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Introduction: Emotional recognition from audio recordings is a rapidly

advancing field, with significant implications for artificial intelligence and

human-computer interaction. This study introduces a novel method for

detecting emotions from short, 1.5 s audio samples, aiming to improve accuracy

and e�ciency in emotion recognition technologies.

Methods: We utilized 1,510 unique audio samples from two databases in

German and English to train our models. We extracted various features for

emotion prediction, employing Deep Neural Networks (DNN) for general feature

analysis, Convolutional Neural Networks (CNN) for spectrogram analysis, and

a hybrid model combining both approaches (C-DNN). The study addressed

challenges associated with dataset heterogeneity, language di�erences, and the

complexities of audio sample trimming.

Results: Our models demonstrated accuracy significantly surpassing random

guessing, aligning closely with human evaluative benchmarks. This indicates the

e�ectiveness of our approach in recognizing emotional states from brief audio

clips.

Discussion: Despite the challenges of integrating diverse datasets and

managing short audio samples, our findings suggest considerable potential

for this methodology in real-time emotion detection from continuous speech.

This could contribute to improving the emotional intelligence of AI and its

applications in various areas.

KEYWORDS

machine learning (ML), emotion classification, audio emotion recognition, neural

networks, speech signal features, Bilingual emotional classification

Introduction

Non-verbal communication, including the different aspects of a speaker’s voice, plays a

crucial role in conveying emotions and is highly valued in interpersonal interactions.While

verbal content is important, research suggests that humans are significantly influenced

by non-verbal cues, even in purely acoustic expressions of emotion (Miller, 1981). In an

increasingly globalized world, where technical means of signal transmission have become

essential, understanding emotions through non-verbal cues gains even more significance

(Morton and Trehub, 2001).

Research suggests that one intriguing question arising in this context is whether

technical tools are capable of accurately predicting mood or emotions based on vocal

parameters and acoustic measurements, independent of semantic content. If so, then
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this could allow for the analysis of convergences and divergences

between verbal and non-verbal expressions, enriching

communication in various contexts.

Previous scientific research used semantically closed audio

recordings of roughly 1.5–5 s to develop classification tools (Chen

et al., 2018; Jiang et al., 2019; Mustaqeem and Kwon, 2019,

2021; Mustaqeem et al., 2020). However, to apply such tools to

dynamically measure change in emotions, algorithms to analyze

audio recordings that are not semantically restricted are needed.

The objective of this article is to develop such a classification tool

that can recognize emotions in the voice. The tool is designed to

process audio recordings in 1.5 s segments, identifying emotions

regardless of the semantic content of the audio.

The decision to process audio recordings in 1.5 s segments

merits further explanation. Implementing fixed time windows

serves a dual purpose. Firstly, it simulates real-life scenarios where

audio clips may be randomly segmented without any predefined

understanding of when an emotion begins or ends. By establishing

an algorithm that classifies emotions from these fixed segments,

we are ensuring that the tool is robust enough to process audio

in various real-world applications. Secondly, the use of shorter,

fixed windows is strategically designed to minimize the likelihood

of capturing multiple or mixed emotions within a single segment.

This will attempt to ensure that the emotional content of each clip is

as pure as possible when using real data in the future, which should

lead to a more accurate classification.

Our rationale for selecting a 1.5 s window specifically has

both empirical and practical origins. Empirically, the work of

Lima et al. (2013) provided insights into the feasibility of emotion

recognition from short non-verbal vocalizations. In their study,

participants exhibited high accuracy in predicting emotions from

audio clips that averaged around a second in length, suggesting

that meaningful emotional content can be discerned from relatively

brief snippets of sound. Practically, the choice of a 1.5 s window is

consistent with the nature of our dataset. The dataset, composed of

audios ranging from 1.5 to 5 s, contains emotionally charged but

semantically neutral sentences. By opting for a 1.5 s segmentation,

we can ensure that nearly every audio segment retains its original

length without the need to artificially lengthen it with added silence.

This approach essentially aims to extract the most emotionally

salient part of each recording, which in part corresponds to the

short vocalizations described by Lima et al. (2013).

This article will evaluate different machine learning techniques

for the development of a robust tool capable of classifying emotions

using these 1.5 s long audio clips. The effectiveness of this tool will

be compared with the human ability to recognize emotions through

voice. If the accuracy of the developed classifier is comparable to

human judgment, it could not only serve practical applications

but also allow researchers to infer aspects of human emotion

recognition through reverse engineering.

Decoding emotions

Contemporary emotion theories acknowledge the

multidimensional nature of emotions, emphasizing their social

and contextual aspects (Scherer, 2005; Fontaine et al., 2007; Moors

et al., 2013). The tool presented in this article is based on Ekmans

theory of basic emotions (Ekman, 1999). While Ekmans theory

TABLE 1 Classifier performance of studies using Emo-DB and RAVDESS

databases.

Referenes Methoda DBb Perf.

Xiao et al. (2010) NN-PC E 81.2%

Chen et al. (2018) CNN E 82.8%

Jiang et al. (2019) CNN E 84.5%

Mustaqeem et al.

(2020)

CNN E 85.5%

Mustaqeem et al.

(2020)

CNN R 77%

Mustaqeem and

Kwon (2019)

CNN R 79%

Mustaqeem and

Kwon (2021)

2S-CNN E 95%

Mustaqeem and

Kwon (2021)

2S-CNN R 85%

This table provides an overview of accuracies achieved by various studies.
aMethod: NN, Neural Network with pre-classification (PC); CNN, Convolutional Neural

Network; 2S-CNN, two-Stream Convolutional Neural Network. bDB: E, Emo-DB; R,

RAVDESS.

offers a practical and widely recognized framework, it is sometimes

also criticized for its simplicity in representing human emotions.

However, it provides a useful foundation for classifying emotions,

while still allowing for a more nuanced understanding of emotions

in future research.

