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Introduction: This study aims to explore the temporal dynamics of brain 
networks involved in self-generated affective states, specifically focusing on 
modulating these states in both positive and negative valences. The overarching 
goal is to contribute to a deeper understanding of the neurodynamic patterns 
associated with affective regulation, potentially informing the development of 
biomarkers for therapeutic interventions in mood and anxiety disorders.

Methods: Utilizing EEG microstate analysis during self-generated affective 
states, we investigated the temporal dynamics of five distinct microstates across 
different conditions, including baseline resting state and self-generated states of 
positive valence (e.g., awe, contentment) and negative valence (e.g., anger, fear).

Results: The study revealed noteworthy modulations in microstate dynamics 
during affective states. Additionally, valence-specific mechanisms of 
spontaneous affective regulation were identified. Negative valence affective 
states were characterized by the heightened presence of attention-associated 
microstates and reduced occurrence of salience-related microstates during 
negative valence states. In contrast, positive valence affective states manifested 
a prevalence of microstates related to visual/autobiographical memory and a 
reduced presence of auditory/language-associated microstates compared to 
both baseline and negative valence states.

Discussion: This study contributes to the field by employing EEG microstate 
analysis to discern the temporal dynamics of brain networks involved in 
self-generated affective states. Insights from this research carry significant 
implications for understanding neurodynamic patterns in affective regulation. 
The identification of valence-specific modulations and mechanisms has 
potential applications in developing biomarkers for mood and anxiety disorders, 
offering novel avenues for therapeutic interventions.
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Introduction

Emotional or affective states play an essential role in our well-being by modulating our 
thoughts, behaviors, and social interactions. Moreover, we spend a significant part of our daily 
life navigating spontaneously self-generate affective states by imagining past or future scenarios 
to adapt to challenging life contexts or enjoy rewarding experiences impacting 
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decision-making and general well-being (Killingsworth and Gilbert, 
2010; Andrews-Hanna et al., 2013; Ruby et al., 2013). Many studies 
focused on emotions elicited by external stimulations without 
personal context (e.g., audio, visual, audio-visual stimulation). 
However, substantial inter-individual variability in the neural, 
physiological, and behavioral results challenges these methods based 
on imposed categorical boundaries between emotions (Barrett, 2006; 
Lindquist et  al., 2012). To overcome these limitations and 
accommodate the inter-individual variability from the subjective 
experience versus the normative categorization of stimuli, we can 
focus on self-generated affective states based on naturalistic depictions 
of real-life emotion-induction context scenarios (Wilson-Mendenhall 
et al., 2013).

Only a few studies investigated self-generated affective states. 
Using a method closer to the spontaneous mind-wandering affective 
elicitation, Onton and Makeig (2009) developed a study where 
participants self-induced several affective states following verbally 
guided narrative suggestions (Onton and Makeig, 2009). Using 
spatiotemporal decomposition of the EEG, authors reached small to 
high accuracy in emotional classification based on independent-
component analysis (ICA) decomposition of EEG signal (Kothe et al., 
2013; Hsu et al., 2022). However, the complex multidimensional ICA 
discriminated between self-generate affective states when compared 
to relaxation and only at the individual level (Kothe et al., 2013; Hsu 
et al., 2022). During the affective states, ICs in prefrontal, sensorimotor, 
premotor, and higher-level visual brain areas differentiated between 
affective and relaxed states (Kothe et  al., 2013; Hsu et  al., 2022). 
However, no difference was noted between negative and positive 
affective states despite clear differentiations in the fMRI literature 
pointing toward valence-specific modulations where the dorsolateral 
prefrontal cortex (DLPFC), frontal pole, rostro-dorsal anterior 
cingulate cortex (ACC), and supplementary motor area predicted 
negative valence states and regions of the reward circuit such as the 
midbrain, ventral striatum, and caudate nucleus activated more 
during the positive valence states (Colibazzi et al., 2010).

An alternative method to investigate valence-specific brain 
spatiotemporal dynamics during affective states, and, at the same time, 
taking advantage of the high temporal resolution and more naturalistic 
approach of the EEG, is by employing the EEG microstates analysis to 
the available dataset from Onton and Makeig (2009). Brain activity is 
inherently spontaneous and self-organizing, and this spontaneous 
neural activity forms the basis of our mental states, providing a 
window into understanding physiological variations and mental 
health conditions. One method to explore these phenomena is to 
analyze spontaneous EEG using the microstate framework. Microstate 
analysis assumes that spontaneous brain activity is organized into 
sub-second periods of large-scale oscillations, reflecting the brain’s 
mode of information integration (Michel and Koenig, 2018). In other 
words, the EEG microstate reveals the fast-changing temporal 
dynamics of resting state networks with high temporal resolution 
(Lehmann et al., 1987; Michel and Koenig, 2018). Notably, empirical 
studies increasingly demonstrate systematic links between variations 
in EEG microstates and fluctuations in mental states, supporting the 
utility of microstate analysis in probing brain dynamics and mental 
health (Khanna et al., 2015; Michel and Koenig, 2018; Chivu et al., 
2023; Schiller et  al., 2023; Tarailis et  al., 2023). EEG microstate 
dynamics discriminate between different cognitive states like mental 
calculation, visualization, verbalization, and autobiographical 

