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The oscillatory features of visual 
processing are altered in healthy 
aging
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The temporal features of visual processing were compared between young and 
elderly healthy participants in visual object and word recognition tasks using 
the technique of random temporal sampling. The target stimuli were additively 
combined with a white noise field and were exposed very briefly (200  ms). Target 
visibility oscillated randomly throughout exposure duration by manipulating 
the signal-to-noise ratio (SNR). Classification images (CIs) based on response 
accuracy were calculated to reflect processing efficiency according to the time 
elapsed since target onset and the power of SNR oscillations in the 5–55  Hz 
range. CIs differed substantially across groups whereas individuals of the same 
group largely shared crucial features such that a machine learning algorithm 
reached 100% accuracy in classifying the data patterns of individual participants 
into their proper group. These findings demonstrate altered perceptual 
oscillations in healthy aging and are consistent with previous investigations 
showing brain oscillation anomalies in the elderly.
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Introduction

Visual function is subject to several forms of alterations in normal aging. Many aspects of 
the visual system decline with age, but their susceptibility as well as their rate of decline may 
be quite variable (Faubert, 2002). The light intake of the eyes is reduced in the elderly due to 
a reduction of pupil size and increased thickness of the lens, whose spectral transmission 
function is also shifted in aging (Grossniklaus et al., 2013; Kiel et al., 2022). Functionally, 
studies have shown age-related deteriorations in the domains of contrast sensitivity (Owsley 
et al., 1983; Ross et al., 1985; Elliot, 1987; Tang and Zhou, 2009; Allard et al., 2013), visual 
acuity (La Fleur and Salthouse, 2014), visual overload (Scialfa et  al., 2013), and motion 
perception (Faubert, 2002; Owsley, 2011; Legault and Faubert, 2012). It has been proposed 
that the more complex the visual processing required for a task, the greater the likelihood of 
detecting a deterioration with age (Faubert, 2002; Bertone et  al., 2011; Legault and 
Faubert, 2012).

A feature of brain activity that has attracted an increasing degree of interest and that may 
help understand the deterioration of perceptual function in aging is brain oscillations. These 
reflect the synchronized firing of collections of neurons which are assumed to work together 
in achieving a micro-goal that is part of the processing required during the realization of a 
particular task (Buzsàki, 2006; Basar, 2013). These synchronized action potentials occur for a 
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limited duration and vary in terms of their temporal frequency and 
region of origin depending on a variety of factors that are beyond the 
scope of the present review.

Previous studies have shown alterations of brain oscillations in 
aging which can be related to particular aspects of the processing 
required to carry out various perceptual, cognitive, or motor functions 
(e.g., Sebastian and Ballestros, 2012; Wiegand et al., 2013; Dushanova 
and Christov, 2014; Vlahou et  al., 2014). Such alterations appear 
pervasive and can be demonstrated in a vast variety of task contexts 
(Babiloni et al., 2009; Sebastian and Ballestros, 2012; Dushanova and 
Christov, 2014; Vlahou et al., 2014; Borghini et al., 2018; Tafuro et al., 
2019; Jafari et al., 2020).

In the present study, we  aim to examine the behavioral 
manifestations of altered neural oscillatory mechanisms in aging in 
the context of a visual task. Indeed, an interesting implication of 
neural oscillations as a major basis for the functional output of our 
brain activity is that this output should somehow be  modulated 
through time. With specific reference to visual function for instance, 
this would imply some temporal heterogeneity of our visual processing 
capacity. There exists a relatively substantial literature on this issue 
which has more or less successfully attempted to demonstrate that 
visual function oscillates through time at a particular unique 
frequency or combination thereof, which would be  tied to the 
underlying brain activity (see Keitel et al., 2022; for a recent review).

Recently, our laboratory has developed a promising technique 
called random temporal sampling which offers a strong demonstration 
of variations of visual processing efficiency through time; i.e. 
perceptual oscillations. In previous studies from our lab, random 
temporal sampling has shown it can reveal differences in the 
oscillatory mechanisms called upon according to task demands 
(Arguin et al., 2021), the spatial frequency content of stimulation 
(Bertrand-Pilon and Arguin, 2023), letter position in a word 
recognition task (Arguin and Fortier-St-Pierre, 2023), or whether 
adult participants suffer from ADHD (Pelland-Goulet et al., 2023). 
The random temporal sampling technique involves the brief (e.g., 
200 ms; allowing only one ocular fixation) presentation of stimuli 
made of an additive combination of signal (the target stimulus) and 
noise (a patch of visual white noise superimposed on the signal) and 
a temporal sampling function made by random variations of the 
signal-to-noise ratio (SNR) throughout exposure duration. By 
separating the temporal samples associated with errors versus correct 
responses and by subtracting one from the other, one obtains a 
classification image (CI) that characterizes processing efficiency 
according to the particular temporal features one wishes to consider.

