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Public sentiment can effectively evaluate the public’s feelings of well-being in the 
urban environment and reflect the quality of the spatial environment to a certain 
extent. Previous studies on the relationship between public sentiment and urban 
built environmental factors have yielded meaningful results. However, few studies 
have focused on the effect of micro-built environment on public sentiment at 
the street level, which directly shapes people’s perceptions. In addition, the 
nonlinear relationship and synergistic effect among urban built environmental 
factors have been commonly disregarded in previous studies, resulting in an 
incomplete understanding of the impact of urban built environment on public 
emotions. Therefore, this paper takes San Francisco as a study case to explore 
the complex relationship between urban built environmental factors and public 
emotions. Specifically, this paper measures the polarity of public emotions 
through sentiment analysis on Twitter data, establishes a comprehensive 
built environment index system from both macro- and micro- perspectives, 
and subsequently explores the complex relationship between the urban built 
environment and public sentiment through the OLS model and Shapley Additive 
Explanation algorithm. Results show that: (1) micro-built environmental factors 
have a significant influence on public emotion, although they have been 
frequently ignored. (2) Public sentiment tends to be more positive in areas with 
recreation facilities, mixed land use, rich street view visual environment, suitable 
thermal and acoustic environment, balanced income, and a suitable degree of 
high population density. (3) A nonlinear relationship and threshold effect exist 
between the built environmental variables and the semantic orientations of 
public emotion. Environment improvement strategies based on the synergic 
effect between variables can effectively promote the generation of positive 
emotions. Our empirical findings can offer valuable insights to promote feelings 
of well-being and foster an urban development approach through strategic 
interventions within the urban built environment.
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1 Introduction

1.1 Background

The urban environment has undergone significant changes due to 
rapid urbanization. The human perception of the urban environment 
has also changed over time. According to Richard Sennett, a city is not 
just a physical space, but a product of human interaction with the 
environment. This interaction shapes citizens’ identity, social relations, 
and sentimental cognition and influences the evolution and 
development of urban spatial form (Sennett, 1970). Human perception 
and emotion in the urban built environment can be used to measure 
the interaction between humans and the environment, improving the 
comprehensibility of urban environmental quality (Sénécal, 2007). 
Accordingly, understanding the relationship between public emotions 
and the urban environment can better reveal the dynamic urban 
environment from the perspective of citizens and help gain insight 
into how the urban environment can promote people’s happiness and 
well-being (Yang et al., 2022).

Emotion, as a basic motivational component of human behavior, 
is the result of the coordination of various factors (including human 
physiological characteristics, cultural background, and growth 
environment; Tsuchiya and Adolphs, 2006), and it fluctuates with a 
variety of factors, such as social, environmental, and perception (Huai 
and Van De Voorde, 2022). Research on the relationship between 
emotion and space can be traced back to the 1950s. Byrne pointed out 
that space can evoke emotions, and the impact of space on emotions 
can vary over time (Byrne, 1958). Kevin Lynch proposed the concept 
of “mental map,” which is an abstract spatial representation of a 
specific environment (space) formed in the mind of an individual 
based on their perception and awareness. It reflects the perceived and 
cognitive representation of environmental space by the human brain 
(Lynch, 1962). Based on this framework, Brian Goodey analyzed 
people’s perceptions of the urban center (i.e., the environmental space 
in their mind) based on the individual experience and information 
fragments in their mind, and furtherly established a weighted mental 
map to clarify people’s environmental preferences (Goodey, 1974). 
However, this theory only focused on subjective feelings of people and 
disregarded the interaction between space and people. Researchers 
have highlighted that while space can evoke rich human emotions, 
human emotions can also help improve the urban environment and 
the quality of space (Li et al., 2018). Therefore, clarifying the complex 
relationship between public emotions and the urban built environment 
will provide meaningful reference for urban planners and policy 
makers when making urban development and renewal decisions.