memory, and socio-affective states and traits (Milz et  al., 2016; 
Seitzman et al., 2017; Bréchet et al., 2019; Schiller et al., 2023; Tarailis 
et  al., 2023). Moreover, EEG microstate temporal dynamics are 
differentiating between pathological brain states (Tomescu et al., 2014, 
2015; Rieger et al., 2016; Michel and Koenig, 2018; Damborská et al., 
2019; Chivu et al., 2023).

With a high degree of reproducibility, four (A-D) and seven (A-G) 
EEG microstates have been identified across many conditions and 
participants. Accumulating evidence suggests that EEG microstates 
represent the electrical fingerprints of resting-state networks; however, 
their one-to-one correspondence is still debated (Britz et al., 2010; 
Musso et al., 2010; Yuan et al., 2012; Custo et al., 2017; Michel and 
Koenig, 2018). Generally, A-B microstates are related to bottom-up 
visual and auditory/language-related. Microstate A initially recognized 
for its right frontal-to-left posterior pattern, is associated with auditory 
and visual processing, although its exact role remains unclear due to 
its interaction with arousal states (Milz et al., 2016; Seitzman et al., 
2017; Michel and Koenig, 2018; Antonova et al., 2022; Tarailis et al., 
2023). Microstate B consistently links to visual processing, including 
tasks involving self-related processes and scene imagery, with 
implications extending beyond visual stimuli and interacting with 
other microstates, notably microstate C (Milz et al., 2016; Seitzman 
et al., 2017; Michel and Koenig, 2018; Bréchet et al., 2019; Antonova 
et al., 2022; Tarailis et al., 2023). Microstates C, D, and E have been 
associated with core regions of top-down functional networks such as 
the default mode (DMN), the dorsal attention (DAN), and salience 
networks (SN) (Michel and Koenig, 2018). Microstate C is implicated 
in processing personally significant information and facilitating self-
reflection, and Microstate D is intricately associated with higher-order 
cognitive functions like working memory and attention (Faber et al., 
2017; Bréchet et al., 2019; Zappasodi et al., 2019; Vellante et al., 2020; 
Antonova et al., 2022; Tarailis et al., 2023). Microstate E is tied to 
interoceptive and emotional processing, indicating involvement in 
salience and emotional significance (Michel and Koenig, 2018; Schiller 
et al., 2019; Deolindo et al., 2021; Hu et al., 2021; Tarailis et al., 2023). 
Cognitive and socio-affective manipulation manipulations 
significantly mediate DMN, DAN, and SN-associated microstates 
(Schiller et al., 2023; Tarailis et al., 2023). Microstate F, with a left-
lateralized maximum, potentially contributes to personally significant 
information processing and theory of mind (Custo et al., 2017; Bréchet 
et  al., 2019; Tarailis et  al., 2021, 2023). Lastly, microstate G, 
characterized by right-lateralized activity, may indicate physical well-
being through its association with the somatosensory network (Custo 
et  al., 2017; Damborská et  al., 2019; Tarailis et  al., 2023). Further 
research is needed to validate these interpretations and explore their 
broader implications, particularly as microstates F and G have only 
recently emerged in the literature.

Few studies investigated how temporal dynamics of EEG 
microstates advance our understanding of affective processing and 
regulation. With the goal of decoding emotional states, temporal 
structures of microstates were used to classify between arousal and 
valence with approximately 65% accuracy (Chen et al., 2021). Other 
studies show that C microstate coverage and the occurrence of 
microstate B were essential for recognizing discrete positive and 
negative emotions (Shen et al., 2020; Liu et al., 2023). Another study 
showed that microstate D displayed a negative association with 
valence (Shen et al., 2020). In a recent study utilizing a video-watching 
paradigm, the temporal dynamics of C and D microstates dissociate 
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high versus low valence and arousal (Hu et al., 2023). While the C 
microstate showed a positive relation with arousal, microstate D 
occurred more often during negative valence videos (Hu et al., 2023).

Different methodological approaches might explain the 
contradictory results. For example, the high inter-individual variability 
of emotional reactivity to external stimuli might account for the lack 
of consistency. To overcome this challenge, we can focus on the neural 
mechanisms of self-generated affective states that naturally occur 
during our daily spontaneous mind-wandering. Moreover, self-
generated affective state modulations based on naturalistic life 
scenarios might reveal unique microstate dynamics patterns reflecting 
spontaneous endogenous affective state regulation. With this aim, 
we investigated spatiotemporal microstate changes between baseline 
resting-state, positive (awe, compassion, contentment), and negative 
(anger, disgust, fear) affective self-generated states. Disentangling 
these brain dynamics might be  essential in understanding basic 
affective and mood state regulation patterns that predict well-being.