Emotions, as dynamic processes, encompass several

interrelated components. The diverse manifestations of emotions

at various levels can be classified based on their distinct patterns

of expression. This article uses the definition by Goschke and

Dreisbach (2020) which includes all relevant parameters, giving a

holistic picture of the multifaceted nature of emotions:

“Emotions are psychophysical reaction patterns based on

more or less complex evaluations of a stimulus situation, which

are accompanied by a series of peripheral physiological changes

as well as the activation of certain central nervous systems.

These reactions motivate certain classes of behavior, can be

expressed in specific facial expressions and body postures, and

are often (but not necessarily) associated with a subjective

quality of experience” (Goschke and Dreisbach, 2020).

This article follows the assumption that emotions, despite their

nature as dynamic processes consisting of multiple components,

can be assigned to categorize based on their patterns of expression.

This assumption follows the concept of basic emotions, which

Scherer (1985) recognizes as the main types of emotions. Ekman

(1999) specifies the seven basic emotions as fear, surprise,

anger, disgust, joy, sadness, and contempt, which have universal

characteristics and are intuitively performed and also recognized

by humans.

The ability to recognize and classify emotions is called cognitive

empathy. Not every emotion is recognized equally well, as cognitive

empathy is a combination of many subskills with interpersonal and

intrapersonal differences (Marsh et al., 2007). In a conversation,

not only linguistic cues are used to recognize emotions, but also

non-verbal paralinguistic cues. Paralinguistic signals accompany

what is spoken, for example, speaking rate or volume, and expands

the spoken words with additional aspects that provide information

Frontiers in Psychology 02 frontiersin.org

https://doi.org/10.3389/fpsyg.2024.1300996
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Diemerling et al. 10.3389/fpsyg.2024.1300996

about the speaker’s state of mind (Bussmann and Gerstner-Link,

2002).

Emotions in the voice

The facial and vocal expression of basic emotions are

understood cross-culturally, and these emotions are associated

with similar physiological patterns of change (Ekman et al., 1983).

These emotions are also universally recognized through vocal

expression (Izdebski, 2008). The human voice serves as a powerful

channel for expressing emotional states, as it provides universally

understandable cues about the sender’s situation and can transmit

them over long distances. Voice expression is rooted in brain

regions that evolved early in human development, underscoring

its fundamental role in our evolutionary history (Davitz, 1964;

Morton, 1977; Jürgens, 1979).

When categorizing emotions based on vocal expressions,

employing a limited number of emotion categories proves

advantageous to avoid overwhelming information (Johnson-

Laird and Oatley, 1998). Additionally, distinct emotion specific

patterns of acoustic features have been observed (Scherer, 1979),

which can still be detected even after removing linguistic cues

from the speech signals. Physiological parameters significantly

influence vocal parameters like loudness, fundamental frequency,

noise components, and timbre (Trojan et al., 1975; Frick, 1985;

Burkhardt, 2000).

Related publications

Several classification tools have been developed to recognize

and classify emotions in the voice. A notable example is

Xiaos classifier, which utilizes artificial neural networks and

incorporates pre-classification to enhance accuracy (Xiao et al.,

2010). More recent developments have focused on convolutional

neural networks (CNNs) and their ability to efficiently process large

amounts of data (Chen et al., 2018; Jiang et al., 2019; Mustaqeem

and Kwon, 2019, 2021; Mustaqeem et al., 2020). For instance, the

study by Mustaqeem and Kwon (2021) introduces a complex two-

stream CNN that achieves high accuracies for different emotion

databases. Table 1 presents the performance metrics of various

classification tools as reported in the cited studies, which utilize

differing methodologies:

1. Xiao et al. (2010) employ a 10-fold cross-validation

method with a 50:50 train-test split for each fold and include a

preclassification step to determine gender. The table lists their

reported average accuracy.

2. Chen et al. (2018) implement a 10-fold cross-validation,

splitting the data for each split by speakers: eight for training, one

for testing, and one for validation, targeting four emotional states

happy, angry, sad, and neutral. The corresponding average accuracy

figures are depicted in the table.

3. Jiang et al. (2019) adopt a Leave-One-Speaker-Out (LOSO)

approach. Shown in the table is the unweighted average accuracy

accumulated across all trials.

4. Mustaqeem et al. (2020) use a 5-fold cross-validation,

designating eight speakers for training and two for testing in each

fold. The table illustrates their average accuracy results.

5. Mustaqeem and Kwon (2019) execute a 5-fold cross-

validation with an 80:20 split for training and testing, respectively.

Their average accuracy is shown in the table.

6. Mustaqeem and Kwon (2021) perform a 10-fold cross-

validation with an 80:20 train-test split, with the table showing the

F1 scores as the most relevant performance parameter, as presented

in the referenced source.

However, it is important to note that the performances outlined

above cannot be directly compared with the results of this article.

Firstly, the methodologies employed across these studies vary.

Secondly, the databases used are also distinct, given that this study

utilizes audio clips trimmed to 1.5 s as opposed to complete audio

recordings. In particular, we aim to demonstrate that emotion

recognition based on voices, when using the right tools, is also

possible when using very short time segments, which can be

used for continuous emotion classification of voice data. The

performances shown are intended to provide an overview of the

existing classifiers that have been trained on the data used here in

order to be able to better contextualize this article.

All the aforementioned approaches utilize audio recordings

from the Emo-DB and the RAVDESS databases. These databases

offer clearly recognizable emotion recordings in complete sentences

or uniformly defined speech units, which has led to limited

attention being given to audio segmentation in previous research.

However, the challenge lies in spontaneous speech where defining

unambiguous units becomes difficult. An effective segmentation

approach needs segments long enough to extract acoustic patterns

but also short enough to capture emotional state changes. Studies

on continuous segmentation have already been undertaken in the

literature. Atmaja and Akagi (2020) showed emotion recognition

beyond chance for a visual-auditory dataset using a 4 s time

window.

