number of item families. When the total number of item families is

30, this study sets the number of levels of design variables to 2, 3,

and 5, respectively.

Then, it is also necessary to construct the Q-matrix of the

item bank, which represents the association of items with item

design variables. The specific Q-matrix (300 × 3) is shown in

the Supplementary material, where every 10 rows represent an

item family, and each item family represents a combination of

item design variables. In addition, the regression coefficients (ηk)

and intercept (η0) need to be determined. To ensure the item

design difficulty (6K
k=0

qjkηk) is in the range between −3 and 3, the

intercept η0is set to −3. For simplicity, if we fix the multiplication

of each design variable and the regression coefficients to be equal

to 2, the regression coefficients η1, η2, and η3are set to 2, 1, and

0.5, respectively.

Finally, the true value of item difficulty b is the item design

difficulty for each item plus the residual term ej. The residual term

ej∼N(0, σ 2
ε ) and the determination of σ 2

ε need to be calculated

according to R2. The formula is R2 = (σ 2
β
- σ 2

ε )/σ
2
β

= σ 2
τ /(σ

2
τ +

σ 2
ε ), where σ 2

τ is the between-group variance (the variance between

item design difficulty). In the case above, the value of σ 2
τ is 2.241.

When the R2 is 60, 70, 80, and 90%, the value of σ 2
ε can be

calculated by the above formula to be 1.494, 0.961, 0.560, and 0.249,

respectively. Therefore, when the R2 is set to 60%, the residual

term ej for each item is drawn from the normal distribution N(0,

1.494), where 1.494 is the variance. Figure 1 shows the simulated

item difficulty distributions for R2 of 60 and 90%, respectively. Each

point represents an item, and the colors are only used to distinguish

between different items within the same item family. The difficulty

for each item in Figure 1 is shown in the Supplementary material.

Step 2: Simulation of examinees’ abilities and scores

The number of examinees was set to 1,000, and each examinee’s

ability (θ) was drawn from a standard normal distributionN(0, 12).

The score matrix was generated using the RELLTM model.

The correct response probability matrix for all item examinees is

obtained by bringing the θ into the RELLTM model along with the

item design parameters (ηk, qjk, and ej) from Step 1. Each value of

this correct response probability matrix is then compared with a

random number drawn from the uniform distribution Uniform(0,

1). When the value is greater than or equal to the random number,

the element in the corresponding position of the score matrix is 1.

Otherwise, it is 0. In this way, the score matrix is generated.

Step 3: Estimation of item difficulty in the item bank

Although the true value of item difficulty was known, this study

aimed to compare the effects of different ways of calibrating (or

predicting) item difficulty on the measurement efficiency in CAT.

In other words, the item difficulty needs to be re-parameterized

in the same situation. Therefore, the same score matrix obtained

in Step 2 was given to five different item difficulty calibration (or

prediction) approaches. These five approaches are USM, ISM, RSM,

RELLTM, and LLTM, as mentioned in Section 2.2.

The hierarchical item family model and the cognitive IRT

model are not the same. To unify the process of estimation

algorithmically, this study used a Markov Chain Monte Carlo

(MCMC) parameter estimation procedure via R and RStan. To

ensure that eachmodel converged sufficiently, the criterion for Rhat

in this study was set to be <1.05. In the case of 1,000 examinees

and 300 items, two MCMC chains were set up, and each chain

was run 10,000 times, with the mean of the last 5,000 taken as

the parameter estimates. Since then, five-item difficulty parameters

have been estimated and used for subsequent item selection.

Step 4: Simulation of the CAT process

The CAT simulation process was accomplished through the R

program. First, the initial item was selected by randomly selecting

a moderately difficult item (difficulty between −0.1 and 0.1) from

the item bank. Then, the examinee’s score on the initial item was

found in the score matrix in Step 2. Afterward, the examinee ability

estimate (θ) on the Rasch model was estimated using the expected

a posteriori (EAP) estimation method.

Then, the loop of item selection and scoring was entered

according to the five-item difficulty calibrations (or predictions)

methods. For example, when using item difficulty calibrated

through the USM model, a specific item selection strategy (e.g.,

Maximum Fisher Information) was used to select the item that

best fits the examinee’s current ability estimate. It should be noted

that the item difficulty used in item selection is the calibrated (or

predicted) item difficulty. After selecting an item, the examinee’s

score on that item was found in the score matrix in Step 2. The EAP

method was then used to estimate on the Rasch model. In this way,

the item selection and scoring loop were carried out.