For instance, Arguin et al. (2021) were able to represent variations 
of visual processing efficiency according either to the temporal 
dimension alone or as a function of a time-frequency representation 
of the temporal samples (i.e., temporal variations in the oscillatory 
power of the SNR at a range of frequencies). Moreover, they showed 
that the power spectra of these CIs could be successfully used by a 
machine learning algorithm to map these patterns of temporal features 
onto the particular class of stimuli participants had to recognize. 
Specifically, the four-way mapping of individual patterns of temporal 
features to the task of recognizing words, familiar objects, unfamiliar 
objects, or faces was performed by the algorithm with an accuracy of 
75%, which is far above chance.

In the present study, we  contrasted young adults (18–35 y.o.) 
versus elderly (60–85 y.o.) normally functioning individuals in terms 

of the temporal features of their visual processing in the context of an 
object (Exp. 1) or word recognition (Exp. 2) task. To briefly summarize 
the outcome of the study, we report important differences between 
groups in terms of the temporal features characterizing their visual 
processing for both tasks. Moreover, individual temporal patterns 
within groups are highly consistent, such that a machine learning 
algorithm can successfully determine whether a participant is young 
or elderly with 100% accuracy on the basis of an extremely small 
proportion of the features from these temporal patterns.

Exp. 1: object recognition

Methods

Participants
Thirty two participants, divided into two groups of 16, one with 

young adults (21–33 years old) and one with elderly individuals 
(63–80 y.o.), with normal or corrected vison (20/20) and French as 
their mother tongue, took part in the study. All participants gave their 
informed consent to participate and received a $30 CDN 
compensation for their participation. The study was approved by the 
CIUSS du Centre-Sud de Montréal Research Ethics Committee on 
Aging and Imaging. This approval was recognized by the Comité 
d’Éthique de la Recherche en Éducation et Psychologie (CÉREP) of 
the Université de Montréal.

For the young-adults group, participants had to be  free of 
neurological and/or psychiatric disorders. In the end, 10 women and 
6 men made up this group. Their average age was 24.1 y.o., and only 
one participant was left-handed. For the elderly group, participants 
had to report normal cognitive function. This group consisted of 12 
women and 4 men, with an average age of 72.8 y.o., and only one left-
handed participant.

All participants were administered the cognitive screening test 
Cognistat (Kiernan et al., 1987; Arguin et al., 2020) in order to verify 
that groups were matched on their levels of cognitive function. The 
mean results for each group and each subtest are reported in Table 1. 
T-tests comparing both groups on each subtest of Cognistat only 
showed a significant difference on the constructional praxis subtest 
(t(30) = 6.2; p < 0.05), where the elderly participants obtained a slightly 
lower mean than the young adults (5.4 vs. 6.0). Although significant, 
this difference remains small, and the cognitive functions involved in 
the praxis test are quite different from those involved in visual object 
recognition. Indeed, the test requires participants to replicate 
geometric patterns using tiles. The manipulation of small objects as 
well as the fact that the test is timed are most likely the factors involved 
in this group difference. In addition, it is worth noting that on the 
Naming subtest (involving the naming of images of everyday objects) 
both groups obtained identical scores of 8.0. The difference between 
the groups on the Praxis subtest is therefore not expected to have any 
impact on the results of the experimental task.

Materials and stimuli
For the familiar object recognition task, stimuli were greyscale 

photographs (from the Bank of Standardized Stimuli; BOSS) of 256 
objects. These were selected on the basis of norms collected from 
French-speaking participants (Brodeur et al., 2010), with the aim of 
maximizing the ease of finding the name, as indicated by the available 
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statistics. Two hundred and forty images were used for the five 
experimental blocks of 240 trials each and a set of 16 different images 
were used for the practice block which was run at the very beginning 
of the experiment.

Images were presented in grayscale on a white background in a 
640 × 640 pixel frame. Within this frame, the maximum object size 
was 17.4 degrees of visual angle horizontally and 17.1 degrees 
vertically. The minimum object size was 2.6 degrees horizontally and 
3.3 degrees vertically.

