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Introduction: Infants born very early preterm are at high risk of language delays. 
However, less is known about the consequences of late prematurity. Hence, 
the aim of the present study is to characterize the neural encoding of speech 
sounds in late preterm neonates in comparison with those born at term.

Methods: The speech-evoked frequency-following response (FFR) was 
recorded to a consonant-vowel stimulus /da/ in 36 neonates in three different 
groups: 12 preterm neonates [mean gestational age (GA) 36.05 weeks], 12 “early 
term neonates” (mean GA 38.3 weeks), and “late term neonates” (mean GA 41.01 
weeks).

Results: From the FFR recordings, a delayed neural response and a weaker 
stimulus F0 encoding in premature neonates compared to neonates born at 
term was observed. No differences in the response time onset nor in stimulus F0 
encoding were observed between the two groups of neonates born at term. No 
differences between the three groups were observed in the neural encoding of 
the stimulus temporal fine structure.

Discussion: These results highlight alterations in the neural encoding of speech 
sounds related to prematurity, which were present for the stimulus F0 but not for 
its temporal fine structure.
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Introduction

According to the World Health Organization (2023) preterm infants are those born at less 
than 37 weeks of gestation, with an incidence of around 1 in 10 babies of all births. Preterm 
birth is the leading cause of death in children under 5 years of age. However, the survival rates 
are increasing (Volpe, 2019) and with them the morbidities attributable to the immaturity of 
several organs, such as lungs, kidneys and brain (Swamy et al., 2008). Preterm infants are at 
increased risk for language, cognitive, sensory, and motor deficits (Hee Chung et al., 2020), 
and numerous studies have highlighted language and social interaction skills as the major 
areas affected compared to infants born at term (Barre et al., 2011; Nazzi et al., 2015; Carter 
and Msall, 2017).
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Regarding language, impairments were observed in both 
expressive and receptive domains, as well as in word retrieval (Vohr, 
2014; Palumbi et al., 2018). These language impairments have been 
associated with poor academic performance, and poor social, 
behavioral and emotional functioning across the life span (Cusson, 
2003; Wolke et  al., 2008; Howard et  al., 2011; Dong et  al., 2012; 
Stipdonk et  al., 2018). Thus, a clear effort is necessary to identify 
neonatal biomarkers which make possible to understand the 
neurobiological basis of early language impairments associated with 
preterm births. Such biomarkers may promote early interventions, 
thereby reducing the negative neurodevelopmental consequences 
of prematurity.

Recent studies have used cranial ultrasonography (CUS) and 
magnetic resonance imaging (MRI) to characterize the anatomical 
underpinnings of language impairments in full-term and preterm 
neonates. Several MRI studies based on diffusion tensor imaging 
(DTI) observed that microstructural changes in cerebral white 
matter at the school-aged period were associated with language 
impairments in preterm and full term birth (Travis et  al., 2016; 
Dodson et al., 2018). Greater increases in axonal diffusivity of the 
left posterior thalamic radiation from term-equivalent postmenstrual 
age to age 4 years was associated with poorer receptive and expressive 
language ability at age four (Young et  al., 2017). Higher Mean 
diffusivity (MD) in the centrum semiovale and left superior temporal 
gyrus has also been linked to poorer language outcomes in preterm 
children (Aeby et al., 2013; Pogribna et al., 2014). Consistent with 
these early childhood findings, alterations in the uncinate fasciculus, 
splenium of the corpus callosum, and anterior commissure have 
been linked to language outcomes among preterm adolescents 
(Northam et al., 2012).

Since speech rate for clear speech is roughly 100 words per minute 
(wpm) and in conversational speech, around 200 wpm (Picheny et al., 
1986), other techniques with higher temporal resolution have also 
been used to investigate the language abilities required to encode 
speech. One of such techniques is event-related brain potentials 
(ERPs)–retrieved from the electroencephalogram (EEG)–(Näätänen 
et  al., 2007) which are defined as electrical brain responses time-
locked to a specific sensory stimulus (Luck, 2005). Several auditory 
evoked potentials (AEPs) have been used to explore language 
impairments (Luck, 2005; Friederici, 2006; Barman et al., 2021). But, 
recently, an electrophysiological response termed frequency-following 
response (FFR) have gained interest.

The FFR represents a snapshot into the neural encoding of the 
temporal and spectral features of the eliciting speech stimulus, 
allowing to explore the accuracy of neural encoding along the entire 
auditory system (Coffey et al., 2019; Gorina-Careta et al., 2021). A 
precise neural tracking of these two frequency components is critical 
to ensure language acquisition and comprehension (He et al., 2007; 
Moon and Hong, 2014; Lau et al., 2017). F0 is determined by the rate 
of glottis pulse and its neural encoding provides syntactic, 
phonological, and semantic cues (Nakatani and Schaffer, 1978), 
crucial for speaker identification (Mary and Yegnanarayana, 2008) and 
for dividing the continuous speech into word-form units (François 
et al., 2017). On the other hand, the temporal fine structure of the 
speech input, particularly its formants, is relevant for phoneme 
discrimination (Diehl and Lindblom, 2004; Hornickel et al., 2009) 
and, indeed, for speech perception in compromised comprehension 
contexts (Hopkins et al., 2008; Moore, 2008).