Methods

Dataset description

In this study, we analyzed an EEG dataset collected and described 
in previous research by Onton and Makeig (2022). The study 
employed guided imagery to facilitate participants’ self-induction of 
several affective states. High-density EEG data was collected during 
the elicitation and maintenance of these affective states (Onton and 
Makeig, 2009).

At the beginning and end of the session, participants were 
instructed to rest for two minutes, summing up to four minutes of 
non-affective baseline recording. Then, participants received 
instructions on the button press to self-report their affective states, 
thus marking the beginning and the end of each affective state 
before transitioning to the next state. There were seven negative 
valences, undesirable target emotions (anger, disgust, fear, 
frustration, grief, jealousy, and sadness), and eight positive valences, 
pleasant target emotions (awe, compassion, contentment, 
excitement, happiness, joy, love, and relief), presented in an 
alternate pseudo-randomized order (Onton and Makeig, 2009; 
Onton and Makeig, 2022).

The EEG data were acquired from 250 scalp, four infraocular, and 
two electrocardiographic electrodes at a sampling rate of 256 Hz using the 
Biosemi AtiveTwo EEG system. Individual locations of the electrode 
positions in 3D (x, y, z) coordinates were provided for each participant. 
For more details, see Onton and Makeig (2009). Participants sat in a 
comfortable chair in a dimly-light, quiet room, received audio instruction, 
and listened to the narrative descriptions using earbuds. Participants were 
instructed to extend the duration of the affective state naturally. This 
resulted in experimental sessions that lasted roughly 80 min. The 480 
recorded affective states (15 emotions x 32 subjects) ranged from 43 s to 
12 min (on average, 218 ± 94 s) (Onton and Makeig, 2009, 2022).

Thirty-four participants (14 male, 19 female; age range: 
18–38 years; age mean and standard deviation: 25.5 ± 5 years) 
volunteered for this experiment at the University of California, San 
Diego (UCSD). All participants gave informed consent, and the 
experimental procedures complied with the institutional requirements 
of UCSD (Onton and Makeig, 2009).

In the present article paradigm, the evoked affective state was 
considered felt only after the corresponding button was pressed. As no 
button press makers were identified for subject 33, he  has been 
excluded from further analysis.

Data processing

The dataset included preprocessed data with excluded noisy 
channels of electrodes with poor skin contact and a 1-Hz high pass 
filter. We first continued pre-processing the data by applying a 40 Hz 
low-pass order 8 Butterworth filter. The free academic software 
Cartool, Matlab academic software, and EEGlab Matlab plugin were 
used for the EEG data processing. Next, the affective state epochs were 
exported for each subject using the marked beginning and end of each 
affective experience. These were further ordered and concatenated 
into three categories: baseline, positive affective, and negative 
affective states.

The preprocessed data were subjected to the Infomax independent 
component analysis (ICA) (Jung et al., 2000), and based on visual 
inspection of the topography and amplitude of the components, 
we eliminated cardiac and eye movement artifacts. ICA was carried 
out on the entire dataset, including data from the marginal electrodes, 
allowing for more precise identification of eye, pulse, and muscular 
tension components.

After excluding noisy channels in the original database 
preprocessing, the retained electrode numbers varied between 
134 and 235. To unify the space across subjects while reducing 
the computational load of further investigations, we reduced the 
number of electrodes to the standard 128 channels (Biosemi). 
First, the ECG and ocular electrodes were identified and 
eliminated from the analysis. Then, we  interpolated the EEG 
tracks from the individual electrode 3D space maps by selecting 
the front, top, back, left, and right landmarks (H22, B12, C14, 
A31, D20) to the 128 Biosemi 3D common standard coordinate 
system for statistical analysis across subjects (FpZ, Cz, Oz, T7, 
and T8). The Cartool interpolation tool, using a 3D spline 
interpolation that accounts for the actual geometry of the head, 
was used for interpolation (Brunet et al., 2011). Finally, before 
microstate analysis, the data were downsampled to 128 Hz and 
re-referenced to the average reference for further analysis.

Microstate analysis

Microstate analysis mainly consists of two stages: first, the 
clustering of EEG data to find the most representative template maps, 
which correspond to the different microstates, and second, fitting 
them back to the EEG data to quantify their temporal parameters. The 
free academic software Cartool and Matlab were used for the 
microstate analysis.