The experiment was run on a Lenovo ThinkStation P52030BE 
computer with a 120 Hz refresh rate. The screen was calibrated to 
allow a linear manipulation of brightness. The corrected luminance 
table contained 235 values ranging from 1 to 322 lux. The viewing 
distance was approximately 57 cm. The head position of participants 
was not fixed by a chin rest or any other device. This allowed 
participants to be more comfortable throughout the entire experiment. 
The experimental program was written in Matlab and made use of 
functions from the Psychophysics Toolbox (Kleiner et al., 2007).

Procedure
On each trial, participants were asked to name aloud the object 

presented. The experimenter then entered the response via the 
computer keyboard. The dependent variable measured was the 
accuracy of responses. Each object image was presented once in each 
of the five experimental blocks. Prior to the experimental blocks, a 
practice block of 16 trials was administered. For the experimental and 
practice blocks, stimuli were presented in a different random order for 
each participant.

Images of the stimuli were presented for 200 ms and visual white 
noise was superimposed on them. The contrast of the target (the 
signal) was adjusted to maintain the correct response rate at about 
50%. The white noise patch constituted the “noise” component of the 
stimulus, and its contrast was maximal (i.e., made of white and black 
dots). At the beginning of the experiment, the contrast of the target 
image was 40% of its original value. Then, from the 11th trial onwards, 
if the participant had performed below 50% in the previous 10 trials, 
the target contrast was increased by one step. On the contrary, if this 
performance was greater than 50%, the target contrast was decreased 
by one step. The initial step size was 16%, and it was halved each time 

the adjustment of noise level changed direction until its minimum 
value of 1 was reached. The state of the algorithm at the end of an 
experimental block was retained for use at the start of the next block. 
The white noise patches used were constant for one trial and varied 
randomly across trials.

The stimulus presented on the screen was constructed by a linear 
combination of the target (the signal) and random white noise. The 
SNR varied across the duration of exposure according to a sampling 
function created by integrating sine waves with frequencies between 
5 and 55 Hz (in 5 Hz steps), whose amplitudes and phases were 
random. The SNR was normalized in the range 0 (only visual noise 
was visible) to 0.8 (the signal was partially obstructed by visual noise), 
and a new sampling function was generated for each trial. The 
stimulus energy was kept constant, i.e., all the images making up the 
sequence presented during a trial had an RMS contrast normalized to 
1. Figure 1 shows an example of the change of target visibility through 
time which resulted from the above procedure. Given the 200 ms 
duration of the target and the 120 Hz temporal frequency offered by 
the stimulus screen, each trial consisted of a sequence of 24 images.

The experiment was conducted in two sessions, each lasting 
approximately one to one-and-a-half hours, which could be held on 
the same day or on separate days, with a maximum of one week 
between the two sessions. The Cognistat cognitive screening test (see 
above), the practice block, and two experimental blocks were 
administered during the first session, and the remaining three 
experimental blocks during the second session.

Each trial began with a 17.7 cm by 17.7 cm square patch of white 
noise, which was presented for 750 ms. A fixation cross was then 
added for 250 ms and then removed. There was a 150 ms delay before 
the presentation of a 900 Hz—75 dB tone for 50 ms. Following the 
tone, there was an additional 100 ms delay which was then followed 
by the onset of the target for 200 ms (i.e., the sequence of 24 images 
with varying SNR). Target offset was followed by the same white noise 
field as that presented at the beginning of the trial and it remained 
visible until the participant’s response. Participants could respond 
without time pressure, and the experimenter pressed the “1” key on 
the keyboard for a correct response and “0” for an error. A 1,000 Hz 
tone lasting 100 ms was emitted following correct responses, and a 
300 Hz tone lasting 300 ms was emitted following an error.

TABLE 1 Mean and standard deviation of the scores obtained by the young and elderly participants of Exp. 1 on each subtest of Cognistat. The numbers 
in parenthesis beside subtest names indicate the maximum possible score.