1.2 Literature review

Anderson and Smith (2001) introduced the concept of emotional 
geography which focuses on the relationship between emotions and 
geographical spaces (Anderson and Smith, 2001), marking the shift of 
research on human perception and urban environment from purely 
subjective psychological domains toward a broader social space 
dimension. Since then, many studies have explored the interaction 
between urban spaces and public emotions and accumulated 
meaningful results. Previous studies have demonstrated that the urban 
form, landscape, and climate environment have significant influences 

on public emotions (Leyden et  al., 2011; Mouratidis and Hassan, 
2020). For example, researchers observed that good spatial accessibility 
(Lai and Deal, 2022; Sun et al., 2023), ample and high-quality urban 
greenery (Huai and Van De Voorde, 2022), and a good visibility of 
blue and green spaces (Qiang et al., 2019) in the city can help trigger 
people’s positive emotions. In contrast, unfavorable climate conditions, 
such as drought, heat waves, and heat island, can lead to negative 
public emotions (Fritze et al., 2008; Holly et al., 2015). Nevertheless, 
researchers found that the relationship between the urban 
environment and public emotions is not comprehensively consistent. 
For example, many studies have reported that a high building density 
tends to evoke negative emotion (He et al., 2022) However, J. Huang 
et  al. observed that the high building density in Hong Kong is 
positively correlated with urban functional diversity and can promote 
positive emotions among residents (Huang J. et al., 2023).

In addition, the majority of existing studies have focused on the 
relationship between the built environment and public emotions from 
a macro-perspective at the city level. However, establishing a sound 
and adequate indicator system for the built environment at the macro-
city level is challenging for the complexity of a city. Yang et al. (2022) 
summarized the environmental factors affecting public emotions into 
four types: objective, perceived, physical, and social environments. 
However, which type is the most significant is obscured. How the 
environmental indicators at the macrolevel affect public emotions in 
the long term also remains unclear. Liu et al. found that the distance 
to the urban center have a negative impact on public emotions (Liu 
et al., 2020). Nevertheless, it remains unclear whether the impact is 
direct or indirect because the multiple collinearities and synergies 
might exist between the distance and other factors such as income, 
quality of infrastructure, and amenity facilities. Furthermore, the 
indicators at the city level can hardly reflect how human individuals 
perceive the urban environment from the micro-perspective. For 
example, some studies observed that people’s feelings of well-being is 
negatively correlated with the distance to recreation areas (such as 
beaches or entertainment facilities; Brereton et  al., 2008), and 
highlighted the significant impact of urban spatial form on people’s 
well-being (Ma et  al., 2021). However, from the perspective of 
individuals, the macro-level urban environmental indicators are 
hardly directly perceptible, resulting in the intelligibility when 
attempting to elucidate the impact mechanisms between such 
indicators and public emotions. Besides, although there are studies 
discussing the impact of perceptible environmental factors, such as 
street view and micro-level urban physical environments, on public 
emotions from the micro- individual perspective, most of them 
focused on only one or some of the environmental factors. Public 
emotions are comprehensively related to both objective urban 
environment from the macro-perspective and the individual’s 
perception of the urban environment from the micro-perspective. 
Therefore, further studies are needed to explore how urban built 
environment from the macro- and micro- perspective integratively 
impact public emotions and elucidate the complex impact mechanisms.

As to the research methods, most existing studies on public 
emotions employed questionnaire surveys and interviews, which can 
hardly support a comprehensive and real-time statistical analysis 
(Rahnema et al., 2019). These traditional methods have limitations for 
they are based on passive, static, and small-sized sample data (Duan 
et al., 2022). With the popularity of social media applications, people 
get used to sharing their daily lives and expressing their opinions on 
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social media. In this context, location-based social network (LBSN) 
data emerged (such as Twitter and Weibo) and quickly presented a 
large amount of real-time public emotion data. These emerging social 
media big data make it possible to address the shortcomings of 
traditional methods of public opinion research (Giuffrida et al., 2020). 
Despite some controversies, such as privacy, representativeness, and 
other issues (Murthy et  al., 2015), Twitter data are increasingly 
replacing traditional survey data as a “social sensor” to help better 
understand the social phenomena in the real world (Naaman et al., 
2014). With the help of Natural Language Processing techniques, 
we can access the API port of Twitter to obtain all data with a certain 
keyword and understand the public opinion in an emergency. We can 
also count the tweets with geographical location information and filter 
them by latitude and longitude coordinates and time to map the 
spatial distribution of public emotions in a city within a certain time 
range (Marouane et  al., 2021). Spatiotemporal analysis of public 
emotions by using LBSN data has become a popular research topic in 
urban research and has yielded notable achievements across various 
aspects. Examples include the relationship between the built 
environment and public emotions (Fan et  al., 2023), the effect of 
public green space on public emotions (Chen S. et al., 2022), and the 
opinions of people on public transportation through Twitter data (Das 
and Zubaidi, 2023). In addition, previous studies used traditional 
global regression models, such as ordinary least squares (OLS) to 
explore the relationship between the built environment and public 
emotions. In recent years, with the emergence of novel modeling 
methods such as machine learning, recent studies have demonstrated 
the existence of threshold and synergistic effects between the built 
environment and human activities (such as travel, emotions, etc.) 
(Yang et al., 2020, 2024). However, it remains unclear whether there is 
a nonlinear relationship and a synergistic influencing mechanism 
between the built environment and public emotions, warranting 
further exploration of the intricate associations involved.