The EEG topographies surrounding the local maxima of the 
Global Field Power (GFP) exhibit the highest signal-to-noise ratio 
(Murray et al., 2008). Topographies corresponding to GFP peaks 
were submitted to a modified k-means cluster analysis to identify 
the most representative classes of stable topographies. GFP 
represents the global pattern of brain activity and is defined as the 
standard deviation across electrodes (Murray et al., 2008).
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The K-means clustering was carried out in two stages, first at 
the individual level and then at the group level, by clustering each 
individual dominant topography separately for each condition: 
baseline, negative affect, and positive affect. To establish the optimal 
cluster number, Cartool computes seven maximally independent 
criteria and then combines them using the median as an optimal 
estimation. The criteria encompass Cross-Validation based on the 
predictive residual variance, Gamma (concordant vs. discordant 
cluster pairs), Davies and Bouldin (ratio of within to between 
cluster differentiation), Silhouettes (consistency & cluster goodness 
of fit), Krzanowski-Lai Index, Point-biserial, and Dunn, an 
evaluation of how all clusters are well separated (Custo et al., 2017; 
Bréchet et al., 2019).

We determined that five microstates can optimally describe the 
group topographical variability (baseline 87.1%, negative affect 87.2%, 
positive affect 86.6% of explained variance). To compare the temporal 
dynamics between conditions, we labeled them A, B, C, D, and E in 
line with the topographies reported in the literature (Michel and 
Koenig, 2018). To statistically confirm the similarity of microstates 
between conditions, we computed the spatial correlation between the 
topographies of the tree conditions baseline, negative, and positive 
affect. Figure  1 shows the correlation coefficient of the between-
condition spatial correlation analysis for each microstate topography. 
The results show the highest correlation coefficient for the microstates 
labeled with the same letter between conditions, ensuring 
we compared the same states between conditions.

Then, each subject’s recorded brain electrical activity is modeled 
as a time sequence of microstates. After identifying microstate 
topographies for each individual and then across individuals for 
each condition, the second group clustering at the condition level 

resulted in a set of five microstates that were used in the fitting step 
for each condition separately (Figure 1). During the fitting process 
of the microstates, the entire EEG of the participants was used, 
excluding only the marked artifact epochs. A temporal smoother 
with the following settings was applied: Besag factor of 10, window 
half-size 3 (24 ms). The brief time intervals of microstate presence 
with less than 23.4 ms that might occur during low signal-to-noise 
ratios were redistributed to the previous or next microstate as a 
function of the highest spatial correlation. Each time point of the 
individual data was assigned to the microstate cluster with which it 
correlated best to measure the temporal parameters of microstates. 
Short periods of noise in the data were eliminated using a 0.7 
correlation coefficient threshold. The analysis excluded these periods 
(Brunet et al., 2011). For each affective state condition (positive or 
negative) and baseline, we estimated the occurrence and duration of 
each microstate in each individual. The average uninterrupted time 
(in ms) that a specific microstate map was present, or the time the 
subject remained in that state, is called mean duration (ms). A 
microstate’s occurrence (Hz) reveals how frequently a specific 
microstate occurs every second.

The experimental sessions lasted roughly 80 min. The 480 
recorded affective states (15 emotions × 32 subjects) ranged from 
43 s to 12 min (on average, 218 ± 94 s) (Onton and Makeig, 2009, 
2022). The data collection in the study had a baseline period of 
4 min recorded at the beginning of the session, leaving the self-
affect generated states with a duration between two and three times 
larger than the baseline (4 vs. 12 min) that might bias the duration 
and occurrence of the microstate’s parameters. Although the 
microstate parameters are computed at the individual-level average, 
we still believe the total length of the condition can confound these 

FIGURE 1

Left: Microstate topographies identified for each condition (top to bottom: baseline, negative affect, and positive affect conditions). Right: Microstate 
correlation coefficient matrixes used for labeling and microstate ordering between conditions.
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averages. Moreover, individual-generated affect states varied in size 
between participants. Thus, to control for inter-individual 
variability in the maintenance of affective states and differences that 
might arise from the total duration of affective states included in the 
dataset compared with the baseline, we selected affects with similar 
duration between participants. For this reason, for negative and 
positive affect conditions, only four minutes of the self-generated 
recordings were included in the statistical analysis. More specifically, 
we  included highly arousing negative emotions such as anger, 
disgust, and fear and positive emotions like awe, compassion, and 
contentment. As one participant (27) did not auto-evaluate himself 
as attaining the compassion emotion (by not pressing the 
corresponding button), we  included the next positive emotion, 
excitement.

The temporal dynamic analysis is based on the temporal 
properties of each microstate relative to the affective state, including 
their occurrence (Hz) and mean duration (ms) (Table 1).

Statistical analysis

As mean duration (ms) and occurrence (Hz) of microstates 
parameters are not normally distributed, we used Wilcoxon signed-
rank two-tailed tests to examine how the self-generated affective state 
[active affective, i.e., negative (NEG), positive (POS), or baseline 
(BAS)] impact temporal properties of microstates. We applied false 
discovery rate (FDR) Benjamini Hochberg correction for multiple 
comparisons with p < 0.05 significance threshold (Benjamini and 
Hochberg, 1995).