Subtest Young Adults Elderly

Mean SD Mean SD

Orientation (/12) 12.0 0.0 11.9 0.3

Attention (/8) 7.9 0.3 7.9 0.5

Lang. Understanding (/6) 6.0 0.0 5.8 0.5

Lang. Repetition (/12) 12.0 0.0 12.0 0.0

Image naming (/8) 8.0 0.0 8.0 0.0

Construction (/6) 6.0 0.0 5.4 0.9

Memory (/12) 11.6 0.9 10.9 2.5

Calculation (/4) 3.8 0.5 4.0 0.0

Similarities (/8) 7.9 0.5 7.9 0.5

Judgment (/6) 5.8 0.5 5.6 0.8
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Data analysis
Classification images (CIs) representing how response accuracy 

was affected by the temporal features of the sampling functions of the 
stimuli were constructed. Here we focus on CIs made from time-
frequency representations of the SNR sampling functions. These were 
calculated separately for each trial with a wavelet analysis using three-
cycle complex Morlet wavelets varying in temporal frequency from 5 
to 55 Hz in 5 Hz steps (Cohen, 2014). The number of cycles in the 
Morlet wavelet serving as the kernel was chosen to favor high 
precision on the time dimension. This leads to a sacrifice in the 
precision of measurements in the frequency domain, which implies a 
sensitivity of the wavelet not just to its own temporal frequency but to 
a range of frequencies around it.

CIs were obtained for each individual participant. This was done 
by the weighted subtraction of the sums of the time-frequency 
sampling functions associated with errors from those associated with 
correct responses. These raw CIs were then transformed into Z scores 
by a bootstrapping operation whereby the sampling functions were 
randomly assigned to response accuracies while allowing for 
repetition, and from which sham CIs were constructed. The mean and 
standard deviation of 1,000 such sham CIs for an individual 
participant served as a reference to transform the values from their 
raw CI into Z scores.

Once transformed to a common scale, the individual CIs were 
averaged, smoothed, and then submitted to a two-way Pixel test 
(Chauvin et al., 2005) with α = 0.05 to determine the points in CIs that 
differed significantly from zero. The Pixel test is derived from random 
field theory and has been applied for about the last 30 years for the 
analysis of brain imaging data. Its purpose is to establish the Z value 
that will serve as the significance criterion for a Z-scored image. The 
smoothing filter was Gaussian and had a full width at half maximum 

(FWHM) of 19.6 ms in the time domain and 11.8 Hz in the frequency 
domain. The criterion Z score obtained was then used in its positive 
value to identify points in the CIs that were significantly above 0 and 
in its negative value (i.e., Zcrit *−1) to identify points significantly 
below 0.

The conversion of individual CIs into their Fourier descriptors 
was performed by one-dimensional fast Fourier transforms applied to 
the Z score amplitude variations through time separately for each 
temporal frequency represented in the time-frequency CIs (i.e., 
5–55 Hz in 5-Hz steps).

The assessment of the distinctiveness of data patterns across 
groups was done using linear support vector machines (SVMs; 
Vapnik, 1995) and a leave-one-out cross-validation procedure which 
were applied to either the individual z-scored time-frequency CIs or 
their Fourier transforms. Thus, a subset of features (see below) from 
all but one of the available CIs were presented to the SVM for it to 
learn the mapping from individual CIs to their proper group (i.e., 
young vs. elderly). Then, the CI that had been left out of the learning 
phase was presented to the SVM for it to determine the group of 
participants it came from. This process was repeated by leaving out a 
different CI on each iteration until it had iterated through the complete 
collection. Classification accuracy was determined from the 
percentage of iterations on which the SVM responded correctly. 
Binomial analyses were used to assess whether classification accuracy 
deviated significantly from chance.

The classification of data patterns using an SVM satisfied several 
important aims in the present context. The most obvious is that an 
accuracy that is greater than chance implies that there exists important 
(i.e., significant) differences in the data patterns that are contrasted. Less 
obvious but crucially important is that it also provides an indication that 
these data patterns are replicable across individuals. Indeed, even if the 

FIGURE 1

Extract from an image sequence for a trial which illustrates the change in target visibility through time.
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average data patterns compared are markedly different, if they are not 
replicable across individuals, the performance of the classifier will 
be  poor. In other words, to obtain a highly accurate classifier, the 
relevant features in the training patterns must retain their discriminant 
value in the pattern that is used in the test phase. Finally, another 
interesting aspect of using a classifier is that we can determine the 
features in the data patterns from which its discriminatory power is 
derived. This thus permits us to specify the feature values that 
characterize the groups under study. Here, we  display only the 
characteristic features of the elderly group since those of the young 
participants have the same absolute value but an opposite sign.

In order to retain only the most relevant features that discriminate 
among conditions, we used a stepwise procedure for the introduction of 
features to the model one at a time, in a way that resembles the technique 
of stepwise multiple regression. This iterative procedure was interrupted 
when the classifier obtained a performance of 100% correct or when all 
the available features were used, whichever occurred first.