Finally, the stopping rule of the loop was a fixed test length; that

is, the test ended after a fixed number of test items (e.g., 60 items).

The final estimate of θ on the Rasch model using the EAP method

was used as the CAT estimate of this examinee’s ability.

2.4 Simulation design

To compare the performance of the five calibration (or

prediction) procedures (USM, ISM, RSM, RELLTM, and LLTM)

under different item banks, the variables indicated above were

kept constant, and the variable R2 was manipulated (60, 70, 80,

and 90%).

The dependent variables are the recovery of theta and the

measurement efficiency of CAT. RMSE was used to represent the

recovery of theta in CAT. Measurement efficiency in this CAT

was evaluated by determining the number of additional test items
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FIGURE 1

The simulated item di�culty distributions for R2 are 60% (left) and 90% (right).

required to achieve the same RMSE achieved by the baseline model

(USM/Rasch). To thoroughly examine these metrics, a total of 20

experimental conditions were formed and repeated 50 times for

each experimental condition.

3 Results

For the first research question, the variation of RMSE with test

length is shown in Figure 2.

Figure 2 only shows 7 of the 20 experimental conditions (USM

60%, RSM 60%, RELLTM 60%, ISM 60%, LLTM 60%, ISM 90%,

and LLTM 90%). The appropriate simplification is made because

the curves of USM, RSM, and RELLTM overlap for all four cases

with an R2 of 60, 70, 80, and 90%. The remaining conditions (ISM

70%, LLTM 70%, ISM 80%, and LLTM 80%) were not painted

for simplicity. Figure 2 shows that (1) the RMSE for USM, RSM,

and RELLTM always remained equal, regardless of the level of the

R2 and the test length and that (2) USM, RSM, and RELLTM are

similar classes of curves, while ISM and LLTM are other classes.

The RMSE of ISM and LLTM is always larger than other classes

(USM, RSM, and RELLTM) regardless of test length, and the gap

decreases as the R2 increases. When the R2 reaches 90%, the gap

between the curves of the two classes is very small. (3) There is also

a gap between ISM and LLTM, with LLTM having a higher RMSE

than ISM, but the difference is not notable. In particular, the two

curves overlap when the R2 increases to 90%.

More specifically, Table 1 demonstrates the RMSE when the

test length is 30. A portion of the table shows the RMSE for

the 20 experimental conditions, and the last two columns show

the difference between the LLTM and the other two models in

RMSE. Since each experimental design was repeated 50 times,

differences between these models could be evaluated using ANOVA

or independent sample t-tests. First, Table 1 also shows no

difference between USM, RSM, and RELLTM in RMSE. Second,

the independent sample t-test shows that the RMSE of LLTM

is significantly higher than that of ISM when R2 = 60, 70,

and 80%, but the difference with ISM is not significant when

R2 = 90% (t = 0.935, p = 0.353, Cohen’s d = 0.187). Finally,

the independent sample t-test shows that the RMSE of LLTM

is significantly higher than that of USM when R2 = 60, 70,

80, and 90%.

For the second research question, the model of interest is the

LLTM. As can be seen in Figure 2, the gap between RMSE under

LLTM (predicted difficulty) and baseline model USM (calibrated

difficulty) decreases as R2 increases. The LLTM is worse than USM

in terms of RMSE, and the LLTM requires several additional items

to achieve the same RMSE as USM. With the same RMSE criterion

(RMSE = 0.4), the LLTM was compared to the baseline model

(USM/Rasch), and Figure 3 shows the relationship between the

number of additional items in CAT needed for the LLTM and the

R2. Figure 3 describes a monotonically decreasing quadratic curve

with the curve equation y = 100x2 – 206x + 106.5. If one wishes

the test length of the CAT based on the predicted difficulty to be no

more than 30 (including eight additional items), at least 75% of the

R2 is needed.

4 Discussion

This study compared the effects of five-item calibration (or

prediction) approaches on measurement efficiency in CAT. In

response to the first research question, we obtained the following

four conclusions: (1) These five approaches were divided into

two categories in terms of measurement efficiency, and the first

category (USM, RSM, and RELLTM) outperforms the second

category (LLTM and ISM); (2) the RMSE of the first category

does not vary with the R2. The RMSE of the second category

decreases with R2, and the gap with the RMSE of the first

category decreases accordingly; (3) in the second category (LLTM

and ISM), ISM performs better on RMSE than LLTM; and

(4) in response to the second research question, we conclude

that the predictive model (LLTM) is worse than the baseline

model (USM) in terms of RMSE, but the LLTM only needs

Frontiers in Psychology 04 frontiersin.org

https://doi.org/10.3389/fpsyg.2024.1353419
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Luo and Yang 10.3389/fpsyg.2024.1353419

FIGURE 2

The variation of RMSE with test length for multiple experimental conditions at di�erent R2.