We employed the biserial rank coefficient (rb) as a measure of 
effect size for the Wilcoxon signed-rank two-tailed tests (Kerby, 2014). 
The rb values of 0.10, 0.24 and 0.37 are considered limit statistical 
(small), fair (medium) and evident (high) statistical effects (Fritz 
et al., 2011).

Results

Results for microstates mean duration (ms)

We found significant differences in the mean duration of 
microstate B (BAS: M = 65.95, SD = 4.85, NEG: M = 67.34, SD = 5.74, 
POS: M = 68.93, SD = 6.88), which increased significantly during both 
POS (W = 69, Z = 3.77, p = 0.0007, rb = 0.75) and NEG (W = 151, 
Z = 2.31, p = 0.02, rb = 0.46) affective states vs. baseline (Figure  2; 
Table 2). In addition, the microstate’s B mean duration also proved 
significantly higher during the POS than the NEG (W = 149, Z = 2.34, 
p = 0.03, rb = 0.46). During NEG (W = 138, Z = 2.54, p = 0.01, rb = 0.50) 
and POS (W = 105, Z = 3.13, p = 0.004, rb = 0.62) microstates, the C 
mean duration (BAS: M = 101.12, SD = 24.41, NEG: M = 97.11, 
SD = 21.30, POS: M = 96.50, SD = 23.51) decreased significantly 
compared to BAS but did not show significant differences between the 
NEG and POS (p = 0.5) conditions. D (BAS: M = 63.82, SD = 5.32, 
NEG: M = 66.49, SD = 5.89, POS: M = 64.24, SD = 5.72) microstates 
were significantly longer in NEG when compared to BAS (W = 89, 
Z = 3.42, p = 0.001, rb = 0.68) and POS (W = 59, Z = 3.95, p = 0.0003, 
rb = 0.78), while E microstates (BAS: M = 68.26, SD = 7.05, NEG: 
M = 64.71, SD = 7.19, POS: M = 66.82, SD = 7.78) significantly lasted for 
a shorter amount of time in NEG compared to BAS (W = 41, Z = 4.27, 
p = 0.00009, rb = 0.85) and POS (W = 100, Z = 3.22, p = 0.0031, rb = 0.64) 
(Figure 2; Table 2). In addition, we found a trend for microstate A 
(BAS: M = 66.25, SD = 6.39, NEG: M = 65.96, SD = 5.95, POS: 
M = 65.03, SD = 5.64) decreased duration in POS compared to BAS 
(W = 170, Z = 1.97, p = 0.08, rb = 0.39).

Results for microstates occurrence (Hz)

Microstate A (BAS: M = 1.68, SD = 0.67, NEG: M = 1.73, 
SD = 0.71, POS: M = 1.55, SD = 0.66) occurs much less frequently 

TABLE 1 Descriptive statistics of mean duration (ms) and occurrence (Hz) of microstates during baseline, positive, and negative affective states.

Microstate Mean duration (ms) Occurrence (Hz)

Mean Standard deviation Mean Standard deviation

BAS A 66.25 6.39 1.68 0.67

B 65.96 4.85 1.72 0.69

C 101.12 24.41 3.6 0.51

D 63.82 5.32 1.42 0.63

E 68.26 7.05 1.88 0.79

NEG A 65.96 5.95 1.73 0.71

B 67.34 5.74 1.77 0.68

C 97.11 21.30 3.72 0.56

D 66.49 5.89 1.76 0.63

E 64.71 7.19 1.68 0.82

POS A 65.03 5.64 1.55 0.66

B 68.93 6.88 1.97 0.71

C 96.50 23.51 3.66 0.55

D 64.24 5.72 1.63 0.66

E 66.82 7.78 1.88 0.88
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in POS than both BAS (W = 113, Z = 2.99, p = 0.004, rb = 0.59) and 
NEG (W = 79, Z = 3.60, p = 0.0005, rb = 0.71) while the microstate 
B (BAS: M = 1.72, SD = 0.69, NEG: M = 1.77, SD = 0.68, POS: 
M = 1.97, SD = 0.71) occurrence rate is significantly higher in 
POS than in BAS (W = 22, Z = 4.61, p = 0.00001, rb = 0.92) or NEG 
(W = 36, Z = 4.36, p = 0.00006, rb = 0.87). There are no significant 
differences in microstate C occurrence rates for either category 
(BAS vs. NEG p = 0.21; BAS vs. POS p = 0.54, NEG vs. POS 
p = 0.23). In the case of microstate D (BAS: M = 1.42, SD = 0.63, 