Contrary to the studies mentioned above, the work of

Stresemann (2021) takes a different approach. She standardized

all audio recordings from these databases to a length of 1.5 s,

analyzing them as independent units without considering the

grammatical sentence structure. The aim is to focus purely on

emotion recognition, disconnecting it from the semantic content

of the sentences. This choice of approach, which sometimes results

in the cropping of longer files and the potential loss of words,

is supported by Scherer (1979). He argued for the existence

of emotion-specific acoustic patterns that are independent of

contiguous sequences. This approach not only aids in mapping

emotion expression changes within longer sentences but also has a

practical benefit: it is especially applicable in online settings where

smaller datasets can be quickly analyzed, and reliable assessments

can be made.

Approach of this study

This article aims to enable automatic continuous classification

by limiting the duration of individual audio segments to 1.5 s. The

practical objective is to continuously split a longer audio track into

potentially overlapping sequences, allowing the model to provide

a continuous assessment of emotions in the voice. The study by

Stresemann (2021) serves as the foundation for this article, but

the approach here uses a more automated method with advanced
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machine learning techniques. The fixed time length of 1.5 s is

intended to simulate the challenges in real-life datasets. Using audio

files of different lengths would require upstream recognition in real

data. The specific length of 1.5 s serves as a compromise between

the shortest possible audio length to avoid overlapping emotions

and enough information to still allow humans to understand the

audio files. The aim of this study is to proof that automatic

classification of human speech is possible under these constraints.

Thereby, we aim to show that a tool can be created, which

automatically classifies emotions in continuous human speech,

without the necessity of elaborate preprocessing. To do so, we

present an approach that compares different model designs and

different combinations of linguistically diverse audio tracks in

terms of their accuracy in emotion recognition both to each other

and to humans.

Methodology

Building on the theoretical background outlined earlier, this

section delves into the methodology employed in this study. The

processing of the audio data is discussed first, followed by a

detailed explanation of the datasets and a comparison with human

performance. The latter part of this section will describe the

generation of individual features and the development and testing

of various models.

Audio

The audiomaterial for this study was sourced from two publicly

accessible emotion databases from distinct cultures: Germany and

Canada. This choice is grounded in the cross-cultural universality

of emotions in audio, as supported by the meta-analysis conducted

by Juslin and Laukka (2003). The considered emotions for this

study include joy, anger, sadness, fear, disgust, and neutral.

Specifically, English-language recordings were extracted from

the Ryerson Audio-Visual Database of Emotional Speech and Song

(RAVDESS; Livingstone and Russo, 2018). An example of content

from RAVDESS is the neutral statement, “Dogs are sitting by the

door.” For German-language recordings, the Berlin Database of

Emotional Speech (Emo-DB) was used (Burkhardt et al., 2005). A

representative sentence from Emo-DB is “Der Lappen liegt auf dem

Eisschrank” (the rag lies on the refrigerator). In both databases,

actors induced the emotions using emotional memory techniques.

For the audio processing stage, we settled on a strategic

duration of 1.5 s per segment. This choice was influenced by several

factors: to emulate real-world conditions where snippets of emotion

may lack clear starting or ending points, to approximate the

briefest discernible emotional span, and to minimize the potential

for overlapping emotions in a single clip. Files longer than this

were trimmed to capture the core 1.5 s, with any excess equitably

truncated from both the start and end. Conversely, shorter files

were symmetrically extended with silence on both sides, ensuring a

consistent segment length while preserving the original emotional

content. In other studies (e.g., Chen et al., 2018; Jiang et al.,

2019; Mustaqeem and Kwon, 2019; Mustaqeem et al., 2020), the

audio files were not segmented. In order to additionally examine

whether and how much accuracy is lost due to the selected length

of the segmentation of the audio recordings, audio files that were

segmented to 3 or 5 s were also used for parts of the utilized model

designs. The same segmentation method was used for all variants.

The Ryerson Audio-Visual Database of Emotional
Speech and Song

The RAVDESS is an open-access database offering 7,256

English-language recordings, both spoken and sung, spanning

across three modalities: audiovisual, video-only, and audio-only

(Livingstone and Russo, 2018). For the purpose of this study, only

the audio modality was employed. Featuring recordings from 24

actors (12 male, 12 female), the database represents six emotions

(joy, sadness, anger, fear, surprise, and disgust) in addition to two

baseline states (neutral and calm). From RAVDESS, this research

incorporated 1,056 audio clips, omitting the emotions of surprise

and calm, each trimmed to a precise duration of 1.5 s.

Berlin Database of Emotional Speech
The Emo-DB, hosted by the Technical University of Berlin,

is a public database comprising 535 German-language recordings,

conducted by 10 actors (five male and five female) under the

guidance of phoneticians (Burkhardt et al., 2005). The database

encompasses the emotions of anger, fear, joy, sadness, disgust,

and neutral speech. From the Emo-DB, 454 recordings were

incorporated into this study, with the emotion of surprise excluded,

and every clip was trimmed to 1.5 s.

Comparison to human performance
The data format for this research aligns with the methodology

of Stresemann (2021), involving 61 participants (36 male and 25

female) aged between 20 and 71 years. Participants were tasked

with a forced-choice format survey where they matched emotions

to 82 English language recordings from the RAVDESS database and

88 German recordings from the Emo-DB. Covered emotions were

fear, anger, joy, sadness, disgust, and neutral speech.

Before starting, participants received comprehensive

information regarding the study procedure, data privacy guidelines,

and the voluntary nature of participation. The survey also collected

demographic details, including sex, age, first language, current

domicile, and prior experience in English-speaking regions. The

listening exercise required a quiet environment, where participants

identified emotions immediately after a single playback. In cases

of unclear recordings due to technical issues, an alternative “no

statement” option was available. All data, barring one problematic

disgust recording, were included in the final analysis.

The findings of Stresemann (2021) revealed a robust positive

correlation between recognition rates on the Emo-DB and

RAVDESS databases, indicating that individual empathic

abilities might supersede linguistic or cultural biases in emotion

recognition. This correlation is possibly influenced by the shared

Germanic roots of English and German, leading to similarities in

fluency and intonation. Conversely, studies contrasting different

linguistic backgrounds highlighted advantages for listeners when

the recordings matched their native tongue. For instance, native
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English speakers surpassed Spanish and Japanese counterparts

in emotion recognition (Graham et al., 2001). Similarly, Korean

speakers outdid their French and American peers when classifying

emotions in Korean (Chung, 2000).