The FFR has been recorded in normal and clinical populations at 
the adulthood (White-Schwoch et al., 2020; Bidelman and Momtaz, 
2021), childhood (Thompson et al., 2019, 2021), and the neonatal 
periods (Gardi et al., 1979; Jeng et al., 2010, 2011, 2016a,b; Ribas-Prats 
et al., 2019; Richard et al., 2020; Lemos et al., 2021; Ribas-Prats et al., 
2022, 2023; see reviews in Gorina-Careta et al., 2022). In premature 
populations, recent FFR studies disclosed altered neural encoding of 
several speech cues crucial to ensure proper language acquisition 
(Madrid et  al., 2021; Novitskiy et  al., 2023). Madrid et  al. (2021) 
enrolled 28 preterm infants with ≤32 weeks of gestational age (GA) in 
a longitudinal study. The FFR was recorded at 33, 35, 48–52, and 
62–66 weeks of GA, and a decreased onset with age was observed on 
several FFR components. In the spectral domain, spectral amplitude 
of the stimulus fundamental frequency (F0) and for the lower 
frequencies of the first formant (F1; i.e., <270 Hz) showed an increase 
with age. However, for higher frequencies of the first formant and 
higher harmonics (>270 Hz) such increase was not found. Novitskiy 
et  al. (2023) recorded the FFR from 45 preterm infants with a 
GA ≤ 34 weeks and 45 term infants from 0 to 12 months of age during 
natural sleep. In this study, three stimuli that differed in pitch were 
employed although no main effect of stimulus was found. Nevertheless, 
a main effect of age and prematurity in different FFR parameters 
related to synchronization and power were reported.

As discussed above, existing FFR studies in premature populations 
conducted during the first years of life suggest that premature infants 
born before 34 weeks of GA have limited neural encoding abilities of 
complex sound features (Madrid et al., 2021; Novitskiy et al., 2023). 
However, no previous studies explored preterm babies born from 34 
0/7 through 36 6/7 weeks of GA. These neonates are defined as late 
preterm neonates (Raju et al., 2006; Engle et al., 2007) and, although 
they have higher rates of mortality and morbidity than term neonates 
(Kramer et al., 2000; Shapiro-Mendoza et al., 2006; Tomashek et al., 
2006), understanding of the mechanisms of disease experienced by 
late-preterm neonates is largely incomplete (Seubert et  al., 1999; 
Escobar et al., 2006; Hunt, 2006; Kinney, 2006; Laptook and Jackson, 
2006; Ward, 2006). Hence, our study was set to investigate by means 
of FFR recordings the neural encoding of two important stimulus 
characteristics: pitch, quantified as the spectral amplitude to the 
stimulus fundamental frequency (F0), and the stimulus temporal fine 
structure, which relates to vowel formant composition, measured as 
the spectral amplitude at the first formant (F1) of the stimulus. Also, 
the FFR’s neural lag was computed. To contribute to explore, 
differentially, of being born premature from age effects, two terms 
neonate groups were included: one aged from 37.57 weeks to 
39.14 weeks and another aged from 40.14 weeks to 42.29 weeks.

Materials and methods

Participants

A total of 36 infants (9 females) were enrolled from the Sant Joan 
de Déu Barcelona Children’s Hospital (Catalonia, Spain) between April 
2019 and January 2020. Their gestational age (GA) was from 35.14 to 
42.29 weeks. Exclusion criteria were an arterial pH ≤ 7.15 at the time 
of birth, and an APGAR score < 7 after 5 min of birth, multiple 
gestations, chromosomal or major structural abnormalities, familiar 
history of hearing loss and other risk factors associated with hearing 
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impairment (American Academy of Pediatrics, Joint Committee on 
Infant Hearing, 2019). All infants passed the newborn hearing 
screening using an automated ABR system (ALGO 3i, Natus Medical 
Incorporated, San Carlos, CA) as part of standard medical practice. 
The study was approved by the Bioethics Committee of Sant Joan de 
Déu Barcelona Children’s Hospital (Approval ID: PIC-53-17) and all 
parents gave their written informed consent in accordance with the 
Declaration of Helsinki.

