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Computational analysis of value 
learning and value-driven 
detection of neutral faces by 
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The rapid detection of neutral faces with emotional value plays an important role 
in social relationships for both young and older adults. Recent psychological 
studies have indicated that young adults show efficient value learning for neutral 
faces and the detection of “value-associated faces,” while older adults show 
slightly different patterns of value learning and value-based detection of neutral 
faces. However, the mechanisms underlying these processes remain unknown. 
To investigate this, we applied hierarchical reinforcement learning and diffusion 
models to a value learning task and value-driven detection task that involved 
neutral faces; the tasks were completed by young and older adults. The results 
for the learning task suggested that the sensitivity of learning feedback might 
decrease with age. In the detection task, the younger adults accumulated 
information more efficiently than the older adults, and the perceptual time leading 
to motion onset was shorter in the younger adults. In younger adults only, the 
reward sensitivity during associative learning might enhance the accumulation 
of information during a visual search for neutral faces in a rewarded task. These 
results provide insight into the processing linked to efficient detection of faces 
associated with emotional values, and the age-related changes therein.
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1 Introduction

The ability to efficiently determine the emotional significance of facial expressions is 
crucial for adaptive behavior in social interactions (Stins et al., 2011; Heerdink et al., 2015). 
Efficient detection of faces with positive emotional value is important for social behaviors and 
relationships. Similarly, rapid detection of faces displaying negative, threatening emotions can 
enable an individual to avoid a dangerous situation and preserve resources.

The adaptive qualities of emotional expressions appear to influence attention (Hansen and 
Hansen, 1988; Fenske and Raymond, 2006; Craig et al., 2014). However, this idea has led to 
several controversies in the field of psychology (Puls and Rothermund, 2018; Tannert and 
Rothermund, 2020). For example, there is conjecture regarding the physical and emotional 
significance of faces providing emotional information (Horstmann et al., 2006; Calvo and 
Nummenmaa, 2008; Horstmann et al., 2012). To control for perceptual properties when 
investigating the detection of faces with emotional information, Saito et al. (2022a) employed 
inherently neutral faces associated with positive or negative values as target stimuli in a visual 
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search task. They based their paradigm on an associative learning task 
in which neutral stimuli (e.g., colors) were linked with a reward or 
punishment (Anderson et al., 2011; Wentura et al., 2014; Muller et al., 
2016). They found that the reaction time (RT) during a visual search 
for neutral faces associated with a reward or punishment was reduced 
compared with that for neutral faces not associated with feedback. In 
other words, emotional significance facilitated attentional capture 
during a visual search task.

Given the aging of many contemporary societies, the cognition of 
older adults has been a major research focus (Ziaei and Fischer, 2016). 
Older people exhibit a “positivity effect,” i.e., they tend to focus their 
attention on pleasant stimuli (Reed et al., 2014). However, studies on 
this topic have yielded inconsistent results. For example, a recent study 
(Saito et  al., 2020) found that both young and older participants 
readily attended to angry facial expressions. In contrast, older 
participants did not show this tendency for happy facial expressions. 
In addition, in an associative learning task combined with a visual 
search paradigm, Saito et al. (2022b) found that positive (reward) and 
negative (punishment) outcomes in the associative learning task 
facilitated attention in the visual search task for successful young and 
older learners, although there were no differences in emotional valence.

Although previous studies have demonstrated rapid detection of 
neutral faces associated with an emotional value (Saito et al., 2022a,b), 
the mechanism underlying the relationship between associative 
learning and visual search attention remains unclear. Visual search 
performance has been investigated in successful and unsuccessful 
learners. However, several scholars have pointed out that such binary 
groupings are statistically undesirable (DeCoster et al., 2009; Reinhart, 
2015). The RT, as a dependent variable, is inherently right-skewed. 
Analysis of variance (ANOVA), which assumes a normal data 
distribution, is also inappropriate for this type of study. Another 
problem is that classification errors are generally analyzed separately 
from RT, making it impossible to assess the speed-accuracy trade-off. 
Furthermore, the RTs regarding the relationship between associative 
learning rate and visual search performance were not compared 
between the groups because the groups were distinguished using a 
binary classification scheme based on the associative learning 
performance (Saito et al., 2022a,b).

Computational modeling using behavioral data has potential for 
elucidating the mechanisms of human psychological processes (Lee 
and Wagenmakers, 2014). The reinforcement learning model 
(Rescorla and Wagner, 1972; Hertwig et al., 2004) can be used to 
quantitatively evaluate learning rate parameters in learning tasks, and 
to reveal their associations with other variables and obtain insight into 
the mechanisms of human behaviors (e.g., Dombrovski et al., 2010; 
Kwak et  al., 2014; Suzuki et  al., 2023). Given the above findings, 
reinforcement learning is likely to be  useful for examining 
performance in learning tasks that involve associative learning; they 
allow the identification of factors that contribute to success in learning 
tasks, such as sensitivity to feedback (η) or reliance on a model (τ ).