While basic emotions’ expression is broadly universal, nuances

exist due to cultural differences (Graham et al., 2001). However,

numerous studies, such as Juslin and Laukka (2003), underscore

high cross-cultural emotion recognition rates. This suggests that

even amidst cultural distinctions in emotional expression, humans’

inherent auditory-driven emotion recognition abilities transcend

linguistic and cultural confines. This inherent capability, albeit less

refined than facial emotion recognition, does not necessitate formal

training or guidance.

Feature generation
Once audio recordings were streamlined into 1.5 s segments, we

embarked on generating a diverse set of features. The ambition was

to mine maximum information through various methodologies,

ensuring redundancy was at its minimal.

The following is an overview of the individual features created

in this study. Each feature was calculated for each audio recording.

For some features, summary values for the 1.5 s were computed

(e.g., the mean for pitch). Table 2 gives an overview of all features

together with the number of data points this feature provides.

The “Summarization” column describes the summary approach

for each variable, if one was used. Overall, there were 14,244

different entries for each audio recording. Given the potentially

multidimensional nature of expressing each emotion in the voice,

preselecting features could result in information loss. Therefore, the

approach in this study was to generate as many features as possible,

allowing the models to independently select relevant features. The

features used here include:

Unmodified Audio Signal

The Unmodified Audio Signals served as the foundation for

all subsequent feature calculations. A portion of the signal was

preserved to retain potential unbiased information that may not be

captured by other features.

Spectral flatness

Spectral Flatness is a measure of how evenly the energy of

an audio signal is distributed across different frequency bands

compared to a reference signal. It provides an estimate of the

flatness of the signal and may be associated with certain emotions

(Dubnov, 2004).

Spectral centroid

The Spectral Centroid indicates the average frequency at which

the energy of a sound signal is centered. It can be used to estimate

the perceptual brightness or tonal brightness of the sound and

is sometimes related to valence and arousal, which are closely

connected to emotions (Klapuri and Davy, 2007).

Fundamental frequency

Fundamental Frequency (F0) estimation means determining

the lowest frequency and rate of periodicity in a sound signal.

Analyzing the F0 provides information about the emotional

TABLE 2 Enumeration of dataset features, summarization, and quantity.

Feature Summarization Quantity

Unmodified Audio Signal Variance 1,200

HPSS Variance 2,400

Spectral Flatness N/A 47

Spectral Centroid N/A 47

Fundamental Frequency N/A 47

Spectral Rolloff N/A 94

Spectral Bandwidth N/A 47

Zero Crossing Rate N/A 47

Root Mean Square N/A 47

Spectral Contrast N/A 188

Tonnetz N/A 282

Chroma N/A 564

Pitch Tracking Var. and mean∗ 2,050

Pitch Magnitudes Var. and mean∗ 2,050

Magnitude Var. and mean∗ 2,050

Phase Var. and mean∗ 2,050

MFCC N/A 940

Features, summarization, and quantity for the dataset. ∗Variance andmean calculated for each

2,048 Hz window.

dimensions of the signal (Cheveigna and Kawahara, 2002; Mauch

and Dixon, 2014).

Voiced

In addition to F0 estimation, the presence of a voice within

a specified time window of the audio was measured, along with

the probability of voice presence. The specific time window used

was 2,048 Hz (Cheveigna and Kawahara, 2002; Mauch and Dixon,

2014).

Spectral rollo�

Spectral Rolloff indicates the frequency level at which a certain

percentage (here, 0.85) of the energy is contained in the signal. It

can identify the frequency ranges that aremost strongly represented

in the signal and may aid in emotion recognition (Sandhya et al.,

2020).

Pitch tracking

Pitch Tracking estimates the pitch or fundamental frequency

(F0) of a sound signal and measures its magnitude. This feature

can provide additional information related to the F0 and assist in

emotion classification (Smith, 2011).

Harmonic percussive source separation

The HPSS technique separates a sound signal into its harmonic

and percussive components. Both components could convey

different emotional information (Fitzgerald, 2010; Driedger and

Müller, 2014).
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FIGURE 1

Neural network design (DNN, CNN, and C-DNN) comparisons based on cross-validation results. This figure shows the results of 10-fold

cross-validations for the comparison between di�erent neural network designs (DNN, CNN, and C-DNN) based on both combined and separate

datasets. Subfigures represent: (A) results based on the combined Dataset, (B) results based on Emo-DB, and (C) results based on RAVDESS. The gray

dashed line indicates the Balanced Accuracy of a random classifier.

Magphase

Magphase separates the complex-valued spectrogram (D) into

its magnitude (S) and phase (P) components, where D = S × P.

Themagnitude is used to calculate various emotion-related features

presented in this section, while the phase angle is measured in

radians and used as is. The phase encodes relationships between

different frequency components of the signal, which may contain

emotional information, although it is rarely used in emotion

classification (Librosa Development Team, 2023).

Spectral bandwith

Spectral Bandwidth is a measure of the spread of the spectral

content of the signal. It is related to the frequency range of the signal

and may be relevant to emotions (Klapuri and Davy, 2007).

Spectral contrast

Spectral Contrast refers to the differences in energy levels

between different frequency ranges of an audio signals. It can

describe the tone color of a signal, which might be associated with

certain emotions (Jiang et al., 2002).

Zero crossing rate

The Zero Crossing Rate indicates the number of times the signal

changes from positive to negative or vice versa. It can provide

information about the dynamics of the signal (Hung, 2009).

Mel-frequency cepstral coe�cients

MFCC are widely used features in music and speech

recognition. They represent the Mel-requency energy distribution

TABLE 3 The mean of balanced accuracies of various models based on

10-fold cross-validation.