Infants were divided into three groups according to their GA with 
the same ratio of females to males in each group (1,3). Terms neonates 
were divided according to Lavie et al. (2023): infants born preterm 
(PRE group, 36.05 ± 0.63 weeks), early term neonates (EARLY group, 
38.30 ± 0.57 weeks) and late term neonates (LATE group, 
41.01 ± 0.64 weeks). Significant birth weight differences were observed 
between the three groups (H(2) = 25.377, p < 0.0001), and all Post hoc 
pairwise comparisons yielded significant differences [PRE vs. EARLY: 
mean = 2633.75 g vs. 3021.67 g, p = 0.004, 95% CI (69.66, 706.17); PRE 
vs. LATE: mean = 2633.75 g vs. 3530.00 g, p < 0.0001, 95% CI (577.99, 
1214.51); EARLY vs. LATE: mean = 3021.67 g vs. 3530.00 g, p < 0.001, 
95% CI (190.08, 826.59)].

Stimuli

In the present study, a click stimulus and the consonant-vowel /
da/ were presented in alternating polarities at 60 dB SPL to elicit the 
auditory brainstem response (ABR) and the FFR, respectively. 
According to Jeng et  al. (2011) and see Lemos et  al. (2021), both 
stimuli were delivered to the right ear through ER3C shielded 
earphones of 300 Ω (Etymotic Research Inc., Elk Grove Village, IL, 
United  States) connected to Flexicoupler® (Natus Medical 
Incorporated, San Carlos, CA) adaptor.

Click stimulus
Auditory brainstem responses (ABRs) to click stimuli were 

obtained to verify neural integrity in the right ear in all participants 
(Intelligent Hearing System SmartEP system, IHS, Miami, FL). A 
square wave click stimulus with a duration of 100 μs was used to elicit 
an ABR for each neonate analyzed. The stimuli were presented at a rate 
of 19.30 Hz and a silent inter-stimulus interval of 51.71 ms, based on the 
procedure followed in previous newborn FFR studies (Ribas-Prats et al., 
2019; Arenillas-Alcón et al., 2021, 2023; Ribas-Prats et al., 2022, 2023).

/da/ stimulus
To obtain the FFR, the consonant-vowel syllable /da/ was chosen, 

as this is the most commonly stimulus used in neonatal FFR research 
(Richard et al., 2020; Lemos et al., 2021; Gorina-Careta et al., 2022). 
The stimulus fundamental frequency (F0) was 113 Hz, chosen to avoid 
electric power-line frequency interference in Europe at 50 Hz. The 
stimulus duration was 170 ms, with 10 ms for the onset period, 47 ms 
for the consonant transition, and 113 ms for the steady vowel section. 
The presentation rate was 3.7 Hz and the silent inter-stimulus interval 
was 100.27 ms. In contrast to the stimulus F0, which remained at the 
same frequency along the entire stimulus duration, the first (F1) and 
the second (F2) formants of the stimulus varied during the consonant 
transition, from 553 to 688 Hz and 1,438 to 1,214 Hz, respectively. Both 
formants at the vowel section remained constant at 688 Hz and 
1,214 Hz, respectively.

Procedure

Stimuli presentation and EEG recordings were conducted with 
SmartEP platform including the cABR and Advanced Hearing Research 
modules (Intelligent Hearing Systems, Miami, FL, USA). Disposable 
Ag/AgCl electrodes were used for each infant and placed according to 
a vertical montage: active electrode at Fpz location, ground electrode 
upon the forehead, and references upon mastoids. EEG recording 
sessions took place in the hospital room while babies slept in their 
cradle, following the same procedure employed in previous studies 
with newborns (see Ribas-Prats et al., 2019; Arenillas-Alcón et al., 
2021, 2023; Ribas-Prats et al., 2022, 2023).

A sampling rate of 13,333 Hz was used to acquire the continuous 
EEG. Previous to cut the EEG signal into epochs, recordings were 
filtered online from 30 to 1,500 Hz. The neural responses to click 
stimuli were epoched into sweeps of 51.81 ms, including 10.93 ms for 
the baseline and 40.88 ms for post-stimulus recording period. The 
epoch for the neural response to /da/ stimulus was 270.27 ms, 
including 40.95 ms for the baseline and 229.32 ms for post-stimulus 
recording period. The detection in any sweep of a voltage deflection 
above ±30 μV resulted in the online rejection as an artifact.

A total of 4000 artifact-free responses to click and to /da/ were 
analyzed. For the click stimulus, neural responses were acquired in 
two blocks of 2000 sweeps, and for the /da/ stimulus condition, it was 
recorded in four blocks of 1,000 sweeps. Data epoching and rejection 
were performed online. Less than 10% of sweeps were rejected in click 
or /da/ stimuli blocks in the all sample, respectively. Impedances 
remained under 10 kΩ during the whole duration of the 
recording session.