1.3 Research purpose

To fill the relevant research gap, this study aims to disentangle the 
intricate relationship between urban micro- and macro-built 
environmental factors and the semantic orientations of public 
emotions. In particular, this study explores following three aspects: (1) 
to study the relationship between urban built environmental factors 
and public emotions from both macro- and micro- perspective; (2) to 
examine the nonlinear relationship and threshold effect between 
various built environmental factors and public emotions; (3) to 
explore the synergistic effect between the built environmental factors. 
This study aims to deepen the understanding of the correlation 
between urban environment and the semantic orientation of public 
emotions and provide support for planners to improve public 
happiness from the perspective of urban planning.

2 Research framework

To achieve the research goals, the research framework is as follows:

 (1) First, we obtained the tweet data with geographic information 
in San Francisco in 2019 through the Twitter API, used the 

natural language processing algorithm (Vader) to quantify the 
polarity of the semantic orientations of tweet texts with the 
sentiment index, and elucidated the spatial characteristics of 
the public emotions according to the coordinate information 
of the tweet data.

 (2) Then, we established an urban environment indicator system 
combining the micro- and macro- perspective. The micro-built 
environmental variables included thermal comfort, street view 
index, and noise which were computed from diverse multi-
source big data, including Landsat 8 satellite imagery, street 
view images, and urban noise data. The traditional macro-built 
environmental indicator system was built based on the classical 
5D framework and was then used as control variables for 
testifying the impact of the micro-built environment variables.

 (3) Finally, based on the result of the exploration of the Ordinary 
Least Squares (OLS) regression model, we assumed a nonlinear 
relationship and synergistic effects among variables in the 
urban built environment and the polarities of public emotions. 
The Random Forest (RF) model and SHAP algorithm were 
employed to further reveal the complex relationship. The 
specific research framework is shown in Figure 1.

3 Data and method

3.1 Sentiment analysis of tweet data

This study was conducted in San Francisco, the fifth largest city in 
the United States, as shown in Figure 2. San Francisco is surrounded 
by sea on three sides, with an urban area of approximately 600.6 km2 
and a permanent population of approximately 850,000. We used the 
Twitter Streaming API to obtain 121,270 historical tweets from San 
Francisco between January 1 and December 31, 2019, which was 
chosen to avoid the effect of the COVID-19 pandemic. All tweet data 
includes only the content, time, and location information of the 
tweets, without any involvement of users’ real information or privacy. 
The data were preprocessed to exclude non-text information, such as 
bot text, useless links, subject tags, and emoticons, to avoid interfering 
with data processing and model training. Finally, the cleaned data 
were obtained.

We used the Vader library in Python to analyze the sentiment of 
the cleaned tweets. Vader is a lexicon and rule-based sentiment 
analysis tool that is specifically attuned to sentiments or emotions 
expressed in social media. It employs a combination of a sentiment 
lexicon, grammatical rules, and syntactical heuristics to determine the 
semantic orientation of a given text as either positive or negative. 
Specifically, a sentiment is considered “positive” when the text conveys 
a favorable or optimistic opinion, emotion, or attitude. Examples of 
positive sentiments include joy, happiness, satisfaction, or admiration. 
On the other hand, a sentiment is considered “negative” when the text 
conveys an unfavorable or pessimistic opinion, emotions, or attitude, 
such as sadness, anger, disappointment, or frustration. Moreover, 
Vader not only determines the positivity and negativity of the textual 
sentiment, but also gives a compound sentiment score about how 
positive or negative a sentiment is (Hutto and Gilbert, 2015). The score 
ranges from −1 to 1, and the larger the absolute value of the score is, 
the higher the emotional intensity will be. In this study, the compound 
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sentiment score was defined as the sentiment index measuring the 
intensity of positive or negative sentiment expressed in a tweet text, 
helping to understand the semantic orientations of overall public 
emotions expressed in the tweet data.