The order in which CI features were introduced to the SVM model 
was based on the individual capacity of each available feature to 
discriminate between the groups. This discrimination capacity was 
analogous to an F ratio; i.e. it was measured by the ratio of the variance 
of the means across groups over the error variance. Thus, the feature 
with the greatest discrimination capacity was entered first, followed by 
the second greatest, and so on, until the stopping criterion was reached.

For the illustration of the characteristic features of a group of 
participants, the only data retained was that pertaining to the features 
used when the SVM reached an accuracy at or above 90% correct 
(instead of 100% correct to avoid overfitting). The representation of a 
feature at each level of a factor was based on the squared difference 
between its mean and the overall mean across groups, which was 
divided by the error variance (see above). These values were then 
linearly normalized in the range −1 to 1 based on the maximum 
absolute value among the features to illustrate. To facilitate focussing on 
the strongest levers for classification, i.e., the features with the most 
extreme values, the contrast of the color code used to illustrate feature 
values was linearly diminished according to their distance from the 
extremes of the scale (i.e., −1 or 1), down to a minimum of 20% (to 
maintain visibility of even the weakest features illustrated). However, 
when the value of a feature was exactly 0, it was omitted from the figure.

Results

The average correct response rates were of 50.5% for the young 
and 50.1% for the elderly [t(31) = 1.9; ns]. The mean contrast of target 
images was 12.2% for the young group and 15.35% for the elderly 
group, a difference which was significant [t(30) = 3.7; p < 0.001]. This 
difference is congruent with the notion of a lower degree of visual 
function in the elderly. 

As indicated above, each object picture used in the present 
experiment was presented five times to each participant, thus allowing 
the possibility of a repetition priming effect. To assess this and 
determine whether groups of participants differ in this regard, a mixed 
factor ANOVA with groups and target repetition as factors was 
conducted on the response accuracy and target contrast data (Table 2). 
The results show a significant effect of repetition (i.e. priming) on both 
dependent measures (accuracy: F(4, 120) = 4.9; p < 0.005; contrast: 
F(4, 120) = 130.3; p < 0.001) but no interaction of repetition with 

group (F(4, 120) < 1; for both accuracy and contrast). These results are 
in agreement with the literature, showing the full preservation of 
repetition priming effects in aging (Fleishman, 2007).

The time-frequency CIs for each group are shown in Figure 2. 
They represent the capacity of participants to use the available 
stimulus information (i.e., processing efficiency) according to time 
since target onset (horizontal axis) and the oscillatory power of SNR 
in the frequency range 5 to 55 Hz in 5 Hz steps. While they show 
relatively obvious similarities in terms of the main colored blobs they 
contain, the positioning of these blobs within the time-frequency 

TABLE 2 Mean percent response accuracy and image contrast (in 
parenthesis) as a function of group and stimulus repetition in Exp. 1.

Stimulus presentation

Group 1 2 3 4 5

Young 51.4 50.3 50.1 50.4 50.3

(17.0) (12.1) (11.8) (10.5) (9.7)

Elderly 50.1 50.5 49.9 50.0 49.3

(20.0) (15.6) (14.9) (13.3) (13.0)

FIGURE 2

Classification images of processing efficiency as a function of time 
and oscillation frequencies for each group for Exp. 1 (object 
recognition). (A) Young participants. (B) Elderly participants. 
Reference for the color code is to the right of each graph. Only the 
points that differed significantly from 0 are in color, the others are 
left white.
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space is quite different. Moreover, the CI for the elderly group contains 
three blobs reflecting negative processing efficiencies at the very 
beginning and very end of the stimulation which are absent for the 
young participants.

An additional analysis was carried out to assess the degree to 
which the CIs from the two groups differ as well as to determine 
whether their features are shared among the members of each group. 
The CIs of individual participants were submitted to an SVM machine 
learning algorithm (with leave-one-out cross-validation), which had 
to determine whether the participant came from the young or elderly 
group. The classifier reached a maximum performance of 87.5% 
correct while using 13 features out of the 264 (i.e., 4.9%) making up 
the time-frequency CIs. This level of accuracy is well above chance 
(binomial test; p < 0.001).

Previous investigations in our lab using the technique of random 
temporal sampling and similar data analysis methods have found that 
classification performances were substantially better with time-
frequency CIs that had been recoded into their Fourier transforms. 
This rule is verified again here. Thus, the SVM classifier reached an 
accuracy of 90.6% (binomial test; p < 0.001) while using only 6 of the 
1,584 features (i.e., 0.4%) making up the Fourier transforms of the 
time-frequency CIs. The characteristic features of the elderly group 
that supported this level of accuracy are illustrated in Figure 3. The 
maximum performance attained by the classifier was 100% correct 
when using 32 features.