Data processing

Based on previous studies, only the recordings corresponding to 
the right ear (ipsilateral to the auditory stimulation) were employed 
in the statistical analysis (Hornickel et al., 2009; Ribas-Prats et al., 
2019; Arenillas-Alcón et al., 2021; Ribas-Prats et al., 2022, 2023). To 
verify the auditory pathway integrity, the Wave V peak was identified 
in the ABR recording to click stimulus (Rushaidin et al., 2009) by an 
automated peak detection algorithm developed in Matlab R2019b 
(Mathworks). The script output was the highest value of the recorded 
response within a specified time window according to the age of the 
sample. Wave V peak latency and amplitudes were retrieved for 
statistical analysis.

For FFR analysis, the software from Intelligent Hearing Systems 
(Miami, FL, EEUU) and an off-line bandpass filter from 80 to 1,500 Hz 
with an infinite slope was applied to the neural responses to /da/ 
stimulus. The FFR parameters were calculated based on recent FFR 
tutorials (Krizman and Kraus, 2019) and according to our FFR 
analysis pipeline (Ribas-Prats et al., 2019; Arenillas-Alcón et al., 2021; 
Ribas-Prats et al., 2022, 2023). In sum, four FFR parameters were 
retrieved, three from neural responses to averaged stimulus polarities 
[(Rarefaction + Condensation)/2] and one from subtracted polarities 
[(Rarefaction – Condensation)/2].

The first parameter, called Pre-stimulus RMS, was computed to 
estimate background EEG activity through the pre-stimulus region. 
The second parameter was the neural lag, defined as the time elapsed 
between the stimulus onset and the neural phase-locking. Prior to the 
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cross-correlation computation, the /da/ stimulus was resampled and 
bandpass filtered with a sampling rate of 13,333 Hz and a filter from 
80 to 1,500 Hz, according to the neural response parameters. All 
subsequent parameters were calculated from the onset of the FFR 
which was defined as the individual neural lag value.

The third and fourth measurements were related to the neural 
encoding of F0 and temporal fine structure (i.e., the harmonics and 
formants of the stimulus). These parameters were calculated from 
spectral information in the FFR after the neural response was zero 
padded and the Fast Fourier Transform (FFT) was applied (Skoe and 
Kraus, 2010).

To explore the stimulus F0 encoding, neural responses to each 
stimulus polarity were averaged before applying the FFT. On the other 
hand, to investigate the stimulus temporal fine structure encoding, 
neural responses to each stimulus polarity were subtracted and the 
FFT was applied to the subtracted waveforms. Moreover, since the 
FFR phase-locking bounds (i.e., 1,500 Hz; Krizman and Kraus, 2019) 
limit the possibility to explore neural encoding of the stimulus F2, the 
temporal fine structure analysis was calculated on the harmonics 
located at the frequency region of the F1. Since F1 increases along the 
consonant transition (from 553 to 688 Hz) while remaining constant 
during the vowel region (688 Hz), the neural encoding of the stimulus 
F1 was analyzed for the consonant transition (10–57 ms) by averaging 
the spectral amplitude of the fifth and the sixth harmonics (i.e., HH5-

6), whereas for the vowel region (57–170 ms, HH6) it was equivalent to 
the spectral amplitude of the sixth harmonic only. Since the spectral 
content of each stimulus region differs, the neural encoding of the 
stimulus F0 were calculated separately for the consonant transition and 
for the vowel region.

The spectral amplitude of the neural response for each stimulus 
region (i.e., the consonant transition and the vowel region) and each 
frequency peak of interest [i.e., F0 = 113 Hz at both the consonant 
transition and the vowel region; F1 = average HH5 (565 Hz) and HH6 
(678 Hz) at the consonant transition region, and F1 = HH6 (678 Hz) at 
the vowel region] were calculated. All parameters described were 
computed with routines provided by Intelligent Hearing Systems 
(Miami, Fl, EEUU) and scripts developed in our laboratory under 
Matlab R2019b (Mathworks).

Statistical analysis

The statistical analysis was performed with IBM SPSS Statistics 
23.0 (IBM Corporation, Armonk, NY). Normality was assessed with 
the Shapiro–Wilk’s test. Parameters normally distributed were analyzed 
by means of one factor ANOVA with group (PRE; EARLY; LATE) as 
factor. Those parameters which did not follow a normal distribution 
were analyzed by Kruskal-Wallis’ H. Accordingly, pairwise comparisons 
were conducted by Bonferroni-corrected t tests or by Mann–Whitney’s 
U test. A result was considered significant when p < 0.05.

Results

Auditory brainstem response

Wave V peak was identified in all preterm, early at term and late 
at term neonates. Grand-average ABR waveforms are shown in 

Figure 1A and violin plots of wave V amplitude and latency values are 
reported in Figures 1B,C, respectively. Wave V amplitude was not 
significantly different between groups [H(2) = 3.938, p = 0.140; 
Table 1]. Regarding wave V latency, a significant main group effect was 
found [F(2/33) = 4.506, p = 0.019, η2 = 0.215; Table 1]. Post hoc pairwise 
comparisons yielded significant differences between PRE and LATE 
neonates [PRE vs. LATE: mean = 9.07 ms vs. 8.57 ms, p = 0.029, 95% 
CI (0.04, 0.95)].