With the coordinate information of tweet data, the sentiment 
index of every tweet was mapped as a spatial point employing ArcGIS 
pro. To get a better understand of the spatial characteristics of the 
distribution of the sentiment index and its spatial relationship with the 
urban environment, this study employed a 200 m × 200 m grid as a 
basic statistic unit, the sentiment index and the urban environment 
indicators in each cell were aggregated based on the averages. In 
addition, the grid with a small number of samples was deleted, and the 

average sentiment index of each grid was obtained based on the 
following formula to ensure the normal distribution of data and 
eliminate the influence of outliers (Gai et al., 2022).
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where ��1 is the inverse standard normal cumulative density 
function, r is the score range of positive emotion, ni is the number of 
cases in the range r, N  is the total number of cases, Y r



 is the normal 
score for range r , and ϕ is the standard normal density function. 

FIGURE 1

Research framework.
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Higher Y  values represent a stronger positive public emotion in 
the grid.

3.2 Micro-built environment variables

3.2.1 Google street view images index
Real-world street view images with geographic information make 

it possible to quickly extract street view information from the human 
perspective and in large quantity (Kaneko and Yanai, 2016). Street 
view images have rich environmental features and can visually show 
the urban microenvironment. Recently, research on the quantification 
of the built-up environmental features of streets by combining street 
view images with machine learning algorithms has gradually become 
a major topic (Zhang et al., 2018; Chen L. et al., 2022). For example, 
the proportion of different environmental elements in street view 
images can be extracted by semantic segmentation algorithms, which 
can help efficiently capture the features of the micro-scale urban 
environments over a wider geographic area (Zhao et  al., 2016). 
Accordingly, this study generated 23,171 sampling points within San 
Francisco City at 50-m intervals based on the OpenStreetMap street 
network and grabbed four Google Street View images from different 
angles at each sampling point through the Google API (Figure 3). A 
total of 92,684 street view images were obtained, with the angles of 
each direction being 0°–90°, 90°–180°, 180°–270°, and 270°–360°. 
The image resolution was 995 × 1,215 pixels, and the camera settings 
and resolution of each image remained unchanged. Thereafter, the 
image semantic segmentation processing was conducted using a 
pretrained Pyramid Scene Parsing Network (PSPNet) model based on 
the Ade20k dataset (Qiu et al., 2022; Figure 4). Every pixel in an image 
was labeled with a class number representing its visual category, such 
as tree, building, and road. For the study purpose, the segmentation 
results were filtered and reclassified, and the proportion of pixels that 
could be  classified as sky, building and greenery were calculated, 
respectively. Specifically, the building includes pixels that were labeled 

as building, wall, house, skyscraper, shanty, tower and shelter, the sky 
refers to pixels that were labeled as sky, and the greenery refers to 
pixels that were labeled as tree, grass, plant and flowers. For each 
sampling point, the sky ratio, the building ratio and the green ratio 
were calculated based on the average proportion of the corresponding 
category of pixels in four images of different orientations. The 
calculation formula for the street view index system is as follows (Luo 
et al., 2023):

 

View index
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Total Pixels
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where the view index is the proportion of environment character 
pixels in four images, and i is the number of images.

Finally, the three street view indicators, namely the sky ratio, the 
building ratio, and the green ratio, were aggregated into each of 
200 m × 200 m gird cells based on the average, as descriptors of the 
street-level visual environment from human perspective.