NEG: M = 1.76, SD = 0.63, POS: M = 1.63, SD = 0.66), the 
occurrence rate is significantly higher in POS compared to BAS 
(W = 61, Z = 3.92, p = 0.0002, rb = 0.78), NEG compared to BAS 
(W = 20, Z = 4.65, p = 0.00001, rb = 0.92), and NEG compared to 
POS (W = 115, Z = 2.95, p = 0.003, rb = 0.59). Microstate E (BAS: 
M = 1.88, SD = 0.79, NEG: M = 1.68, SD = 0.82, POS: M = 1.88, 
SD = 0.88) is significantly lower in NEG than BAS (W = 28, 
Z = 4.51, p = 0.00001, rb = 0.90) and POS (W = 64, Z = 3.86, 
p = 0.0002, rb = 0.77) (Figure  3). The statistical results  

FIGURE 2

Results for microstates mean duration (ms). Group comparison of the distribution and the median of the mean duration (ms) of each identified 
microstate fitted for BAS, NEG, and POS. Intercategorically connected black points represent intra-individual data; the median is represented in white. 
The significant differences are marked with *p  <  0.05, **p  <  0.001.
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of the temporal dynamic analysis are presented in detail in 
Table 3.

Discussion

This study investigated the temporal dynamics of brain 
networks during positive and negative valence self-generated states 
to expand the knowledge of spontaneous socio-affective states. 
Utilizing EEG microstate analysis, five distinct microstates were 
examined during baseline resting state and negative and positive 
affect self-generated states. Results showed significant modulations 
in microstate dynamics during affective states, with valence-
specific mechanisms that contribute to understanding the 
neurodynamic patterns in affective regulation and may inform the 
development of biomarkers for mood and anxiety disorders, 
offering new avenues for therapeutic interventions.

Summary of findings

Self-generated affective states significantly change the resting 
pattern of spontaneous microstates with small to medium effect sizes 
that reflect general affect and valence-specific mechanisms of 
spontaneous affective regulation. The valence-specific modulation 
points toward a mechanism by which self-generated positive valence 
affective states are characterized by more prevalent B and les present 
A microstates compared to baseline and negative valence affective 
states. Overall, affective states lead to the up-regulation of microstates 
B and D dynamics and the down-regulation of microstates C relative 
to baseline. Negative valence self-generated affective states specifically 
modulate the increased presence of D microstates and decreased 
occurrence of E microstates compared to baseline and positive valence 
affective states. Results are further discussed in the context of the 

microstate’s functional meaning and association with previous 
findings of the socio-affective literature.

Valence-specific modulations of A and B 
microstates

Microstate A and B are most often associated with bottom-up 
networks, auditory-language related and visual activity in the temporal 
and cortex, left–right cuneus, inferior, and middle occipital gyrus 
(Britz et al., 2010; Custo et al., 2017; Michel and Koenig, 2018; Tarailis 
et al., 2023). These microstates tend to increase in presence with more 
engagement during visualization, verbalization, and autobiographical 
memory tasks. However, their initial one-to-one functional separation 
into A verbal-auditory and B visual-related microstates is more 
complicated than initially reported; see Tarailis et al. (2023) for more 
details (Tarailis et al., 2023).

Regarding microstate A, more convergent literature points 
toward an association with arousal and alertness (Tarailis et  al., 
2023). For example, Antonova et  al. (2022) found a positive 
correlation between the mean duration of microstate A and 
subjective levels of alertness (Antonova et al., 2022). At the same 
time, other researchers found positive associations between 
microstate A and prosocial behavior (Schiller et  al., 2020). 
We previously found an increased microstate A presence after both 
Social Imitation and the control activity of a self-guided arm 
movement task (Tomescu et al., 2022). Additionally, after the social 
imitation task, results varied as a function of extraversion (Tomescu 
et al., 2022). Following this line of associations, compared to baseline 
or negative valence affective states, the decreased microstate A 
presence during positive self-generated affective states might also 
suggest a more relaxed, less alert arousal during a positive affective 
resting state. Moreover, the microstate A decreased presence results 
might be specific for the self-generated type of positive affect states 
as not observed after emotion-inducing videos (Hu et al., 2023).

Microstate B increased during both self-generated positive valence 
affective experiences and, as previously reported, after emotion-
inducing videos (Hu et  al., 2023). Additionally, we  observed an 
increased presence of microstate B during negative affective states. As 
the functional relevance of microstate B has been related to 
autobiographical memory and scene visualization (Tarailis et  al., 
2023), the results here might suggest a reflection of the more 
engagement of these strategies during the self-generated positive 
affective states. However, significant negative correlations have been 
found in mood disorder patients with depression scores (Atluri et al., 
2018; Yan et al., 2021). Recently, we conducted a meta-analysis on 
clinical studies suggesting the increased B microstate in patients might 
reflect a compensatory mechanism as larger effect sizes were observed 
in unmedicated mood disorder patients (Chivu et  al., 2023). 
We suggested that mood and anxiety disorder patients might engage 
too often in visually related past experiences, such as ruminative 
thought patterns, which fail to compensate for the mood and anxiety 
symptoms and negatively impact mental health (Chivu et al., 2023). 
Indeed, microstate B presence was positively associated with self-
related thoughts about self-behavior and feelings (Zanesco et  al., 
2020). However, the results here might suggest that patients could also 
engage in past experiences of positive valence to compensate for 
depressive mood.