Frequency-following response

Clear FFR waveforms were obtained in the three groups (Figure 2). 
Figure 2A shows the grand-average waveforms for each group for 
averaged polarities; Figure 2B shows the grand-average waveforms for 
each group for subtracted polarities. Based on pre-stimulus RMS 
parameter, similar background EEG activity was observed in the three 
groups of the study [F(2/33) = 0.074, p = 0.929, ηp

2 = 0.004; Table  1; 
Figure 3A]. However, significant differences were found in the response 
onset as quantified by the neural lag [F(2/33) = 6.142, p = 0.005, 
ηp

2 = 0.271; Table 1; Figure 3B]. Post hoc pairwise comparisons revealed 
significant delayed response in the PRE group compared to the LATE 
group [PRE vs. LATE: mean = 6.87 ms vs. 5.63 ms, p = 0.005, 95% CI 
(0.33, 2.15)].

As described in the data processing section, the FFR was analyzed 
in each group by calculating the spectral amplitude at the stimulus F0 for 
averaged stimulus polarities (Figure  2A; Figures  3C,E), and at the 
stimulus F1 for subtracted stimulus polarities (Figure 2B; Figures 3D,F; 
Aiken and Picton, 2008), for each stimulus region of interest: the 
stimulus consonant transition and the vowel region. Regarding the 
neural encoding of the stimulus F0, no significant differences were found 
in the spectral amplitudes extracted from the consonant transition 
[F(2/33) = 1.733, p = 0.193, ηp

2 = 0.095; Table 1]. However, significant 
differences emerged at the vowel region [F(2/33) = 5.342, p = 0.010, 
ηp

2 = 0.245; Table 1]. A main effect was observed between PRE and 
EARLY groups [PRE vs. EARLY: mean = 15.92 nV vs. 25.71 nV, p = 0.016, 
95% CI (−18.05, −1.53)] and between PRE and LATE groups [PRE vs. 

FIGURE 1

(A) Grand-averaged click ABRs for preterm neonates (PRE, red), early 
at term neonates (EARLY, green) and late at term neonates (LATE, 
blue), with the wave V peak pointed out. Data distribution (violin 
plots) for (B) wave V amplitude and (C) its latency. The black 
horizontal line illustrates the median and the black vertical line 
delimits the interquartile range (IQR).
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LATE: mean = 15.92 nV vs. 24.57 nV, p = 0.038, 95% CI (−16.92, −0.39)]. 
The F1 neural encoding analysis yielded no significant differences for 
either the consonant transition [F(2/33) = 2.105, p = 0.138, ηp

2 = 0.113; 
Table 1] or the vowel [F(2/33) = 0.356, p = 0.703, ηp

2 = 0.021; Table 1].

Discussion

This study reveals functional impairments in the neural encoding 
of speech sound features in late preterm neonates, by analyzing 

electrophysiological brain responses elicited to the /da/ syllable. Our 
results align with previous studies in which an impaired 
neurodevelopment was associated to being born prematurely (Barre 
et al., 2011; Nazzi et al., 2015; Carter and Msall, 2017).

Since the earlier a neonate is born, the less likely the neonate is to 
survive and, in the case of survival to face long-term, health problems 
and disrupted neurodevelopment (ACOG Practice Bulletin, 2021), 
most of the clinical studies centered on improving the management of 
preterm populations are focused on the extreme preterm (<28 
0/7 weeks), very preterm (28 0/7–31 6/7 weeks) or moderate (32 0/7–33 

TABLE 1 Descriptive statistics and comparisons between preterm neonates (PRE), early at term neonates (EARLY) and late at term neonates (LATE) for 
each wave V and FFR parameter assessed.

Measures PRE EARLY LATE t test df p value Effect size

(n  =  12) (n  =  12) (n  =  12)

Wave V

Amplitude. μV 0.09 (0.06)a 0.14 (0.07)a 0.15 (0.16)a 3.938b 2 0.140

Latency. ms 9.07 (0.47) 8.63 (0.47) 8.57 (0.39) 4.506 2/33 0.019 0.215

FFR

Pre-stimulus, μV 0.02 (0.01) 0.02 (0.01) 0.02 (0.01) 0.074 2/33 0.929 0.004

Neural lag. ms 6.87 (1.15) 6.04 (0.58) 5.63 (0.81) 6.142 2/33 0.005 0.271

Spectral amplitude. nV

Consonant transition (10–57 ms)

F0 26.79 (12.57) 30.04 (10.6) 35.53 (11.63) 1.733 2/33 0.193 0.095

F1 0.8 (0.33) 1.07 (0.35) 1.03 (0.37) 2.105 2/33 0.138 0.113

Vowel (57 to 170 ms)

F0 15.92 (4.06) 25.71 (11.16) 24.57 (7.23) 5.342 2/33 0.010 0.245

F1 0.53 (0.23) 0.62 (0.37) 0.62 (0.27) 0.356 2/33 0.703 0.021

Results are expressed as mean (SD). aMedian (IQR, interquartile range). bH de Kruskal-Wallis.