Exp. 2: word recognition

Methods

Participants
The selection criteria were identical to Exp. 1 except for the group 

composition. The young adult group was made of 9 women, 6 men, 
and 1 non-binary person. Their average age was 24.8 y.o. (range 
21–33), and all of them were right-handed. The elderly group 
consisted of 11 women and 5 men, with an average age of 71.4 years 
(range 61–85), and only two left-handed participants. None of the 
elderly participants had taken part in Exp. 1 whereas three of the 
young participants had.

There was no significant difference between the groups in their 
performance on the various subtests of the cognitive screening test 
Cognistat. The mean results for each group are reported in Table 3.

Materials and stimuli
The stimuli were 624 French five-letter words written in Courrier 

New with an x-size of 0.61 degrees. Six hundred words served twice 
each for the experimental trials (6 blocks of 200 trials each; no word was 
repeated within a block). A set of 24 different words were used for the 
practice block. The words were printed in black over a white background 
(prior to contrast manipulations) and their images occupied a surface 
of 350 × 350 pixels (9.7 × 9.7 degrees of visual angle).

Procedure
The procedure was identical to that of Exp. 1 except that participants 

were asked to name aloud the word presented on every trial.

Data analysis
The procedures were identical to those of Exp. 1.

Results

The group of young participants required a contrast of the target 
image of 24.1% to reach an accuracy of 50.1% whereas the corresponding 
values for the elderly group were 31.8% contrast for 50.0% correct 
responses. The contrast level was significantly higher in the elderly than 
in the young group [t(30) = 3.9; p < 0.001] whereas accuracy [t(30) < 1] 
did not differ between groups.

To assess a possible repetition priming effect across the two 
presentations of each word from the list available, a mixed factor 
ANOVA with groups and target repetition as factors was conducted on 
the response accuracy and target contrast data (Table 4). The results 
show no significant effect of repetition or group x repetition interaction 
(F(1, 30) < 1; for all effects) on either dependent variable.

Figure  4 shows the time-frequency CIs for each group. The 
differences between them are quite obvious. Thus, the area 
corresponding to significantly positive processing efficiency is much 
greater for the young than the elderly group. Moreover, the latter 
exhibits a large segment reflecting significantly negative processing 
efficiency at about 140 ms after target onset which is not apparent for 
the young participants.

Similarly to Exp.  1, an SVM classifier (leave-one-out cross-
validation) was exposed to the individual time-frequency CIs with the 
task of determining whether they were produced by a young or elderly 

FIGURE 3

Characteristic features that distinguish the classification images (CIs) 
of the elderly participants from those of the young for Exp. 1 (object 
recognition). These features are those which supported the 90.6% 
accuracy of the SVM classifier in categorizing the Fourier transforms 
of the time-frequency CIs of individual participants according to 
their respective group. The horizontal axis corresponds to the 
temporal frequencies extracted from the CIs, the vertical axis reflects 
the phase values of the extracted components and the color code 
serves to illustrate the corresponding power values which have been 
normalized in the range −1 to 1 (see description of methods for 
details). The numbers in the colored patches indicate the frequency 
of target visibility oscillations that produced the Fourier features 
illustrated. The reader may zoom in to make them more readable. 
Phase × frequency cells may be occupied by more than one color 
patch in cases where the Fourier analysis of the CI produced two or 
more features contributing to the SVM with the same phase × 
frequency combination but which came from different stimulation 
oscillation frequencies.
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participant. The classifier reached a performance above 90% correct 
(90.6%; binomial test: p < 0.001) while using 13 (4.9%) out of the 264 
features available. Its peak accuracy was 96.9% using 28 features (10.6%). 
The performance of the SVM classifier was improved by exposing it to 
the Fourier transforms of the CIs instead of the CIs themselves. Thus, a 
response accuracy of 93.8% (binomial test: p < 0.001) was reached by 
using only 18 features (1.1%) out of the 1,584 making up the individual 
data patterns. The set of characteristic features for the elderly group that 
permitted this classification performance is illustrated in Figure 5. A 
perfect classification performance of 100% correct was obtained by 
exposing the classifier to 31 features (2.0%).