TABLE 2 Results for microstates mean duration (ms).

Microstate mean 
duration (ms)

Mean 
difference

Biserial rank 
(rb)

BAS – NEG

A 0.29 0.11

B −1.38 0.46

C 4.01 0.5

D −2.67 0.68

E 3.55 0.85

BAS – POS

A 1.22 0.39

B −2.97 0.75

C 4.62 0.62

D −0.42 0.16

E 1.44 0.27

NEG – POS

A 0.93 0.34

B −1.59 0.46

C 0.61 0.13

D 2.25 0.78

E −2.11 0.64

Bold text highlights significant mean differences.
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Affective states modulations of C 
microstates

The results align with brain sources of microstates C, pointing 
toward association with task-negative posterior DMN core regions 
like the posterior cingulate cortex, precuneus, and left angular gyrus 
(Custo et al., 2017). Based on the functional relevance of microstate C 
and previous findings of its temporal reduction during states of 
cognitive or behavioral manipulations (Tarailis et  al., 2023), the 

decrease of C microstates during self-generated affective states might 
reflect a general re-organization pattern of mind-wandering and a 
possible more aroused, goal-oriented pattern of thought.

Microstate C increases during states of relaxation and correlates 
with more profound states of mind-wandering (less thought 
discontinuity, less verbal thought about self) after a Social Imitation 
task (Tomescu et al., 2022). Indeed, we previously found a negative 
association between C microstates and self-oriented, verbal, and 
discontinuous patterns of thoughts associated with decreased 

FIGURE 3

Results for microstate occurrence (Hz). Group comparison of the distribution and the median of the occurrence (Hz) of each identified microstate 
fitted for BAS, NEG, and POS. Intercategorically connected black points represent intra-individual data; the median is represented in white. The 
significant differences are marked with *p  <  0.05, **p  <  0.001.
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self-reported levels of stress (Tomescu et al., 2022). In addition, Pan 
et al. (2020) also found a negative association between microstate C 
and rumination level. The authors argue that microstate C might be a 
reliable index of ruminations (Pan et  al., 2020). Ruminations are 
negative valence impulsive patterns of thoughts and an essential 
mind-wandering transdiagnostic factor in all mood disorders 
(McLaughlin and Nolen-Hoeksema, 2011; Pan et al., 2020). In our 
data, we  observed a decreased C microstates mean duration for 
positive and negative valence affective states, suggesting an association 
with more aroused resting states compared to baseline.

Additionally, our results align with Hu et al., showing decreased 
microstate C after emotional audio-visual tasks without a main effect 
of valence (Hu et al., 2023). In parallel to a reduced presence of C 
microstates, they also found an increased presence of B and D 
microstates (Hu et al., 2023). We confirm their findings, showing that 
during sef-generated positive and negative valence affective states, 
there is an increase in the presence of B and D microstates. Moreover, 
we extend their findings, showing a decreased presence of A and E 
microstates and valence-specific microstates modulations.

Valence-specific affect modulation of D 
microstates

Microstate D is among the four canonical microstates. Studies 
investigating cognitive state modulations on temporal dynamics of 
microstates support the view that microstate D is associated with the 
dorsal attention network involving allocation and maintenance of 
attentional resources (Britz et al., 2010; Custo et al., 2017; Michel and 
Koenig, 2018; Tarailis et al., 2023). For example, studies report that 
microstate D is more present when participants are asked to perform 
demanding cognitive tasks, such as mental serial subtraction tasks 
based on focused states of attention (Seitzman et al., 2017; Bréchet 
et al., 2019). More importantly, microstate D is less present in socially 

induced spontaneous relaxed states (Tomescu et al., 2022) and shows 
reduced presence with altered states of attention, consciousness, and 
lack of cognitive control, such as during auditory-verbal hallucinations 
in SZ patients (Kindler et al., 2011), deep hypnosis (Katayama et al., 
2007), sleep, and dreaming (Brodbeck et al., 2012; Bréchet et al., 2020).

Temporal dynamics of microstate D are consistently altered in 
mood and anxiety patients, showing significant negative associations 
with depressive symptomatology (Murphy et al., 2020; Chivu et al., 
2023). Given our results here, the increased D microstates during 
negative valence self-generated affective states support the view that 
mood disorders might arise from a failure to down-regulate negative 
emotions. In addition, microstate D quantifiers positively correlate 
with alertness and reaction time scores in a non-clinical population 
(Zanesco et al., 2020). Thus, microstate D increase might be related to 
attention and cognitive control neural resources during emotional 
attention-demanding tasks.