FIGURE 2

Temporal and spectral neural representation of the consonant-vowel /da/ in the neonate’s auditory brain. (A) Grand-averaged FFR waveforms and 
ampltude FFR spectra extracted from the consonant transition and from the vowel regions after averaged neural response polarities; and (B) after 
subtracted neural response polarities from preterm neonates (PRE, red), early at term neonates (EARLY, green) and late at term neonates (LATE, 
blue). The signal (s) and noise (n) spectral windows used for FFR quantification are marked with dark and light gray rectangles, respectively.
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6/7 weeks) preterm population. The few clinical reports that compared 
late preterm infants (34 0/7–36 6/7 weeks) with term infants already 
suggested the presence of a higher risk for neurodevelopmental 
handicaps, such as speech disorders (Engle et al., 2007; Karnati et al., 
2020). Stene-Larsen et al. (2014) found that late preterm infants were 
at increased risk for speech and language delays at 18 and 36 months, 
and Nepomnyaschy et al. (2012) described lower scores in language 
scales at 2 and 4 years in late preterm infants compared to term infants. 
In a longitudinal study, Rabie et al. (2015) examined the incidence 
differences of developmental speech or language disorders in late 
preterm infants and in term infants, and found an increased proportion 
of developmental speech and/or language delays in the clinical group.

Given that at 34 weeks of gestation (late-preterm) the fetal brain 
has reached only about 65% of its development (Kinney, 2006), white 
matter quintuples its weight from 35 to 41 weeks of gestation (Hüppi 
et  al., 1998), and at this time several cerebral changes crucial for 
language development take place, such as an exponential neural 
connectivity growth between the cochlea and the auditory brainstem 
and its expansion to the auditory cortex (Pujol and Lavigne-Rebillard, 
1992; Hepper and Shahidullah, 1994; Hall, 2000), more studies 
characterizing the abnormal functionality of neural underpinnings of 
language processing in these cohort of preterm neonates are needed.

Thus, in the present study we  used the frequency-following 
response (FFR) to contribute to this aim. This electrophysiological 

response has a high temporal resolution allowing to explore one of the 
crucial processing abilities to ensure the first steps for appropriate 
language acquisition, namely, the capacity to catch the temporal and 
spectral characteristics of the speech input (Coffey et al., 2019; Gorina-
Careta et al., 2021). Several studies conducted in different age cohorts 
(Gardi et al., 1979; Jeng et al., 2010, 2011, 2016a,b; Ribas-Prats et al., 
2019; Thompson et  al., 2019, 2021; White-Schwoch et  al., 2020; 
Bidelman and Momtaz, 2021) and different language impairments 
(Russo et al., 2008; White-Schwoch et al., 2015, 2020; Otto-Meyer 
et al., 2018; Font-Alaminos et al., 2021) suggest the potential clinical 
use of the FFR.

Since language development can be affected by the presence of 
auditory impairment (Yoshinaga-Itano et  al., 1998; American 
Academy of Pediatrics, Joint Committee on Infant Hearing, 2019), 
prior to the FFR recording to the /da/ syllable we tested the auditory 
pathway integrity by identifying the Wave V in ABR, elicited to a click 
stimulus (Hall, 2006; Sharma et al., 2016). Once the presence of the 
Wave V was confirmed in every individual participant, we analyzed 
group differences in the main Wave V parameters. Results revealed a 
significant latency delay in late preterm neonates compared to term 
neonates. These results aligned with those from previous studies in 
which, although different click rate and filter settings were used, a 
clear delayed Wave V was observed (Despland and Galambos, 1980; 
Sleifer et al., 2007; for a revision of 14 studies, see Stipdonk et al., 
2016). This delay was associated with disruptions in the myelination 
and synaptogenesis process taking place on the fetal brain of the 
clinical group with direct affections on the central auditory system 
(Javel, 1980; Sleifer et al., 2007; Volpe, 2019).

Although ABR and FFR are both electrophysiological responses 
originating during the first milliseconds after the stimulus onset, their 
characteristics are considerably different. While the ABR morphology 
is characterized by a series of peaks related to each station of the 
auditory pathway from the eighth cranial nerve up to the inferior 
colliculus (Felix et al., 2018), the FFR morphology depends on the 
stimulus used to elicit it, becoming a mirror of it. Thus, this 
electrophysiological response allows us to investigate more precisely 
how the auditory brain captures the stimulus spectro-temporal 
components (Krizman and Kraus, 2019).