General discussion

The present study examined perceptual oscillations in an object 
recognition task (Exp. 1) as well as in a visual word recognition task 
(Exp. 2) in healthy groups of young (18–35 y.o.) versus elderly (60–85 
y.o.) participants using the technique of random temporal sampling. 
In both experiments, the level of performance was similar in the two 
groups, with accuracy levels very close to 50% correct. However, both 
for object and word recognition, the elderly group required a 
significantly higher level of target contrast than the young participants 
to reach these performance levels. This indicates that the elderly 
participants were somewhat impaired relative to the younger ones in 
carrying out these difficult tasks.

The two groups obtained CIs showing substantial variations in 
processing efficiency as a joint function of the time elapsed since 
target onset as well as the oscillatory power of SNR variations in the 
range of 5–55 Hz. This replicates previous observations from our lab 
using random temporal sampling, which showed that not only the 
passage of time during target exposure but also the frequency content 
of SNR oscillations have a large impact on processing efficiency.

While our experiments did not involve the recording of brain 
activity, it should be obvious that the mediation between the 
stimuli displayed and the responses obtained on every trial is the 
visual system of the participants. Thus, the classification images 
should be a reflection of the properties of this mediator. Since the 
classification images pertain to the temporal features of processing, 
an account thereof should rest on elements of the visual system 
which exhibit some form of temporal inhomogeneity in the 
timescale of 200 ms. Given current knowledge, the only viable 
candidate that we can find to account for this is that of neural 
oscillations. Thus, as indicated in the Introduction, we believe that 
the brain-activity contribution to CIs such as observed here 
specifically relates to the neural oscillations that generally seem to 
underlie functionally significant brain activity.

In Exp. 1, the differences between the CIs of each group were 
relatively moderate. Thus, the major elements they comprised were 
rather similar but they differed slightly from each other in the time of 
their occurrence and more substantially in the range of SNR 
frequencies that are involved. Despite these moderate differences, an 
SVM classifier had no difficulty in separating the CIs originating from 
either group, with a success rate of 87.5% using 4.9% of the 264 
features making up these CIs. Strikingly however, the maximum 
success rate of the SVM classifier operating on the Fourier transforms 
of the CIs was 100% while using a smaller proportion (2.0%, i.e., 32 
out of 1,584) of the features making up these data patterns.

In Exp. 2, the CIs of each group differed more substantially than 
what was found in Exp. 1. The SVM classifier was again highly successful 
in separating the data patterns coming from either group, with a 
maximum success rate of 90.6% (with 4.9% of the features available) on 
the individual time-frequency CIs, and a maximum success rate of 
100% (with 2.0% of the features available) on their Fourier transforms.

TABLE 3 Mean and standard deviation of the scores obtained by the young and elderly participants of Exp. 2 on each subtest of Cognistat. The numbers 
in parenthesis beside subtest names indicate the maximum possible score.

Subtest Young Adults Elderly

Mean SD Mean SD

Orientation (/12) 12.0 0.0 12.0 0.0

Attention (/8) 7.8 1.0 7.8 0.6

Lang. Understanding (/6) 6.0 0.0 5.9 0.5

Lang. Repetition (/12) 12.0 0.0 12.0 0.0

Image naming (/8) 8.0 0.0 8.0 0.0

Construction (/6) 5.9 0.5 5.2 1.0

Memory (/12) 11.7 0.6 10.9 2.0

Calculation (/4) 3.8 0.4 4.0 0.0

Similarities (/8) 8.0 0.0 8.0 0.0

Judgment (/6) 6.0 0.0 6.0 0.0

TABLE 4 Mean percent response accuracy and image contrast (in 
parenthesis) as a function of group and stimulus repetition in Exp. 2.

Stimulus presentation

Group 1 2

Young 50.1 50.1

(24.7) (23.5)

Elderly 50.0 50.0

(32.7) (31.0)
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The high level of success of the SVM classifier for both Exps. 1 and 
2 has two important implications. One, more obvious, is that the CIs of 
the young and elderly groups show sufficiently large differences that 
they can be reliably discriminated on that basis. Two, less obvious but 
just as important, the CI features that discriminate between the young 
and elderly groups are largely shared among the participants of each 
group. Indeed, the leave-one-out cross-validation method that was used 
here along with the SVM classifier implies that the mapping of CI 
features to the groups was learned for all participants but one. The data 
from this remaining participant then served to test the classifier and this 
procedure was cycled through all individual participants. The data from 
the left-out participant on any cycle had to replicate the distinctive 
pattern that the SVM had associated with their group for the classifier 
to be successful. The implication then is that the distinctive features of 
the elderly group that were identified in each experiment (i.e., Figures 3, 
5) are very stable across the elderly individuals studied here and thus, 
presumably, highly generalizable to other persons of the same age. On 
the assumption that these perceptual oscillations are a function of the 
neural oscillations emerging from the brain activity involved in carrying 
out the tasks, we should then expect that it should be possible to identify 
highly replicable features in the latter that would characterize 
healthy aging.