The diffusion model (Ratcliff, 1978; Ratcliff and Rouder, 1998; 
Ratcliff and McKoon, 2008; Forstmann et al., 2016) can be used to 
describe the distribution of RTs associated with the detection of 
emotional faces (Tipples, 2019; Sawada et al., 2022). The diffusion 
model includes four main parameters. The threshold separation (α ) 
is the distance between two choices (i.e., target presence and absence), 
z denotes the starting point (which is related to prior bias in 
two-choice tasks), and ν  is the drift rate (speed with which evidence 
is accumulated in relation to a specific response, i.e., toward the upper 

or lower threshold). The non-decision time (t0) is based on all time 
components unrelated to the information accumulation process. RTs 
tend to be classified as fast or slow in experimental tasks. However, 
more in-depth metrics can be obtained, such as the speed with which 
information is accumulated (ν ), the amount of information required 
(α ), and the time required to arrive at a judgement (t0). Analysis of 
such metrics can reveal the mechanisms underlying psychological 
processes. Indeed, Sawada et al. (2022) used the diffusion model to 
estimate cognitive parameters in a visual search task requiring 
participants to detect angry and happy expressions, and their anti-
expressions, within a crowd of neutral faces. Regardless of valence, ν  
for emotional facial expressions was rapid, α  values were large, and t0 
values were small. These results suggest that efficient detection of 
facial expressions is characterized by the faster and more cautious 
accumulation of information through enhanced attentional allocation.

When investigating the relationships among different behavioral 
task performance indices, a computational modeling approach can 
be used to maximize the amount of information obtained. By fitting a 
reinforcement learning model to associative learning data and a 
diffusion model to visual search data, and then examining the 
relationship between the resulting parameters, further insight can 
be obtained into the mechanisms underlying the detection of faces 
with emotional meaning.

In this study, we explored the psychological processes underlying 
the rapid detection of faces with emotional meaning by investigating 
the relationship between associative learning and visual search data. 
Moreover, we investigated developmental changes by comparing young 
and older participants. We  applied the hierarchical reinforcement 
learning and diffusion models to data collected in previous studies 
(Saito et al., 2022a,b) (Figure 1). Then, we checked the relationships 
between the resulting parameters using both models. Learning success 
in associative learning tasks was quantitatively represented by changes 
in learning rates on a continuum, instead of a binary classification. 
We also calculated three psychologically meaningful parameters (α , ν
, and t0) instead of the RT. This study is the first to investigate the 
relationships among the above parameters.

We tested three hypotheses using computational models. The first 
hypothesis was informed by the previous finding that people tend to 
avoid negative situations rather than to show approach behavior to 
positive ones. Kahneman and Tversky (1979) explained this 
asymmetry between gain and loss using prospect theory. Katahira 
et  al. (2011) revealed that the negative reward value of negative 
pictures was larger than the positive reward value of positive pictures. 
Thus, we expected the learning rate in the associative learning task to 
be higher in both younger and older participants for punishment 
trials than reward trials. In terms of developmental changes, Saito 
et  al. (2020) reported that older participants showed markedly 
reduced sensitivity to positive expressions compared with younger 
participants. Thus, our hypotheses are as follows: 1–1. Learning rate 
parameters will be higher for punishment trials than reward trials. 
1–2. Older participants will have low learning rates for rewards. In 
the visual search paradigm, we expected the younger group to exhibit 
superior performance compared with the older group (Salthouse, 
2000). Accordingly, we  hypothesized that each diffusion model 
parameter value will be higher in the younger participants than in the 
older ones. Finally, based on a straightforward interpretation of Saito 
et al. (2022b), we predicted that the ν  in RT will be linked to the 
learning rates. The relationships between other parameters were 
investigated in an exploratory manner.
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2 Methods

2.1 Participants

We recruited 29 young adult participants (13 women; mean ± SD 
age = 22.6 ± 2.1 years), all of whom were either undergraduate or graduate 
students at Kyoto University. We also recruited 32 older participants (16 
women; mean ± SD age = 73.5 ± 5.3 years) from a local human resource 
center in Kyoto. All participants were paid for their participation. The 
sample size was determined by a priori power analysis, using a 
frequentist approach with an assumed α  level because the data had been 
used in previous studies (Saito et al., 2022a,b). All participants provided 
written informed consent to take part in the study, which was approved 
by the ethics committee of the Unit for Advanced Studies of the Human 
Mind at Kyoto University and conducted in accordance with institutional 
ethical guidelines and the Declaration of Helsinki.