The FFR analysis of the present study revealed that late preterm 
neonates, compared to term neonates, exhibit a delayed neural 
response of complex sounds, as revealed by the neural lag parameter, 
and an impoverished neural encoding of a specific component of the 
speech input–its fundamental frequency (F0)–, as revealed by means 
of the spectral amplitude parameter. Regarding the neural lag, Madrid 
et  al. (2021) described a latency decrement with age in preterm 
neonates. However, the GA of their preterm neonates (i.e., ≤ 32 weeks 
of GA), as well as the lack of a control group, limits the possibility to 
compare their results directly with the present findings. Novitskiy 
et al. (2023) explored whether the neural encoding of three different 
speech stimuli differed between a group of preterm infants delivered 
from 22 to 34 weeks of gestation and a group of term infants delivered 
from 38 to 40 weeks of gestation. To that end, different parameters 
related to response synchronization and response power were 
retrieved from the FFR. A main group effect was found for some 
synchronization parameters, with higher values in the term than in 
the preterm infants. On the other hand, no group differences were 
observed in measures related to response power. However, the length 
of gestation of the preterm sample, the age of the sample and other 

FIGURE 3

Data distribution (violin plots) of the (A) pre-stimulus RMS; (B) neural 
lag; (C,D) spectral amplitude at fundamental frequency (F0) and first 
formant (F1) extracted from the consonant transition and (E,F) from 
the vowel. The layout is the same to that used in Figures 1B,C.
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methodological differences hinders the comparison our results with 
those of Novitskiy et al. (2023).

The present study contributes to better understanding the 
variability and significance of FFR responses in different neonatal 
conditions (Musacchia et al., 2020; Ribas-Prats et al., 2022, 2023). In 
neonates affected by progressive moderate hyperbilirubinemia, the 
FFR parallels bilirubin levels, allowing to monitor neurotoxicity 
decrements resulting from phototherapy (Musacchia et al., 2020). In 
term small-for-gestational-age, a poor neural encoding of the stimulus 
F0 was observed by means of the normalized spectral amplitude, 
quantified as SNR at the vowel region, and these neural encoding 
disruptions were associated with specific white matter affections 
(Ribas-Prats et al., 2022). In those neonates located at the opposite 
extreme of the birth weight continuum -a condition known as large 
for gestational age (LGA)-, smaller spectral amplitudes for the 
consonant transition and for the vowel were found, and these 
observations in the LGA group were linked to a disrupted fine-grained 
central auditory system microstructure due to adipose tissue 
accumulation. Taking into account the potential clinical implications 
of the neonatal FFR, we suggest that the implementation of the FFR 
recordings in the clinical routines as a part of the auditory screening 
could have a promising impact to minimize cognitive consequences 
arising from any neonatal medical condition.

We speculate that the present FFR results could be  related to 
disruptions occurring in the fetal brain growth of late preterm 
neonates, with special affection to synaptogenesis processes and white 
matter, in particular disruptions in the myelination progression (Javel, 
1980; Sleifer et al., 2007; Volpe, 2019). By the 26th week of gestation 
linear arrays of oligodendrocytes outline the axon of the cochlear 
nerve and brainstem pathways (Moore et al., 1995). By week 29 this 
myelination process extended to the entire auditory pathway, 
including the commissure and the brachium of the inferior culliculus 
(IC; Moore et  al., 1995) which is a primary generator of the FFR 
(Coffey et al., 2019; Gorina-Careta et al., 2021). From week 29 of 
gestation onwards, myelination density rises in all pathways and does 
not reach its maximum until at least 1 year of postnatal age (Moore 
et al., 1995). The increased density of myelination has been linked to 
a major synchronized conduction of auditory impulses from the 
cochlear nerve to the end of the auditory system, and several studies 
focused on the ABR disclosed a decreased wave V latency associated 
with these myelination trajectories (Johnson et al., 2008; Sharma et al., 
2016). Regarding the FFR, differences in myelinization density 
between preterm and term neonates could lead to a decreased 
synchronization in the auditory impulses’ transmission in the clinical 
group and, thus, to a poorest robustness with which language stimuli 
are encoded, as observed here. Also, the functionality of the auditory 
nervous system in the clinical group may also be impaired due to 
hypoxic episodes occurring with a significant major incidence in late 
term neonates compared to term neonates during the first days of life 
(before 43 weeks corrected postconceptional age; Ramanathan et al., 
2001; Williams et al., 2019).

On the other hand, the lack of significant results at the consonant 
transition region could be explained because of the rapid frequency 
changes occurring during a brief period (i.e., consonant transition 
length of 47 ms compared to the 113 ms for the vowel region). These 
fast fluctuations would demand a precise phase-locking at the stimulus 
F0 that is not detected in the neonates’ auditory system, which is still 
in structural and functional development (Moore and Guan, 2001; 

Moore and Linthicum, 2007), as it was observed in a previous FFR 
clinical study in which a group of term neonates affected by fetal 
growth restriction was compared with a healthy term neonate group 
(Ribas-Prats et al., 2022).