Dataset DNN CNN C-DNN

Combined 54.49% 41.56% 56.24%

Emo-DB 64.69% 30.68% 54.85

RAVDESS 53.55% 28.39% 48.09%

DNN, Deep Neural Network; CNN, Convolutional Neural Network; C-DNN, Combination

of Deep Neural Network and Convolutional Neural Network.

of an audio signal and can identify the most important frequencies

of the signal while being robust to changes in loudness and sound

characteristics (Sato and Obuchi, 2007).

Root mean square

RMS is a measure of the average power of an audio signal. It

indicates the average loudness of the signal and can describe its

loudness level (Chourasia et al., 2021).

Tonnetz

Tonnetz is another representation of frequency ranges that can

be used to identify the harmony of a musical signal, which might be

associated with certain emotions (Harte et al., 2006).

Chroma

Chroma represents the presence of different frequency ranges

in a music signal and can be used to identify the key of the music
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signal, potentially containing emotion-related information (Ellis,

2007).

Creation of the spectrograms

Spectrograms visually depict the frequency spectrum of audio

signals, reflecting energy distribution across time and frequency.

Such patterns have been identified as crucial in emotion recognition

(Kim et al., 2010). For our study, spectrograms were crafted for

every audio recording, saved as PNGs (without axes or borders) at

a resolution of 320× 240 pixels.

Subsequently, we detail the employed classification models.

The deep neural network
DNNs, renowned for their prowess in intricate pattern

recognition, consist of interconnected feedforward layers with

varying neuron counts (LeCun et al., 1998). The architecture allows

the model to adjust to input data, predicting emotions via gradient-

based learning.

The convolutional neural network
The generated spectrograms consist of numerous data points,

resulting in 230,400 data points (320 × 240 × 3) for each image.

To efficiently analyze these images, CNNs are employed. These

networks, skilled at image processing through local receptive fields

and weight sharing, enhance the representation using pooling,

particularly max pooling, to retain essential data while reducing the

image size (LeCun and Bengio, 1995).

The hybrid model C-DNN
Our hybrid C-DNN model merges the insights of both

the generated features and spectrograms. It encompasses a

dual-input approach: a DNN for feature processing and a

CNN for spectrogram analysis. The output layers from both

networks converge into a concatenated layer, followed by another

feedforwardDNNpredicting emotions through a softmax function.

The goal is to determine whether combining spectrograms and

features improves information extraction compared to individual

data sources.

Creation of the models
The three model designs described above were implemented in

a Python environment using Tensorflow (Abadi et al., 2015) and

Scikit-learn (Pedregosa et al., 2011). The dataset was apportioned

into training (80%) and test sets. The hyperparameters for each

model were defined separately using Bayesian optimization with

a Gaussian process based on the associated training dataset.

A brief overview of the hyperparameter is listed in Table A1.

Using Bayesian optimization, different models were formed, their

hyperparameters adjusted, and subsequently trained on the training

dataset. Post every training epoch, the test dataset underwent a

prediction process. After completing up to four training epochs,

validation accuracy was gauged a final time. The validation

accuracy from the test data was then used as a benchmark to avoid

overfitting.

Testing the di�erent models
For a more consistent comparison with existing literature, the

models underwent a 10-fold cross-validation.

The performance metrics employed to measure the model

quality included Balanced Accuracy (BAC). This was compared to

both random classifications and the BAC achieved by other models.

Our evaluation approach combined Independent Validation

(Kim and von Oertzen, 2018) with Bayesian Updating. Initially,

models were trained on 10% of the total data, setting aside another

10% for validation, ensuring overfitting was kept within limits.

The models were then sequentially introduced to new data in

chunks of 16 data points. Before integrating these data points

into the primary training dataset, the models attempted their

prediction, updating the BAC’s posterior distribution via Bayesian

techniques. This cyclic procedure continued until the entire dataset

had been incorporated into the training set, with the validation set

consistently monitoring for overfitting.

Successful and unsuccessful predictions were used to update

the parameters of a beta distribution through Bayesian Updating,

providing a posterior distribution of the classifier accuracy. A beta

distribution was chosen to model the accuracies as it can depict

that a perfect accuracy of 1 is very unlikely or even impossible,

while other values can be equally likely. By comparing the overlap

between the beta distributions of the models, one could assess the

probability of one model outperforming another, for instance, a

classifier that merely guesses the results. This statistical approach

allowed us to validate the effectiveness and generalizability of our

model while providing a measure of uncertainty.

Testing against humans
To evaluate the performance of human participants, we used

a similar approach, assuming a binomial distribution for the

correct recognition of emotions. We then estimated the accuracy

using a beta distribution. By comparing the overlaps among the

distributions for each emotion, we can determine the similarity

in performance and assess the likelihood of differences between

human participants and the classifiers.

Results

This section presents the outcomes from the model

comparisons. First, we compared the models using cross-

validation. For all following Bayesian accuracy estimations,

we used a beta(1,1) prior, which stands as the conjugate

prior for a binomial distribution, representing minimal

prior information.

Cross validation

Figure 1 presents the outcomes of 10-fold cross validations

for three distinct model designs, individually trained on different

datasets: the combined dataset in A, the Emo DB dataset

in B, and the RAVDESS dataset in C, respectively. The

boxplots illustrate the model performances, offering a visual

comparison across the diverse model designs and datasets. The
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FIGURE 2

Posterior distributions of neural network designs (DNN, CNN, and C-DNN) vs. a random classifier. This figure demonstrates the posterior distributions

for di�erent neural network designs (DNN, CNN, and C-DNN) compared to a random classifier. Subfigures represent: (A) Classifier comparison based

on the Combined Dataset, (B) Classifier comparison based on Emo DB, and (C) Classifier comparison based on RAVDESS.

corresponding mean values for each model design, computed

from the different datasets, are consolidated in Table 3, thereby

facilitating a numerical evaluation of the model performances.

For the model design DNN, additional models are created

based on 3 and 5 s segmented audio files. This results for

the combined dataset in 62.36% (3 s) and 61.79% (5 s). For

the Emo-DB dataset, the results are 72.91% (3 s) and 69.21%

(5 s). Results for the RAVDESS dataset are 60.01% (3 s) and

61.00% (5 s).