2.2 Stimuli

Seven grayscale images of male faces with neutral expressions were 
selected from a database containing 65 faces of Japanese individuals (Sato 
et al., 2019). One face was used as a distractor in the visual search task, 
and the others were used as targets in the associative learning and visual 
search tasks. The images were adjusted for brightness and contrast using 
Photoshop 5.0 (Adobe, San Jose, CA) and the mean luminance was 
equalized using MATLAB R2017b (MathWorks, Natick, MA). The 
stimuli were controlled in terms of both attractiveness and distinctiveness. 
The detection speed was not significantly different between the target 
faces in the visual search task according to the results of preliminary 
experiments (F(5,35) = 2.18, p = 0.079). All stimuli were cut into ellipses 
to exclude distinctive factors (e.g., hairstyle and facial contours), and had 
subtended visual angles of 3.5° horizontally × 4.5° vertically.

2.2.1 Associative learning task
Three pairs of faces were used. The face pairs were fixed 

throughout the learning task. Each pair was allocated to one of the 

three value conditions (reward, punishment, or zero outcome), and 
this allocation was counterbalanced across participants. In the 
reward and punishment conditions, one face in each pair was 
designated as the target. Selecting the target resulted in a monetary 
reward (20 yen increase in each trial) or punishment (20 yen 
decrease in each trial) in 80% of trials (zero outcomes for the other 
20%). The nontarget image in each pair was assigned the reverse 
probability pattern (i.e., 20% probability of monetary reward or 
punishment). In the zero-outcome condition, one face was the 
target, but the monetary outcome was always zero regardless of 
whether the participants selected the target or nontarget. This 
condition was set as a control condition to compare the learning 
conditions (reward and punishment). The target face statuses in 
each condition were counterbalanced across the participants. Each 
participant experienced 1 of 24 stimulus presentation combinations 
in the learning task.

2.2.2 Visual search task
The same three face pairs from the associative learning task 

were used in the visual search task. The face classified as the target 
in each condition in the associative learning task was also the target 
in this task. An additional face with a neutral expression was used 
as a distractor. The search display was a square (11.0° × 11.0°) 
within which faces were presented in four positions at 4° intervals. 
One target face and three identical distractor faces were presented 
in each of the four positions in the target-present condition. Each 
target face was presented 8 times in each of the four positions, so 
that each target was presented 32 times in total. In the target-absent 
condition, the four identical distractor faces appeared in all of 
the positions.

2.3 Procedure

The participants were seated in a chair with a chin rest fixed 80 cm 
from the monitor. The experimental room was soundproofed and 
dimly lit.

FIGURE 1

Schematic illustrations of trials in the learning task (A) and visual search task (B). In the learning task, participants chose one face from each pair to 
maximize their earnings. In the visual search task, participants identified one discrepant face embedded among distractor faces. Actual stimuli were 
photographic faces.
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2.3.1 Associative learning task
The participants took part in a betting game, in which they were 

asked to choose a face from each stimulus pair based on their “gut 
feeling” and register their response by pressing the corresponding 
button on a response box. The goal of the task was to maximize their 
earnings. Because the participants were not told which of the paired 
faces was the target, they had to make a guess about which face would 
be more likely to lead to a reward. They were informed that the money 
they earned would be paid after the experiment, and were asked to try 
and earn as much money as possible. Each trial began with the 
presentation of a fixation cross for 500 m, followed by a pair of faces. The 
faces in the pair were positioned 2.5° above or below the fixation cross 
(0.9° × 0.9°), such that they appeared in the center of the screen. The 
positions of the target and nontarget faces were pseudo-randomized. 
After the participant made a response, a “reward” message (plus 20 yen, 
minus 20 yen, or 0 yen) was presented on the screen, and a sound 
indicated whether the answer was correct or incorrect (no sound for 0 
yen). Then, the amount of money earned was displayed on the screen 
for 1,800 ms. Each face pair was presented 10 times (total of 30 trials) in 
one block, and there were 10 blocks in the main experiment, resulting 
in 300 trials. To prevent the consecutive presentation of identical face 
pairs in the same position, the presentation order of the face pairs was 
pseudo-randomized. Prior to the experiment, the participants 
completed 30 practice trials to familiarize themselves with the task.

2.3.2 Visual search task
Before the experiment, the participants were informed that no 

monetary reward or punishment would occur in this task. In each 
trial, a fixation cross was shown for 500 ms, followed by a stimulus 
array containing four faces (Figure 1B) that did not have any facial 
movements (i.e., neutral faces). The participants were instructed to 
indicate whether one of the faces was dissimilar from the others, or if 
all four faces were the same, by pressing the corresponding button on 
the response box as quickly and accurately as possible. The allocation 
of the response buttons was counterbalanced across participants. Each 
block included 24 target-present trials (8 trials each in the reward, 
punishment, and zero-outcome conditions) and 24 target-absent 
trials. The main experiment consisted of four blocks, such that the 
total number of trials was 192. To prevent the consecutive presentation 
of identical targets in the same position, the order of trial presentation 
was pseudo-randomized in each block. There was no time limit. 
Before the experiment, the participants completed 24 practice trials.

In the associative learning task, two younger participants 
(−220 ~ −140 yen) and 10 older participants (−440 ~ −20 yen) had net 
negative amounts. Regardless of whether a negative or positive 
amount of money was earned, all participants received the same 
predetermined monetary bonus in the learning task (1,000 Japanese 
yen) after they had been debriefed.