3.2.2 Noise data
A plethora of evidence has demonstrated that long-term exposure 

to urban noise has a negative influence on people’s mental health, 
resulting in feelings of irritability, anger, and even depression (Huang 
D. et al., 2023). However, the high cost of land determines that the 
cities will keep developing toward compactness and density (Haaland 
and Van Den Bosch, 2015). Consequently, cities are likely to become 
more densely populated over time, the urban noise pollution problem 
will become severe correspondingly, which can significantly inhibit 
the daily emotion of urban residents. On this basis, we obtained the 
OpenStreetMap urban noise data from the website “noise-map.com” 
to measure the urban acoustic environment in San Francisco. 
Noise-map.com is a visual website of urban noise data. This website 
evaluates and visualizes the noise pollution generated in urban 
environments and from aircraft and other transport means based on 

FIGURE 2

Study area.
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real sensor information and transport information. We used the noise 
data from the noise-map to examine the spatial characteristics of noise 
pollution in San Francisco. The noise decibel data were resampled into 
the 200 m × 200 m grid based on the mean value (Figure 5).

3.2.3 Thermal comfort data
The heat island effect and extreme high temperature are becoming 

increasingly severe, bringing great challenges to environmental 
sustainability (Luo et al., 2023). The temperature in the urban center 
area (especially in summer) is typically higher than the surrounding 
areas, bringing numerous negative effects to human outdoor activities, 
such as thermal radiation diseases and emotional irritability (Chiang 
et al., 2023). At present, a commonly used method of evaluating the 
urban thermal comfort environment is to calculate the urban surface 
temperature based on the satellite remote sensing images, such as 
Landsat 8 satellite images and MODIS satellite images. However, there 
is always a tradeoff between the spatial and temporal resolution of 
satellite images. The spatial resolution of the Landsat 8 satellite reaches 
30 m, but it revisits the same observation area and takes an image 
every 16 days. On the contrary, the MODIS satellites have a temporal 
resolution of 1–2 days, but their spatial resolution is 1 km. Considering 
that the city scale (land area) of San Francisco is approximately 
120 km2, the spatial resolution of the MODIS satellite was considered 

to be  insufficient to reflect the thermal characteristics of the 
microenvironment from a human perspective. Accordingly, we opted 
for the Landsat 8 satellite. This study obtained Landsat 8 images of San 
Francisco in 2019, eliminating cloudy and night images. The satellite 
images were divided into four seasons (spring: March 21st–June 21st, 
summer: June 22nd–September 22nd, autumn: September 23rd–
December 21st, and winter: December 22nd–March 20th) and the 
average surface temperatures of each season were calculated and 
resampled to the 200 m × 200 m grid. Since the comfortable 
temperature for the human body varies in each season, to make the 
indicator better interpretable, we  subtracted the threshold of 
comfortable temperature from the surface temperature in each grid 
cell to get the disparity from the comfortable temperature range. 
Finally, this study measured the thermal comfort in each grid cell by 
calculating the average absolute difference with the most comfortable 
temperature in the four seasons. The smaller thermal comfort index, 
the fewer disparities with the most comfortable temperature, the more 
comfortable the thermal environment in the grid cell. The formula is 
as follows:

 
Atc index

a bi i i
�

�
�� 1

4

4

FIGURE 3

Spatial distribution of 23,171 sampling points of a street view image.
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where the Atc index is the average thermal comfort index, a  is 
land surface temperature, and b is comfortable temperature. According 
to previous research conclusions, the thermal comfort zone in the 
moderate climate zone of the United States in summer, namely, the 
dry bulb temperature, is between 22°C and 28°C. Meanwhile, in 
winter, the dry bulb temperature under the same conditions is 
between 20°C and 25°C (Potchter et al., 2018). Therefore, we take the 
above range as the most comfortable temperature range for winter and 
summer and 20°C–28°C for the two transitional seasons of spring and 

autumn. Finally, the spatial distribution of thermal comfort for each 
grid is shown in Figure 5.

3.3 Macro-built environmental variables

In urban environmental research, the 5D (density, diversity, 
design, destination accessibility, and distance to transit) framework is 
widely used for the systematic classification of macro built 

FIGURE 4

Assessing streetscape features from the PSPNet algorithm.

https://doi.org/10.3389/fpsyg.2024.1276923
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


He et al. 10.3389/fpsyg.2024.1276923

Frontiers in Psychology 08 frontiersin.org

environment variables (Guzman et  al., 2020; Yu et  al., 2022). In 
addition, this study combined socio-economic aspects with the 
classical 5D framework and preliminarily constructed a set of macro-
built environment indicators as control variables to explore their 
correlation with public emotions. Specifically, density includes 
population density and building density. Diversity includes the land 
use diversity, the walkway density, and the green land ratio. The design 
includes the floor area ratio and the open space ratio. Accessibility 
includes the road density, the distance to the city center, and the 
distance to sea.