Combined dataset

Figure 2 presents the results obtained from the Bayesian

estimate of the classifier accuracies. The three different model

designs, that is, DNN, CNN, and combined, all trained on the Emo

DB and RAVDESS datasets combined. The posterior distribution

of each classifier is shown alongside the posterior distribution of

random classification. The posterior distributions indicate where

the true performance under each classifier is expected to be. A

distribution closer to the maximum value of 1 indicates a better

performance. The posterior distribution of the random classifier

(indicating guessing) is to the left of the posterior distributions

of the trained classifiers and only overlapps by 1%. This indicates

that the probabilbiity that the classifiers perform better than

guessing is above 99%. The position of the distributions is described

by the maximum a-posteriori estimate (MAP), the peak of the

posterior distribution. The MAP performance of two of the

models (DNN and C-DNN) is close to 0.45 (0.436 and 0.433)

with a standard error of 0.013. The CNN model performance

is lower compared to the other models (0.27) with a standard

error of 0.012. Note that with six categories to classify, guessing

performance is 1/6. Analysis of the average saliency maps across

all spectrograms obtained from the Emo DB, RAVDESS, and

combined datasets has provided insights into the time-segment

relevance for emotion classification. As depicted in Figure 3, the

distribution of SHAP values across 48 time segments reveals

variations in the predictive importance of certain time intervals.

Notably, segments with higher SHAP values indicate a stronger

influence on model predictions, which suggests that certain

temporal portions of the audio recordings are more salient for

emotion detection.
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FIGURE 3

Saliency maps and SHAP values for di�erent datasets. Each plot illustrates the average saliency across all spectrograms derived from emotional audio

recordings within their respective datasets. (A) represents the combined dataset, (B) the Emo_DB dataset, and (C) the RAVDESS datasets. The color

gradient within each plot signifies varying saliency values, while the bar beneath it provides SHAP values for 48 time segments, indicating the

significance of individual features grouped by time intervals.

Emo DB separated

To further investigate the performance of the Emo DB and

RAVDESS datasets separately, a corresponding method was used

to compare them to a random classifier. The corresponding results

for the Emo DB Dataset are shown in Figure 2B. The analysis

shows that assuming a flat prior, the probability of the models

on these datasets differing from a random classifier is over 99%.

The posterior distribution of each classifier is shown alongside

the posterior distribution of random classification. The MAP

performance of two of the models (DNN and C-DNN) is close to

0.5 (0.58 and 0.48) with a standard error of 0.024. The CNN model

performance is lower than the other models (0.29) with a standard

error of 0.022.

RAVDESS separated

The corresponding results for the RAVDESS Dataset are shown

in Figure 2C. The posterior distribution of each classifier is shown

alongside the posterior distribution of the random classification.

The probability that the classifier performs better than guessing is

above 99% throughout. The MAP performance of all three models

(DNN, CNN and C-DNN) is close to 0.5 (0.42 and 0.42) with a

standard error of 0.016. The CNNmodel performance is lower than

the other models (0.26) with a standard error of 0.014.

Comparison to humans

Figure 4 presents a comparative analysis between the three

model designs and human performance in classifying the basic

emotions and neutral. Each sub-figure corresponds to an emotion,

namely, fear A, joy B, anger C, disgust D, sadness E, and neutral

F. Both the DNN and the C-DNN design show comparable

performance with the participants while the CNN shows unreliable

performance across emotions. The sub-figures illustrate the beta

distributions of the classifiers’ performance. The spread and central

Frontiers in Psychology 09 frontiersin.org

https://doi.org/10.3389/fpsyg.2024.1300996
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Diemerling et al. 10.3389/fpsyg.2024.1300996

FIGURE 4

Di�erent neural network designs (DNN, CNN, and C-DNN) compared to human classification across emotions. This figure presents the updated beta

distributions for the comparison between di�erent neural network designs (DNN, CNN, and C-DNN) and humans in classifying di�erent emotions.

Subfigures correspond to: (A) fear, (B) joy, (C) anger, (D) disgust, (E) sadness, and (F) neutral.

tendencies of these distributions provide an understanding of the

variance in the performance of the models and the humans.

Discussion

This article compared the effectiveness of three model designs:

Deep Neural Network (DNN), Convolutional Neural Network

(CNN), and a combination of the two (C-DNN). Each model was

trained and evaluated using three different versions of datasets.

The methods of evaluation included 10-fold cross-validation, a

combination of Independent Validation and Bayesian Updating,

and a comparison with human performance.

The cross-validation revealed the combined model (C-DNN)

to be most effective on the combined dataset, while the CNN

showed less performance and reliability across all datasets. When

a combination of Independent Validation and Bayesian Updating

was used, each model performed notably better than random

guesses. Nonetheless, the CNN model showed lower performance

than its counterparts under all circumstances.

A comparison with human emotional state classification

revealed that the DNN and C-DNN models performed at a level

similar to humans, whereas the CNN model was less consistent

across all emotions.

Design-specific aspects

The CNN model design in this article showed strong

overfitting, leading to poorer and less stable performance than

anticipated. This overfitting could be attributed to the segmentation
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of audios into 1.5 s units, which may have disrupted the emotional

structure and limited the models ability to capture nuanced

emotional patterns. Future research should explore improving

approaches that capture the temporal dynamics of emotions more

effectively. For instance, using overlapping windows might be

beneficial. This approach would involve half-second increments

of audio, providing significant overlap to average out effects.

This could potentially capture varying emotional patterns more

effectively, even beyond the usual 1.5 s segments.

Di�erent datasets

When comparing the different datasets, it is evident that all

models can predict emotions based on the generated features from

audios better than guessing and in the case of the DNN and C-DNN

comparatively well as humans. However, the performances vary.

The Emo DB dataset consistently leads to the best performance

for the DNN design and also for the C-DNN design by excluding

the one outlier. It is important to note that this dataset is smaller

and less diverse compared to the RAVDESS dataset. Therefore,

better generalization of the models cannot be derived from higher

performance.