2.4 Statistical approach

2.4.1 Associative learning task
To determine whether the learning conditions affected face 

selection, and whether that effect differed depending on age, 
we  performed three-way mixed ANOVA with factors of learning 
condition (reward, punishment and zero), trial block (1–20, 21–40, 
41–60, 61–80, and 81–100), and age (younger and older). For post-hoc 

tests, p-values were adjusted using the Holm-Bonferroni sequentially 
rejective procedure (Holm, 1979). Learning was assumed to have 
occurred, if there was a performance difference between the first 20 
and final 20 trials.

To build a reinforcement learning model, we established a modified 
multiple-armed bandit model (Hertwig et al., 2004; Ahn et al., 2017) 
based on the Rescorla-Wagner (delta) model in which the learning 
rates for reward and punishment were distinguished (Rescorla and 
Wagner, 1972). Because there was no feedback in the zero condition, 
the estimates were not uniquely determined; we used only the data for 
the reward and punishment conditions. Thus, we estimated four main 
parameters: the learning rate for reward (ηr), learning rate for 
punishment (η p), inverse temperature for reward (τ r), and inverse 
temperature for punishment (τ p). First, we set four expected values for 
the four choices (target face choice in reward conditions, nontarget face 
choice in reward conditions, target face choice in punishment 
conditions, and nontarget face choice in punishment conditions). Next, 
we  calculated prediction error (PE) by subtracting the monetary 
outcome (+1, 0, −1) from the expected value (EV) for each choice. 
After that, the following updating rule was formulated.

 EV EV PEnew old r� � �� for reward

 EV EV PEnew old p� � �� for punishment

To calculate the action probabilities, we used the softmax choice 
rule with the inverse temperature parameter (τ τr p, ), which reflects 
how individuals’ choices are made deterministically with respect to 
the value of the alternative choices (Kaelbling et al., 1996). An increase 
in the inverse temperature corresponds to a preference for model 
dependent choices, whereas a decrease in the inverse temperature 
reflects a tendency toward more random decisions. The learning rates 
represent the sensitivity of feedback in a learning task, where η  close 
to 1 places more weight on recent outcomes.

In addition, we applied Bayesian hierarchical modeling (Lee and 
Wagenmakers, 2014), which can delineate individual differences and 
similarities among participants and thus enhance the accuracy of 
statistical inferences (Gelman and Hill, 2006; Driver and Voelkle, 
2018; Namba et al., 2022). The number of iterations was set to 5,000, 
the number of burn-in samples to 5,000, and the number of chains to 
four. The R-hat value for all parameters was 1.0, indicating convergence 
of the four chains (Stan Development Team, 2020). The details of the 
model, including the prior distributions, are described in the 
Supplementary material.1

2.4.2 Visual search task
To determine whether the learning conditions affected visual 

search performance (i.e., RT and accuracy), and whether that effect 
differed by age, we performed two-way mixed ANOVA including 
learning condition (reward, punishment and zero) and age (younger 
and older). Similar to the associative learning tasks, p-values were 
adjusted using the Holm-Bonferroni sequentially rejective procedure. 
We  were concerned with the difference between the reward, 

1 https://osf.io/rw3e4/
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punishment, and no feedback conditions in the target-present trials, 
rather than the difference between the target-present and absent 
conditions. Thus, we focused on the target-present condition in the 
visual search task.

To build the hierarchical drift-diffusion model, we  applied a 
response-fitting model that use two outputs: same or dissimilar. 
We extracted the three main parameters from the behavioral data 
using the hierarchical drift diffusion model: � �, , and t0. For 
parameter estimation, we calculated individual-level parameters (and 
the within-condition covariance structure) for � �,  in the different 
learning conditions (reward, punishment, and zero), and we calculated 
a population-level parameter for t0. z was fixed at 0.5. This was due to 
the need to constrain parameters for stable convergence (Kinosada, 
2019). We determined whether the values of R-hat were close to 1 
(values closer to 1 indicate greater convergence) and calculated the 
variation between the four chains (smaller variance reflects greater 
convergence). The number of iterations was set to 5,000, and the 
number of burn-in samples was set to 5,000. The diffusion model, 
including the prior distributions, was described in detail in (see 
Footnote 1).

Finally, we  explored the correlations among the underlying 
parameters for each participant. Since no sample size calculation or a 
priori power analysis was conducted, we used conservative criteria, 
i.e., r > 0.30 (Cohen, 2013). All analyses were performed using R ver. 
3.6.1 (R Core Team, 2019), with the “anovakun,” “bayesplot,” “brms,” 
“cmdstanr,” “posterior,” “rstan,” “tidyverse” packages (Bürkner, 2017; 
Gabry et al., 2019, 2023; Wickham et al., 2019; Stan Development 
Team, 2020; Bürkner et al., 2023; Iseki, 2023).