Our results align with previous reports of D modulations after 
emotional-inducing stimuli (Hu et al., 2023). Moreover, based on the 
association of D microstates with the dorsolateral attention network 
(DAN), our results are in line with previous ICA-derived prefrontal 
activation during affective state modulations on the same dataset 
when compared to relaxed states (Kothe et al., 2013; Hsu et al., 2022). 
Additionally, we extend these observations by showing that during 
negative valence affective states, we  see a significantly increased 
presence when compared to the positive affective states, which might 
reflect the attentional negative valence bias reported in the literature, 
where negative valence stimuli attract more attentional resources 
(Baumeister et al., 2001).

These results are also in line with fMRI studies on self-generated 
emotional states showing that unpleasant emotions induced greater 
activation in a set of regions that included the dorsolateral prefrontal 
cortex, frontal pole, mid-rostral-dorsal ACC, and supplementary 
motor area (Colibazzi et al., 2010). These activations might subserve 
functions like attention allocation, executive functioning, goal-
oriented behavior, and emotional regulation during responses to 
threat-related stimuli (Colibazzi et al., 2010). One study investigated 
stress-related modulation of EEG microstates and found an increased 
presence of D microstate and, more significantly, an increased 
transition between D and salience network-related E microstates (Hu 
et  al., 2023). Moreover, these patterns of increased transitions 
negatively correlated with salivary cortisol (Hu et al., 2023), further 
suggesting a possible important role of salience-related and D 
microstates during negative valence affective states and 
emotional regulation.

Valence-specific affect modulation of E 
microstates

Although both microstate C and E microstates were 
previously associated with salience processing when more than 
five microstates are represented in the data, microstate E is more 
associated with the task-positive salience resting-state network 
with core regions in the superior frontal gyrus, bilateral middle 
prefrontal cortices ACC and insular cortices (Britz et al., 2010; 
Custo et al., 2017; Michel and Koenig, 2018; Tarailis et al., 2023). 
Functionally, microstate E was previously related to the 
processing of interoceptive and emotional information with 

TABLE 3 Results for microstate occurrence (Hz).

Microstate 
occurrence (Hz)

Mean 
difference

Biserial rank 
(rb)

BAS – NEG

A −0.05 0.13

B −0.05 0.23

C −0.12 0.3

D −0.34 0.92

E 0.2 0.9

BAS – POS

A 0.13 0.59

B −0.25 0.92

C −0.06 0.15

D −0.21 0.78

E 0 0.008

NEG – POS

A 0.18 0.71

B −0.2 0.87

C 0.06 0.23

D 0.13 0.59

E −0.2 0.77

Bold text highlights significant mean differences.
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increased presence during negative valence effective states, such 
as after stress exposure, and with increased cognitive load tasks 
(Hu et  al., 2023; Tarailis et  al., 2023). Thus, we  expected our 
results to show an increased presence during self-generated 
affective states. However, these surprising results might be related 
to the unpredictability nature of the stress exposure and efforts 
to down-regulate the autonomic system and the nature of the 
high level of vigilance after stress exposure. Altered E microstates 
were noted in post-traumatic stress disorder patients, further 
supporting the association of E microstates with negative valence 
affect and anxiety (Terpou et al., 2022; Chivu et al., 2023). Terpou 
et al. (2022) proposed that the brain regions functionally related 
to the salience network and decreased E microstates might reflect 
a failure to map relevant bottom-up stimuli, resulting in a 
hypervigilance state in patients suffering from anxiety-related 
disorders like PTSD (Terpou et al., 2022). Following the same line 
of thought, our decreased E microstate during negative valence 
affective states might be specifically associated with the integrated 
nature of self-generate negative valence affective states that do 
not require active salience processing and autonomic activation 
of the hypothalamic–pituitary–adrenal axis (HPA) for adaptation 
to stressful contexts. However, more studies are needed to sustain 
this interpretation and association with successful 
emotional regulation.

Limitations and conclusions

By examining EEG microstates in self-induced affective states, 
we show valence-specific microstate modulation that extends previous 
and fast-growing socio-emotional microstate literature. Limitations 
should be considered, for example, the relatively small number of 
participants, the small baseline sample, and the lack of information on 
the qualitative experience and strategies of the self-induced affective 
state. More studies are needed to see how these modulations are 
influenced by inter-individual emotional regulation traits, clinical 
symptomatology, and socio-emotional context to sustain general well-
being and mental health. However, our findings already provide 
valuable insights into the neural aspects of emotional regulation and 
their potential implications for therapeutic interventions in 
emotional disorders.
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