AUTHOR=Jović Miljan , Haeri Maryam Amir , Whitehouse Andrew , van den Berg Stéphanie M. TITLE=Harmonizing the CBCL and SDQ ADHD scores by using linear equating, kernel equating, item response theory and machine learning methods JOURNAL=Frontiers in Psychology VOLUME=15 YEAR=2024 URL=https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2024.1345406 DOI=10.3389/fpsyg.2024.1345406 ISSN=1664-1078 ABSTRACT=Introduction

A problem that applied researchers and practitioners often face is the fact that different institutions within research consortia use different scales to evaluate the same construct which makes comparison of the results and pooling challenging. In order to meaningfully pool and compare the scores, the scales should be harmonized. The aim of this paper is to use different test equating methods to harmonize the ADHD scores from Child Behavior Checklist (CBCL) and Strengths and Difficulties Questionnaire (SDQ) and to see which method leads to the result.

Methods

Sample consists of 1551 parent reports of children aged 10-11.5 years from Raine study on both CBCL and SDQ (common persons design). We used linear equating, kernel equating, Item Response Theory (IRT), and the following machine learning methods: regression (linear and ordinal), random forest (regression and classification) and Support Vector Machine (regression and classification). Efficacy of the methods is operationalized in terms of the root-mean-square error (RMSE) of differences between predicted and observed scores in cross-validation.

Results and discussion

Results showed that with single group design, it is the best to use the methods that use item level information and that treat the outcome as interval measurement level (regression approach).