TABLE 1 RMSE and RMSE di�erence for five calibration (or prediction) methods at di�erent R2.

R
2 USM RSM RELLTM ISM LLTM LLTM-ISM LLTM-USM

60% 0.354 0.355 0.354 0.431 0.446 0.015∗∗∗ (1.118) 0.092∗∗∗ (7.020)

70% 0.355 0.356 0.357 0.405 0.418 0.013∗∗∗ (1.124) 0.063∗∗∗ (5.866)

80% 0.353 0.355 0.355 0.382 0.392 0.010∗∗∗ (1.006) 0.039∗∗∗ (4.339)

90% 0.354 0.356 0.355 0.366 0.367 0.001 (0.187) 0.013∗∗∗ (1.625)

∗∗∗Represents p < 0.001. The numbers in parentheses in the last two columns are Cohen’s d.

FIGURE 3

The relationship between the number of additional items and the R2

when RMSE = 0.4 is used as the criterion.

a few more items to produce the same RMSE as the baseline

model and that the number of additional items decreases as the

R2 increases.

For Conclusion (1), USM, RSM, and RELLTM do not differ

in RMSE because all three models have separate estimates of item

difficulty, with RELLTM having separate estimates of the residual

term ej for each item difficulty. In contrast, LLTM and ISM were

only estimated at the item family level, and item difficulty within

the item family was not estimated individually, which is simpler

for the former category. Therefore, the first category is better than

the second category in terms of measurement efficiency in CAT.

Conclusion (2) is also in line with our expectations. As the R2

increases, it means that the data are increasingly consistent with

the LLTM and ISM models, while the other three models are

not affected by the R2 because they have separate estimates of

item difficulty.

For conclusion (3), it is established that the LLTM is a

generalized linear fixed-effects model in which item difficulty is

predicted from item design variables. Therefore, in estimating

item difficulty, compared to the ISM model, the LLTM model

exhibits the phenomenon of regressing to the mean of the

difficulty parameter of test items (regression to the mean). The

degree of regression primarily depends on the validity of the

item cognitive model and the quality of the item design features
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(Embretson, 1999). However, each item’s difficulty was estimated

separately in the ISM, so there is no phenomenon of “regression

to the mean.” It is worth noting that the gap caused by this

phenomenon of “regression to the mean” decreases as the R2

increases. A high R2 indicates that the difficulty of items within the

item family tends to be more consistent. This finding means that

the estimated regression coefficient for the item design variables in

the LLTM is more stable and effective, leading to a more accurate

prediction of item difficulty.

Conclusion (4) has significant value for item generation in

CAT, especially for CAT, where items are generated on the fly.

Item generation on the fly means that the items are generated

instantaneously. Item difficulty can only be used with predictive

difficulty. The results of the LLTM predictive difficulty tell us how

many additional test items are needed in CAT to achieve the same

RMSE as the baseline model or at least how much R2 is guaranteed

to compensate for the loss of measurement efficiency from using

predictive difficulty.

Finally, this study constructed a CAT item bank based on the

CDS by means of simulation. The simulated item bank is not a

substitute for a real-item bank, but the simulation approach allows

for a wide variety of item bank situations to be easily obtained.

We also used a real item bank for validation. All the items in this

real item bank were mental rotation items measuring spatial ability,

and the item bank was constructed using the CDS approach. The

results under the real item bank are consistent with those under the

simulated item bank.

With the advent of artificial intelligence (AI), item generation

based on AI will become more and more common. However,

this is only a technological advancement; validity is still key to

item generation. Validity involves theoretical thinking about the

construct, which is difficult to achieve with the current form of AI.

Recent studies have used GPT for item generation for personality

items (Hommel et al., 2022), which is more like a weak-theory item

generation approach, and item generation methods that combine

GPT with a cognitive design system approach still need to be

developed. In conclusion, CAT based on the CDS approach is

highly promising and practical. It combines cognitive psychology,

psychometrics, and computer science and is one of the future

directions of the new generation of AI assessment.
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