3 Results

3.1 Associative learning task

First, we checked the learning curves for the young and older 
participants, as shown in Figure  2. A visual inspection of the 
performance of the younger and older participants indicated good 
learning outcomes in both groups, although the younger participants 
exhibited more efficient learning. Three-way mixed ANOVA was 
performed to evaluate the effects of age, learning and trial block. There 
was no main effect of age or trial block, and interaction effect between 
age and trial block (Fs < 0.35, ps > 0.55, ηG

2s < 0.002), but the main 
effect of learning condition was significant (F(2, 110) = 49.61, p < 0.001, 
ηG

2 = 0.32). Participants in the reward condition performed 
significantly better than those in the zero and punishment conditions, 
and participants in the zero condition performed better than those in 
the punishment condition (ts > 4.36, ps < 0.001). There was also an 
interaction effect between trial block and learning condition (F(8, 
440) = 13.43, p < 0.001, ηG

2 = 0.05). The post hoc test showed significant 
differences between trial blocks in the reward and punishment 
conditions (Fs > 14.22, ps < 0.001, ηG

2s > 0.06), but there was no 
difference between trial blocks in the zero condition (F(4, 220) = 0.38, 
p = 0.82, ηG

2 = 0.00). In the reward condition, the selection rate was 
significantly higher in the last 20 trials than in the first 20 trials 
(t = 5.04, p < 0.001), but the opposite was true in the punishment 
condition (t = 5.30, p < 0.001). This indicates that associative learning 
for reward and punishment occurred in both participants. In addition, 
there was an interaction effect between age and learning condition 

(F(7, 43) = 7.43, p = 0.001, ηG
2 = 0.07). The post hoc test showed 

significant differences between younger and older participants in the 
reward and punishment conditions (Fs > 9.25, ps < 0.004, ηG

2s > 0.10), 
with the effects being smaller in older than younger participants, but 
there was no difference in the zero condition (F(1,55) = 0.02, p = 0.88, 
ηG

2 = 0.00). Moreover, the performance of younger participants 
significantly differed among the conditions; performance was best in 
the reward condition, followed by the zero condition and finally by the 
punishment condition (ts > 5.40, ps < 0.001). Older participants 
performed worse in the punishment condition than the other two 
learning conditions (ts > 2.76, ps < 0.02), but the reward condition did 
not differ from the zero condition (t = 1.35, p = 0.19). In summary, the 
younger participants were able to learn reward and punishment 
contingencies in the associative learning task, and the older 
participants were able to learn punishment contingencies in the 
associative learning task but not reward contingencies.

Next, as shown in Table 1 and Figure 3, we assessed the results for 
the reinforcement learning model parameters. There was a small 
difference in learning rate between the reward and punishment trials 
among the younger participants. Specifically, the learning rates were 
higher for punishment trials. For the inverse temperature parameters, 
both groups had higher values for the reward compared with 
punishment trials. We  performed the posterior predictive check, 
comparing simulated and real data (Supplementary Figure S12).

Figure 4 shows the posterior distributions of each parameter 
difference between younger and older participants. There were 

2 https://osf.io/kdxz6

FIGURE 2

(A) Mean (± standard error) proportion of target faces selected by 
younger participants for each block (1–20) in the reward, 
punishment and zero conditions. (B) Mean (± standard error) 
proportion of target faces selected by older participants for each 
block (1–20 trials) in the reward, punishment, and zero conditions.
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differences between the younger and older participants in learning 
rates but not inverse temperatures. Specifically, younger 
participants had higher learning rates than older ones (reward: 
mean of group difference = 0.04, 95% credible interval [CI] = [0.02, 
0.07]; punishment: mean of group difference = 0.10, 95% 
CI = [0.04, 0.16]). There were no differences in inverse 

temperatures between the younger and older participants (reward: 
mean of group difference = −3.71, 95% CI = [−8.80, 0.38]; 
punishment: mean of group difference = 0.55, 
95%CI = [−0.72, 1.84]).

3.2 Visual search task

To check the performance of the visual search task, 
we performed two-way mixed ANOVA including age and learning 
condition. It should be  noted that this ANOVA analysis was a 
preliminary analysis to measure the tendency of the data. Regarding 
RT, there were main effects of age and learning condition (Fs > 4.45, 
ps < 0.02, ηG

2s > 0.01). Younger participants (mean = 0.97) showed 
shorter RTs than older participants (mean = 1.58; t = 8.77, p < 0.001). 
Regarding the effect of learning condition, RT was significantly 
shorter in the reward condition than in the zero condition (t = 2.96, 
p = 0.01), and there was a trend toward a difference between the 
punishment and zero conditions (t = 1.78, p = 0.08). There was no 
interaction effect between age and learning condition (F(2, 
110) = 2.03, p = 0.14, ηG

2 = 0.005). Regarding accuracy, no significant 
main or interaction effects were found (Fs < 0.80, ps > 0.45, 
ηG

2s < 0.006). In summary, in the visual search task, the younger 
participants were faster than the older ones. Moreover, the RT in the 
reward condition, but not in the punishment condition, was 
significantly different to that in the zero condition over the two 
age groups.