The original data used to construct the macro- built environment 
indicators were all from the official public data of the US government.1 
The original data were aggregated into the 200 m × 200 m grid by mean 
values. For data with different scales, such as the census tract population, 
we conducted a resampling process using a weighted average based on 
the proportion of the overlapping areas with each grid cell. In addition, 
the land use diversity was based on the Shannon Diversity Index EH , 
measuring the degree of diversification of land use types, and its 
calculation formula is as follows (Blair and Launer, 1997):

 
E

P P
SH
i i�

��� �
� �

ln

ln

where EH  is the diversity index, Pi is the ratio of the i type of land 
to the total area, and S is the total number of unique land use types. 
The greater the land use diversity index, the higher degree the land 
uses are mixed in the study unit.

Before model building, we examined the collinearity between 
variables based on a correlation analysis. In particular, San Francisco 
is surrounded by the sea on three sides, and the downtown area is 
located to the northeast of the city center. The distance to the 
downtown area and the distance to sea are exactly opposite variables, 

1 https://datasf.org/opendata/

with a strong negative correlation. Considering that the distance to the 
coastline also represents the distance to the beach and the relevant 
recreation places, we  excluded the variable of the distance to the 
downtown area. In addition, a strong correlation existed between the 
building density, floor area ratio, and the building ratio index in the 
microenvironmental variables. Furthermore, the green land ratio and 
the Streetview green ratio index were also highly correlated. 
Consequently, the variables of the building density, the floor area ratio, 
and the green land ratio were excluded, the final indicator system for 
the micro- and macro- built environment and the descriptive statistics 
are shown in Table  1. The spatial distribution of macro-built 
environmental variable data is shown in Figure 6.

3.4 Method

After the data preprocessing, we  conducted an exploration 
regression on all variables by using the OLS model and further tested 
the multicollinearity problem according to the correlation coefficient 
(P) and the variance inflation factor (VIF) of each variable (Park et al., 
2018). If the p value of a variable is greater than 0.1, then it is 
insignificant. If the VIF is greater than 7.5, then it is multicollinear. 
The variables that suggested multicollinearity (VIF > 7.5) and not 
statistically significant (p > 0.1) were eliminated for further analysis. 
Then, this study developed two OLS models: one containing all 
variables and another that includes only the micro-built environmental 
variables. The two OLS models were compared to examine the impact 
of micro-built environmental variables on public emotions.

We used the Random Forest (RF) model to explore the complex 
relationship between the built environmental variables and public 
emotions. RF is one of the most powerful and popular machine 
learning algorithms that can process high-dimensional data (Biau, 
2012). This algorithm is an extension of Bagging (a parallel ensemble 
learning method) and uses a classification regression tree algorithm 
(CART) as the basic learner to form the entire tree model. RF is highly 
robust because it can model different data types and is insensitive to 
multiple collinearities, missing values, outliers, and irrelevant variables 

FIGURE 5

Spatial distribution of physical environmental variables in San Francisco. (A) the spatial distribution of noise; (B) the spatial distribution of thermal comfort.
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(Breiman, 2001). First, the RF algorithm extracts a certain proportion 
of samples from the original dataset to form the sample training and 
test sets. Second, when building the decision tree model, the RF 
algorithm generates a set of decision trees. Each set of decision trees 
is trained on a bootstrap sample from the original dataset, and the 
optimal node splitting variable is selected from a random subset of all 
independent variables. Finally, the RF model generates the final 
prediction by averaging all predictions of the basic CART, whose 
calculation principle is shown in the following formula:

 
f x E f x X f x x p x dxs s x s C s C C Cc
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where f  defines the function of the machine learning model, xs 
denotes the one or two features of interest, xc  is the set of other 

features, XC is used in the model, f xs s


� � is the partial dependence 

function for regression at point xs, f x xs C
m, � �� � is the model prediction 

for a specific mth sample whose feature values are determined by xs 
and xC, and M  is the number of samples.