Regarding the neural encoding of the stimulus F1, the lack of group 
differences supports the existence of a different maturational pattern for 
each of the speech cues under analysis (i.e., stimulus F0 and F1; Anderson 
et al., 2015; Van Dyke et al., 2017; Arenillas-Alcón et al., 2021; Ribas-
Prats et al., 2023). In addition, the lack of effects reported in the present 
study compared to the significant higher improvement in the neural 
encoding of F1 from 1 to 0 months of age recently described by Ribas-
Prats et al. (2023), suggests that is the environmental exposure during 
the perinatal period which may explain the auditory system refinement 
needed to catch the neural encoding of the stimulus F1.

The interest to explore the neural encoding of both the stimulus 
F0 and its F1 is because they provide two different angles on speech 
processing abilities. Indeed, the neural encoding of F0 is critical for 
early language acquisition, as it facilitates the cutting of the continuous 
speech into the linguistic elements of the discourse (François et al., 
2017) and contributes to talker identification, promoting first social 
interactions (Mary and Yegnanarayana, 2008). On the other hand, the 
neural encoding of the stimulus F1 supports phoneme discrimination 
(Diehl and Lindblom, 2004; Hornickel et  al., 2009) and speech 
comprehension (Hopkins et al., 2008; Moore, 2008).

Finally, it should be noted that the inclusion of two term neonate 
groups allowed us to explore age effects, which has been largely 
described in longitudinal and cross sectional FFR studies (Anderson 
et al., 2015; Van Dyke et al., 2017; Arenillas-Alcón et al., 2021; Ribas-
Prats et  al., 2023). Exploring the magnitude of the FFR group 
differences in each of the parameters analyzed, it is evident that the 
differences are more abrupt between those neonates born preterm and 
those neonates born early term, than between neonates born early and 
those born late term. Thus, this finding suggests that the last weeks of 
gestation are crucial for brain development and for the white matter 
formation (Javel, 1980; Sleifer et al., 2007; Volpe, 2019). On the other 
hand, the lack of differences between early and late term neonates 
leads to better understanding of how FFR responses stabilize over time 
in early childhood as it was suggested by Llanos et al. (2017).

While the present study contributes to better understanding the 
neurodevelopmental limitations associated to late prematurity, further 
longitudinal studies are crucial, in which the neural encoding of 
stimulus F1 could be  explored as the effects of specific social 
environment variables, since the experience-dependent auditory 
plasticity by means of the FFR have been widely described (Lau et al., 
2017, 2019; Llanos et al., 2017; Reetzke et al., 2018; Ribas-Prats et al., 
2023). Also, the presentation of more complex sounds such as the use 
of background noise (White-Schwoch et al., 2015; Musacchia et al., 
2018; Thompson et al., 2019) or even the use of continuous speech in 
FFR studies could be promising to increase the potential implications 
for clinical assessments and interventions, the external validity and to 
give rise to stronger conclusions (Kulasingham et al., 2020; Arenillas-
Alcón et al., 2021). As stated in the title of the present research, this 
study is just a pilot proof of concept on the investigation of FFR in late 
preterm neonates with the inclusion of two (early and late) term 
neonates for comparison. Thus, one of the major limitations of the 
study was the sample size. Another important limitation is the lack of 
sociodemographic data. To discriminate the effects of prematurity 
from other relevant variables such as social environment or economic 
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status on different aspects of language encoding, those studies with a 
larger sample size should include these variables in the statistical 
analysis as covariates. Hence, future studies with larger samples, 
including cohorts for each term and preterm group based on the GA 
classification proposed by the WHO and the American College of 
Obstetricians and Gynecologists (ACOG Practice Bulletin, 2021; 
World Health Organization, 2023: for prematurity: extremely preterm, 
very preterm, moderate, and late preterm; for term deliveries: early 
term, full term, late term, and post term), are needed to better 
understand and address the specific needs of each of these preterm 
populations, thus fostering critical improvements in the current 
clinical guidelines for preterm infants.

Conclusion

The present study indicates that late preterm neonates exhibit a 
delayed neural response to complex sounds and an impoverished 
neural encoding of the stimulus fundamental frequency compared to 
term neonates born around the 38 and the 41 weeks of gestational age. 
Our results disclosed specific effects in the vowel region only and are 
compatible with the myelination and synaptogenesis affections 
observed in late preterm neonates. Yet, further studies are to 
be conducted to test whether the neural encoding affections disclosed 
here by means of the FFR could be causing a ‘knock-on effect’: a 
dysfunction at birth that may point to the beginning of a 
developmental problem that increases with age.
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