As described above, we  computed the three drift diffusion 
parameters (α, ν, t0) from the visual search data for the younger and 
older participants. Figure 5 shows the α values, i.e., the threshold of 
accumulated evidence for all conditions (two groups: younger and 
older; three conditions: reward, punishment, and zero). Visual 
inspection indicated no differences among the reward, punishment, 

TABLE 1 All parameters in the reinforcement-learning model.

Name Mean
95% Credible 

Intervals

Younger participants

ηreward 0.05 [0.03, 0.08]

ηpunishment 0.12 [0.07, 0.19]

τreward 7.98 [6.71, 9.65]

τ punishment 4.50 [3.66, 5.46]

� �rew pun� −0.07 [−0.14, −0.01]

� �rew pun� 3.48 [1.85, 5.35]

Older participants

ηreward 0.01 [0.00, 0.02]

ηpunishment 0.02 [0.01, 0.05]

τreward 11.70 [7.98, 16.70]

τ punishment 3.95 [3.09, 4.89]

� �rew pun� −0.02 [−0.04, 0.00]

� �rew pun� 7.75 [3.89, 12.80]

FIGURE 3

Posterior distributions of each parameter of the reinforcement learning model among younger (upper) and older participants (lower). Blue bars are 
expected a posteriori values and transparent blue regions are 95 credible intervals. η  = the learning rates, τ  =  the inverse temperature, ∗r  =  for reward, 
∗p  =  for punishment.
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and zero conditions, but there were differences between the younger 
and older participants only for the zero condition (areward : mean of 
group difference = −0.14, 95% credible interval [CI] = [−0.31, 0.02]; 
aloss : mean of group difference = −0.15, 95% credible interval 
[CI] = [−0.30, 0.01]; azero: mean of group difference = −0.17, 95% 
credible interval [CI] = [−0.34, −0.01]). These results indicate that the 
older participants needed more information before they made a 
response regarding the value-driven unlearned faces. The posterior 
predictive check was further confirmed using reaction time values in 
the simulated and real data of younger and older participants 
[Supplementary Figure S2; (see Footnote 2)].

Figure  5 shows the results for ν, i.e., the speed at which the 
participants accumulated evidence before making a response. Even in 
the younger group, although visual inspection indicated that the 
positive and negative learning conditions had a relatively higher ν 
compared with the zero condition, performance did not differentiate 
positive and negative learning conditions from the zero condition 
(ν rew to zero_ _ : mean of group difference = 0.12, 95% credible interval 
[CI] = [−0.05, 0.28]; ν loss to zero_ _ : mean of group difference = 0.12, 
95% credible interval [CI] = [−0.07, 0.31]). There were differences 

between the younger and older participants (ν reward : mean of group 
difference = 0.35, 95% credible interval [CI] = [0.05, 0.66]; ν loss: mean 
of group difference = 0.49, 95% credible interval [CI] = [0.24, 0.74]; 
ν zero: mean of group difference = 0.32, 95% credible interval 
[CI] = [0.08, 0.57]).

t0 is based on all time components unrelated to the information 
accumulation process, as stated previously. There were differences 
between the younger and older participants (t younger0 : mean = 0.36, 
95% credible interval [CI] = [0.35, 0.36]; t older0 : mean = 0.50, 95% 
credible interval [CI] = [0.49, 0.52]; t diff0 : mean of group 
difference = −0.15, 95% credible interval [CI] = [−0.16, −0.13]). In 
other words, older participants needed more time both before and 
after information accumulation than younger adults.

3.3 Relationships between associative 
learning and visual search parameters

To avoid the influence of outliers, we explored the Spearman’s 
rank correlation coefficients among the underlying parameters for 

FIGURE 4

Posterior distributions of each parameter difference between younger and older participants. Blue bars are expected a posteriori values and transparent 
blue regions are 95% credible intervals. Positive values are a relatively large component of younger participants, while negative values are a relatively 
large component of older participants. η  = the learning rates, τ  =  the inverse temperature, *r  =  for reward, *p  =  for punishment.

FIGURE 5

Posterior density plot of the group means of the six parameters as produced in the group (y  =  younger, o  =  older) and conditions (reward, punishment, 
and zero). Left: the threshold separation (α), right: the drift rate (ν).
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each participant. We extracted the mode value (most probable value) 
for each individual parameter. Tables 2, 3 show the relationships 
between associative learning and visual search parameters. In younger 
participants, only the learning rate in rewarded associative learning 
trials was correlated with the ν for faces in the reward condition 
(r = 0.38, p = 0.04). However, there were no other correlations between 
the associative learning and visual search task parameters (|r|s < 0.35, 
ps < 0.07). For older participants, there were no correlations between 
the associative learning and visual search task parameters (|r|s < 0.32, 
ps < 0.10).