RAVDESS and Emo DB combined
The combined dataset from Emo DB and RAVDESS produced

comparable performances to the results based on the RAVDESS

dataset. Only the CNN design showed inconsistent results, while

the other two models showed consistant results.

Although English and German share a common Germanic

origin, a uniform language-specific emotional expression cannot

be assumed. The consistent performance for the DNN and CNN

designs is, therefore, even more remarkable. Despite the limitations

of the clipped audio recordings and the heterogeneous datasets,

they show a consistent performance across the different datasets

used. In particular, considering the comparable performance to the

participants, it could be argued that the models have recognized the

underlying patterns of emotion contained in the audio recordings

beneath the culturally specific facets.

RAVDESS and Emo DB separated
It is worth noting that the RAVDESS dataset is significantly

larger than the Emo DB dataset and consists of English recordings

with a neutral North American accent, which includes Canadian

English. Canadian English is characterized by “Canadian Rising,”

a phenomenon that affects vowel formants and could impact the

acoustic analysis and emotion recognition accuracy. It describes

the habit of pronouncing vowels that are normally pronounced

with low tongue position with amiddle tongue position (Chambers,

1973). The key point is not the change in the word’s pronunciation

(where vowels sound higher) but the accompanying shift of the

vowel formants. This linguistic phenomenon is visible in the

acoustic analysis and could thus cause slight irritations with regard

to emotion recognition, which are reflected in the performance of

the classifier. This aspect could also be a limiting factor for the

models based on the combined dataset, as it could prevent further

generalization.

Di�erent models

An integral part of this article was an investigation into whether

the combined C-DNN model, leveraging both spectrograms and

numerical features, could offer additional informational benefits

over the DNN and CNN models used independently. The C-DNN

model did exhibit a minor improvement in performance; however,

this incremental gain did not proportionally reflect the potential

combination of theDNN andCNNmodels, as onemight intuitively

expect. This suggests that the added complexity of the C-DNN

may not necessarily translate into substantial gains in emotion

recognition performance. One possible explanation is that the

information in the spectrograms might already be represented

in the generated features. Consequently, the additional data

from the spectrograms might not enhance the generalization of

emotion recognition. Also, the cropping of the audios could have

reduced the information value of the spectograms to such an

extent that they can no longer reliably represent emotion-related

information. Both of these aspects could contribute to the CNN

design over-adapting to non-emotion-related aspects or learning

culture-specific facets lacking compensation from the features

unlike the C-DNN.

Comparison with previous studies

A classification based on short 1.5 s audio sequences has not

been approached in the literature to the authors best knowledge.

Short clips of this length are a solution approach when it comes

to classifying the emotions to be heard within a longer audio

stream without performing complex preprocessing. As can be

seen in Table 1, performance for longer audio sequences (in

the literature listed there, ranging from 1.5 to 5 s) can allow

for higher accuracies. We have deliberately worked with audio

files as brief as 1.5 s to highlight the feasibility and potential

of real-time emotion recognition in dynamic settings. Longer

audio clips might yield more accurate results; however, they are

less reflective of actual conditions where audio data is rarely

perfect and manually segmenting emotional content is often

unfeasible. Our choice of a 1.5 s timeframe aims to emulate

an automated system that may imperfectly trim audio segments,

thereby mirroring the practical challenges faced by classifiers in

real-world applications. These segments are short and concise

enough for human comprehension and also represent the minimal

length necessary to retain substantial information from the raw

audio without introducing uninformative content into the analysis.

In addition, models were created for the DNN designs based on

differently segmented audio files (3 and 5). As expected, there is

a higher accuracy for the 3 s audio files, but no clear increase for

the 5 s length. This could be due to the type of audio processing,

as the audio files that were too short were lengthened by adding

silence. This could, on the one hand, make the classification more

difficult and, on the other hand, could require a higher complexity
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of the models in order to learn the correct patterns. This additional

complexity could potentially require more computing power than

was employed. It should be highlighted that in this article good

performances were achieved on the combined dataset, which was

not attempted or reported previously.

The current analyzes show that even on very short audio

sequences, classification is well above guessing, comparable to

human precision and ranging in the order of magnitude of 50–

60% accuracy, which is still low when relying on it for a single

subsequence. However, future work based on the tool could

use models designed to combine information over time (as for

example pooling over time or hidden Markov Chains) to boost

the performance. The SHAP values in Figure 3 offer an empirical

basis for evaluating the optimal length of audio segments for

emotion recognition models. Higher SHAP values in specific

segments suggest that these intervals contain critical emotional

information. The consistent presence of such segments across

datasets could implie that shorter, information-rich audio clips

could be sufficient and potentially more effective for training

emotion recognition models. Conversely, segments with lower

SHAP values may contribute less to model performance, indicating

that longer audio recordings could introduce redundancy or

noise. These observations highlight the potential for more efficient

model training with carefully selected, shorter audio segments

that maximize emotional content. Also, in a time series of

emotion classification, some errors may not be as problematic as

a miss-classification of a longer, complete audio stream would be.

Therefore, it seems plausible that the current approach may allow

to generate an emotion time series from an audio stream with

sufficient precision.

Comparison with humans

The emotion recognition ability of the models used in

this article demonstrated performances comparable to humans,

blurring the line between human judgments andmodel predictions.

This suggests that the employed models successfully emulated the

human capacity for audio-based emotion recognition in terms

of performance. Furthermore, the comparable accuracy between

humans and the models implies the involvement of similar

mechanisms of pattern recognition.

However, further investigations are required to delve into the

intricate workings of the neural network and its alignment with

human cognitive processes. This article offers a novel approach

to investigate the complexities of audio based human emotion

understanding through the application of neural networks. By

reverse-engineering such models, valuable insights into the

underlying mechanisms and cognitive processes involved in

human emotion recognition may be gained. This interdisciplinary

research, bridging psychology and computer science, highlights the

potential for advancements in automatic emotion recognition and

the broad range of applications.