Regarding the performance of the SVM classifier to successfully 
discriminate the data patterns from the young and elderly groups, 
we  have noted above that classification accuracy was substantially 
improved (i.e., greater accuracy with a smaller proportion of the features 
making up the data patterns available) when the CIs of individual 
participants were recoded into their Fourier transforms. This observation 
replicates a phenomenon we have observed in every single study carried 
out so far in our lab which jointly used the technique of random temporal 
sampling along with SVM classification of the data patterns (Arguin 
et  al., 2021; Arguin and Fortier-St-Pierre, 2023; Bertrand-Pilon and 
Arguin, 2023; Pelland-Goulet et al., 2023). This may appear surprising 
considering that the information content of CIs and of their Fourier 
transforms is identical and that either can be recoded into the other 
without information loss. The account we propose for this finding is that 
the performance gain after applying the Fourier transform to individual 
CIs results from an improved compatibility of the code under which the 
data is represented and the temporal features of the brain activity that are 
responsible for performing the task. In particular, we note that recoding 
time-frequency CIs into their Fourier transforms leads to the elimination 
of the time dimension in the representation of the data, which is replaced 
by a phase x amplitude representation along a range of temporal 
frequencies (5–55 Hz). This modification leads to greatly improved 
similarity in the data patterns across participants who share personal 
features (such as age) or who perform the same task (Arguin et al., 2021).

An important additional issue that needs to be addressed concerns 
the possibility that the optical alterations of the eye that are associated 
with aging, in particular the reduced amount of light reaching the retina 
due to the reduction of pupil size and increased thickness of the lens, 
may have been a factor in the present findings. One obvious feature of 
such ocular changes is that they are entirely stable throughout the 
timescale that is relevant for the CIs reported here. As noted above, to 
account for the temporal features of these CIs, one needs to appeal to a 
property of the visual system that is temporally variable, or unstable. 
Since this certainly is not a feature of the reduced light intake of the eye 

FIGURE 4

Classification images of processing efficiency as a function of time 
and oscillation frequencies for each group for Exp. 2 (word 
recognition). (A) Young participants. (B) Elderly participants. The 
conventions are the same as in Figure 2.

FIGURE 5

Characteristic features that distinguish the classification images (CIs) 
of the elderly participants from those of the young for Exp. 2 (word 
recognition). These features are those which supported the 93.8% 
accuracy of the SVM classifier in categorizing the Fourier transforms 
of the time-frequency CIs of individual participants according to 
their respective group. The conventions are the same as in Figure 3.
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in the elderly, we can confidently reject the possibility that this is the 
direct cause of the CI differences between groups. However, it remains 
possible that the age-related altered temporal features of the perceptual 
oscillations reported here may be partially attributable to perturbed 
neural oscillations which are secondary to the reduced light level 
stimulating the retina. Further studies will be necessary to directly assess 
this possibility.

Brain oscillations, and by extension perceptual oscillations, seem to 
rest in large part on the synaptic mechanisms through which neurons 
communicate with one another (e.g., Varela et al., 2001; Buzsàki, 2006; 
Plankar et al., 2012). Congruently with Vlahou et al. (2014), this leads to 
the suggestion that the present findings might point to altered synaptic 
function in healthy aging. This could be the basis for the apparent impact 
of processing complexity on the likelihood of observing visual deficits in 
normal aging (see Introduction). Specifically, the notion of processing 
complexity can be conceived as a proxy for the need for greater numbers 
of neuronal interactions in carrying out a visual task. Thus, the more 
synaptic events involved in a system with impaired synaptic mechanisms, 
the greater the risk of a processing error along the chain.

Conclusion

The behavioral manifestations of brain oscillations, i.e., perceptual 
oscillations within the context of a visual task, were compared between 
groups of healthy young versus elderly participants. In both object and 
word recognition tasks, the data patterns differed substantially across 
groups whereas they were highly consistent within groups, such that 
a machine learning algorithm reached as high as 100% accuracy in 
classifying the results of individual participants as coming from the 
young or elderly group. These findings are consistent with previous 
demonstrations of pervasive brain oscillation anomalies in aging and 
they are interpreted as suggesting that healthy aging might be 
accompanied by altered synaptic function.
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