4 Discussion

This study explored the psychological processes underlying the 
rapid detection of faces with emotional meaning by investigating the 
relationship between associative learning data and visual search data. 
First, we found that the learning rates for reward and punishment 
were higher for younger than older participants (Figure 4). This was 
consistent with the simple learning performances revealed by Figure 2. 
The results also showed that learning rate parameter values were 
higher for punishment than reward trials in younger participants only. 
Older participants did not show different learning rates between 
reward and punishment trials. This result is consistent with previous 
studies showing that aging reduces sensitivity to negative faces and 
information (Mill et al., 2009; Zhao et al., 2016; Richoz et al., 2018). 
Our results suggest that the sensitivity of learning feedback might 
decrease with age.

Both the younger and older participants in this study showed 
higher inverse temperatures for reward than for punishment, and 
there was no difference between younger and older participants for 
this parameter (Figure 4). The inverse temperature parameter reflects 
the degree to which an individual retains their previous learning 
history (Katahira, 2015). Thus, both younger and older participants 
could have kept learning history and learning rate updates in the 
reward trials than punishment trials. However, the younger 
participants may have adjusted for this difference in sensitivity (i.e., 
higher learning rate for punishment than reward). Our reinforcement 
learning model shed light on the associative learning process in both 
younger and older participants.

For the visual search paradigm, ν was larger and t0 was smaller 
in the younger group than in the older group, consistent with our 
hypothesis. This result is consistent with Saito et al. (2022a), who 
revealed that RT in visual search tasks differs between younger 
and older adults. This finding further demonstrates that the 
younger group had superior efficiency in terms of information 
accumulation (ν) compared to the older group. Additionally, the 
perceptual time leading to motion onset (t0) was shorter in the 
younger group. Aging might reduce the speed with which 
information accumulates and attention is allocated to value-
associated faces. Only in the zero condition, the older participants 
needed more information before they made a response (α) 
compared to the younger participants. This could be interpreted 
as that the older participant’s learning in the associative learning 
task affected the amount of information needed before they made 
a response, even if only slightly, so that they no longer differed 
from the younger participants. Figure  5 also shows that the 

threshold parameters for the value-driven conditions in the older 
participants were closer to the left than in the zero condition. The 
decline in performance among older participants is amenable to 
decomposition across distinct components as the current study 
indicated. The identification and elucidation of requisite 
interventions tailored to these specific components entail the 
pursuit of future research investigations.

We hypothesized that the ν for RT would be  linked to each 
learning rate parameter. However, our results only partially supported 
this prediction, with the data from the younger participants in the 
reward condition. The result implies that sensitivity to reward in an 
associative learning task facilitates the accumulation of information 
in a visual search task for younger, but not older, participants. During 
an experiment in which a learning task and visual search were 
performed in relatively rapid succession, short term reward sensitivity 
was advantageous, although this effect diminished with age. This 
finding suggests that, in the context of building social relationships, 
more efficient accumulation of reward information is required in 
earlier stages of development. It is important to note that no such 
relationship was found between t0 and α . In the older participants, 
there were no correlations between the parameters from the two 
computational models. Thus, further research using a visual search 
task with more appropriate connections to associative learning tasks 
needs to be designed. Recently, Pedersen et al. (2017) attempted to 
combine the drift diffusion and reinforcement learning models. By 
directly applying the combined model to one learning task, we can 
expect to gain insight into the relationships between the mathematical 
parameters. The current study is the first to provide insight into how 
younger and older adults detect neutral faces that are associated with 
positive values.

TABLE 2 Spearman’s rank correlation coefficients between the 
underlying mode parameters from the reinforcement-learning and drift 
diffusion models for younger participants.

Variable ηr ηp τr τ p

a(r) Spearman’s r 0.23 −0.05 0.20 −0.18

a(p) Spearman’s r 0.13 −0.04 0.21 −0.14

a(zero) Spearman’s r 0.16 −0.04 0.13 −0.19

v(r) Spearman’s r 0.38 0.32 0.28 −0.07

v(p) Spearman’s r 0.11 0.34 0.26 0.27

v(zero) Spearman’s r 0.23 0.35 0.24 −0.05

The bold values mean significant effects or significant trends.

TABLE 3 Spearman’s rank correlation coefficients between the 
underlying mode parameters from the reinforcement-learning and drift 
diffusion models for older participants.