Limitation

The use of actor-performed emotions as the gold standard

for developing classification systems may not capture the full

range and authenticity of emotions. Actor-performed emotions

may not represent the subtler and more authentic emotions often

encountered in everyday situations. Given the current state of the

models presented, the use of real-life data is questionable due to the

databases used. Developing a new dataset that includes a broader

range of emotions and different levels of intensity is, therefore,

crucial but poses challenges. Heterogeneous datasets containing

emotions of varying intensity from different individuals and diverse

acoustic qualities may present difficulties in reliably labeling and

classifying emotions.

However, this remains the objective, as classifications would

ideally be performed on data that closely mirrors reality. In

future research enriching the dataset with a broader spectrum

of emotions and cultural backgrounds could improve the

models’ capabilities to recognize a variety of emotional

expressions. The exploration of the role played by linguistic

differences in emotion recognition could further improve

the performance of the models and enhance their practical

application.

The influence of linguistic differences on emotion-specific

acoustic patterns are another important aspect to consider.

Care must be taken to differentiate between patterns that

correlate directly with emotions and those influenced by other

factors unrelated to emotions. Specializing the classification

system in emotion-specific patterns while being resistant to

other voice-related information is crucial. Future investigations

could delve into the impact of linguistic variations, such as

languages and dialects, on the formation of acoustic patterns.

By integrating speech recognition into the classification tool,

it may be possible to categorize recordings based on language

families or cultural linkages. Given the ability to adequately filter

acoustic disruptions, such as ambient noise or white noise, the

emotion classifier could extend its applications into diverse realms,

ranging from everyday interactions to clinical or therapeutic

settings.

In these settings, an amalgamation of tools for classifying

vocal and facial emotional expressions might offer added benefits.

By simultaneously analyzing voice and facial cues, it could

pave the way for the creation of adaptive algorithms that

generate tailored classification tools, serving both personal and

professional needs regarding a wide variety of emotion-related

use cases.

Ekman’s theory of basic emotions, while easy to interpret, may

oversimplify the complexity of human emotions. Considering

multidimensional approaches, such as the one proposed

by Fontaine et al. (2007), could provide a more nuanced

understanding of emotions by defining them across several

dimensions. This would accommodate the intricacies and

variability of human emotional experiences, allowing for the

representation of intermediate emotional states rather than rigid

categories like sadness or joy.

In addition, temporal segmentation of audio material into 1.5 s

units could lead to forced emotion recognition because it does not

capture the natural flow and temporal dynamics of emotions. For

example, the CNN design exhibited overfitting, which could be

due to the 1.5 s units used. Investigating alternative methods to

better capture the temporal dynamics of emotions could potentially

enhance the accuracy and generalizability of these models. One
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method could involve the usage of overlapping windows of clips

instead of separate clips.

In the present study we chose a fixed segment length of 1.5

s. The short segment length allows for a continuous classification

of human speech and limits overlapping emotions. And the fixed

segment length means that continuous human speech would not

need to be preprocessed manually into semantically coherent

segments. While these short, fixed segments are, hence, necessary

for an automatic continuous classification, it is possible that better

accuracies can be achieved with longer time segments, as was found

in past studies (e.g., Atmaja and Sasou, n.d.1). Future studies should

investigate whether the use of longer or shorter segments could be

advantageous for, in our case, the recognition ability of humans and

classifiers. In regard of optimizing the audio file length in terms

of maximizing the accuracy of the models, it could be beneficial

to include the length as a continuous variable in the model

creation pipeline. It is important to emphasize that the present

work does not claim to have used the optimal length with the

1.5 s long segments used. In future research, it is recommended to

consider employing on-system interpretable systems like SincNet,

along with 1D and 2D convolution approaches (Ravanelli and

Bengio, 2018; Mayor-Torres et al., 2021), especially for analyzing

multimodal signals, such as the audio in this work, as these

methods offer promising avenues for enhanced interpretability

and analysis.

Enriching the dataset with a broader spectrum of emotions

and cultural backgrounds could improve the models’ capabilities

to recognize a variety of emotional expressions. The exploration

of the role played by linguistic differences in emotion recognition

could further augment the models’ performance. The application-

oriented approach demonstrated in this study opens up possibilities

for the development of a standalone software application featuring

user-friendly interfaces. This application could make the emotion

recognition technology more accessible and relevant for real-world

implementation.

Conclusion

This article presents a novel approach for classifying emotions

using audio data. Through the extraction of features from brief

1.5 s audio segments and the employment of diverse models,

we achieved accurate emotion classification across all tested

datasets. Our Balanced Accuracies consistently surpassed random

guessing. Furthermore, the performance metrics of our DNN

and C-DNN models closely mirror human-level accuracy in

emotion recognition, showcasing their potential. Nevertheless,

the CNN models consistently demonstrated inconsistent results

across datasets, indicating limited benefits from employing

spectrograms.

1 Atmaja, B. T., and Sasou, A. (n.d.).Multilingual Emotion Share Recognition

From Speech by Using Pre-trained Self-supervised Learning Models.

(unpublished).

In future endeavors, it will be imperative to mitigate overfitting,

refine the capture of temporal emotional dynamics, and expand

the dataset to encompass a wider range of emotions, cultures,

and languages. The creation of a standalone software application

equipped with user-friendly interfaces could provide an avenue for

the wider application of this emotion recognition technology in

myriad settings.
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Appendix

TABLE A1 Overview of hyperparameters used for model creation.

Hyperparameter Options Description

Number of layer 2 to 8 Describes the depth of the model

Number of neurons 80 to 400 Describes the size of the layers

Activation function relu f (x) = max(0, x)

elu f (x) =











α(ex − 1) for x ≤ 0

x for x > 0

sigmoid f (x) = 1
1+exp(−x)

tanh f (x) = ex−e−x
ex+e−x

Optimization function SGD Optimized using a random training example

RMSprop Optimized using a adaptive Learning rate

Adam Combination of momentum optimization and adaptive learning rate

Error function Categorical cross entropy loss −
∑n

i yi log(ŷi)

Learning rate 0.01 to 0.0000001 The step size that the model takes toward minimizing the cost function

This table provides a non-exhaustive overview of the different hyperparameters used in model creation along with their options and descriptions.
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