Variable ηr ηp τr τ p

a(r) Spearman’s r −0.14 −0.14 −0.04 −0.29

a(p) Spearman’s r 0.03 −0.06 0.09 −0.17

a(zero) Spearman’s r −0.01 −0.24 0.03 −0.11

v(r) Spearman’s r −0.11 0.19 −0.15 −0.14

v(p) Spearman’s r −0.01 0.28 −0.19 −0.12

v(zero) Spearman’s r −0.06 0.32 −0.28 −0.14
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4.1 Implications and future directions

Our findings have theoretical implications. The current results 
revealed the associations between computational parameters (i.e., 
learning rate and drift rate) underlying observable behavioral 
responses during value learning and value-driven detection of neutral 
faces in young participants. Several previous studies that used 
computational modeling have shown that the computational 
parameters reflect latent cognitive processes and are tightly linked to 
activity in specific brain regions. For example, a recent neuroimaging 
study reported that the drift rate estimated from face evaluation 
behaviors using a drift-diffusion model was associated with amygdala 
activity (Calabro et  al., 2023). We  expect our findings to provide 
insights into the neural mechanisms for value-driven detection of 
neutral faces and their aging patterns, which should be investigated in 
future computational neuroimaging studies.

Our findings may also have practical implications. A previous 
study has suggested that computational parameters classified clinical 
and non-clinical populations better than behavioral measures (Wiecki 
et al., 2015). A recent study reported that the RT performance of 
value-driven detection of neutral faces was associated with 
participants’ autistic traits (Saito et al., 2023). Collectively, our findings 
suggest that the computational modeling of the task may be helpful 
for the classification of individuals with autism spectrum disorder and 
those with typical development. Also, because the present study 
revealed the computational underpinnings of the effect of aging on 
value learning and value-driven detection of neutral faces, the same 
approach may provide information about pathological aging, such as 
dementia (cf. Irwin et al., 2018). Further research is warranted to test 
the task of value-driven detection of neutral faces and its 
computational modeling for clinical populations.

4.2 Caveats

This study had several limitations. First, the number of younger 
participants with successful learning outcomes was greater than that of 
older participants. The 8:2 feedback ratio used in the associative learning 
task was difficult for older adults, but may have been too easy for 
younger adults, thus making it difficult to compare associative learning 
performance in the visual search task. In the posterior predictive check 
[Supplementary Figure S1; (see Footnote 2)], the observed data for the 
older adults who failed to learn had a poor fit with the reinforcement 
learning model. This also poses a risk of the interpretability of the 
parameters of reinforcement learning models in the participants who 
failed to learn. Modification of the feedback ratio in the associative 
learning task or improving the reinforcement model, which can account 
for learning failures, is important for future research. The current study 
compared younger and older participants but factors other than age 
might contribute the observed differences/relationships. For example, 
attention is related to intelligence (Schweizer and Moosbrugger, 2004), 
and it is likely that young participants from Kyoto University and older 
participants from a local human resource center differ in attributes 
other than age, such as IQ (Chamorro-Premuzic and Furnham, 2008). 
The effects of age should be pursued with adequate control of factors 
that may cause interpretable outcomes. Future studies including older 
participants should use the Mini-Mental State Examination (Folstein 
et al., 1975) or other neuropsychological tests to explore whether general 

cognitive functions are preserved. In addition, the present study applied 
the diffusion model with a constrained number of trials (i.e., 32), which 
raises concerns about stable parameter estimates. Even when using only 
24 trials, there was a sufficient correlation in the three-parameter 
diffusion model between the real and predicted values in the systematic 
simulation (Lerche et al., 2017). Notably, for detecting the condition 
differences, the noise of parameter estimation might not necessarily 
be critical. It also holds true that a larger trial count often improves 
parameter estimation, with the result that future research endeavors 
may demand the use of more trials and larger sample sizes to enhance 
the depth and scope of inquiry. Finally, as facial stimuli, the current 
study used only young male faces with neutral expressions, which may 
have biased the results considering that male faces tend to be viewed 
more negatively than female faces (Craig and Lee, 2020). Although 
emotional recognition performance for the facial expressions of older 
people is reportedly lower regardless of the observer’s age (Riediger 
et al., 2011), further studies are needed to determine whether this lower 
performance is applicable to older faces with neutral expressions.

5 Conclusion

In conclusion, we used reinforcement learning and drift diffusion 
models to compare the value learning process and value-driven 
detection of neutral faces between younger and older adults. The 
learning rates in the associative learning task, and the ν and t0 values 
in the visual search task, were higher in younger than in older 
participants. Sensitivity to learning feedback may decrease with age. 
During value-driven detection of neutral faces among young adults, 
we found that only the sensitivity to reward in the associative learning 
task promoted efficient accumulation of information during a visual 
search for neutral faces in younger but not in older adults. The 
parameter values of our mathematical model shed light on the 
contributing factors underlying the rapid detection of faces with 
emotional meaning in younger and older adults. Specifically, the 
sensitivity to feedback in the associative learning task, the speed of 
information accumulation and the perceptual time leading to motion 
onset in the visual search tasks, and the relationship between the speed 
of information accumulation and feedback sensitivity to reward, 
decreases with age. The current study underscored the significance of 
computational modeling in elucidating the cognitive process behind 
value-driven behavior and contributed to a deeper understanding of 
aging and related conditions, offering avenues for future investigation 
and potential interventions in both neuroscience and clinical contexts.
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