RF models have a host of strengths. First, RF models do not 
prescribe some kind of correlation between the independent and 
dependent variables. Accordingly, this model can capture the potential 
complex nonlinear relationship between the two, which is impossible 
for traditional linear regression models to do. Second, the advantages 
of RF compared with other tree models (such as GBDT) are its 
insensitivity to outliers, ability to handle high-dimensional data, being 
less prone to overfitting, and being highly adaptable to the dataset: it 
can handle discrete and continuous data, and the dataset does not need 

to be normalized. In summary, we employed the RF model to further 
explore the complex relationship between the built environment and 
public emotions. Finally, two important data results are outputted: the 
Shapley value and the partial dependence graph (PDP). Shapley 
Additive Explanations (SHAP) is a representative interpretable model 
(Lundberg and Lee, 2017). SHAP can more intuitively represent the 
local positive or negative effect of all samples of a variable on the model 
compared with the previous variable importance ranking model and 
further decompose it into the interaction between the main local effect 
of the variable and other variables. Meanwhile, PDP can describe the 
degree of correlation change of variables in different value ranges 
without assuming a linear correlation (Yang et al., 2023), which helps 
in improving the interpretability of the model.

4 Results

4.1 Distribution of sentiment index

Figure 7 displays the distribution of the public sentiment index in 
San Francisco. As the figure shown, the sentiment index ranges from 
−0.29 to 0.37. Considering the threshold of the sentiment index between 
−1 and 1, the public sentiment index over all grid cells suggests limited 
variations. However, this is because we  took the mean value of the 
sentiment scores in each grid cell, which averaged out the extreme values. 
Nevertheless, we still observed significant spatial heterogeneity in its 
distribution across the grid cells. For better visualization and easier 
understanding, the sentiment index of the grids is divided into 10 classes 
with equal interval, a deeper blue color in a grid cell suggests people in 
the corresponding area tend to have more negative emotions, while a 
deeper red color in a grid cell indicates people in the corresponding area 
generate more positive emotions. Notably, the average sentiment index 
across the grids is 0.139, with a standard deviation of 0.09, indicating an 

TABLE 1 Descriptive statistics of the variables.

Variables Obs. Mean Std. Min Max

Dependent variables

Sentiment score 4,231 0.139 0.0909 −0.286 0.369

Independent variables

Macro-built environmental variables

Distance to sea 4,231 2597.996 1783.724 3.138 6614.741

Income 4,231 121107.63 58442.361 0 250,001

Population density 4,231 0.00779 0.00629 6.74E-06 0.0567

Road density 4,231 0.0137 0.00629 0.000474 0.0635

EH 4,231 0.948 0.442 0 2.034

Open space 4,231 0.133 0.291 0 1

Walkway density 4,231 0.0222 0.0124 0 0.0769

Micro-built environmental variables

Sky ratio 4,231 0.372 0.0621 0.0574 0.498

Green ratio 4,231 0.0745 0.0677 0 0.493

Building ratio 4,231 0.0939 0.0591 0 0.394

Noise 4,231 47.740 2.631 42.568 58.711

Thermal comfort 4,231 1.534 0.739 0.257 5.985
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overall positive emotions distribution in San Francisco (Table 1). Figure 7 
implies potential spatial correlations between the urban environmental 
factors and the public sentiment index. For example, the public sentiment 
index in the northern and northwestern areas of the city, including 
Marina, North Beach, and Civic Center, are higher than those in the 
central and southern regions. Additionally, areas near the coastline have 
a significantly higher sentiment index compared with the central areas 
farther from the coastline. Moreover, places abundant in vegetation 
resources exhibit a notably higher sentiment index than areas with 
limited vegetation resources. These findings suggest that people in areas 

with specific environmental conditions are more likely to have positive 
emotions than other areas. However, these findings might not 
be universally applicable because each city possesses its own distinct 
social, geographical, and economic attributes. For instance, a study 
conducted in Bhopal, India revealed that the distance to open spaces and 
the proximity to slums are the primary determinants of public emotion 
distribution based on sentiment analysis of Twitter data in that city 
(Khare and Chatterjee, 2023). Therefore, further studies are needed to 
elucidate the complex relationship between the environmental factors 
and the public emotions.

FIGURE 6

Spatial distribution of the macro-built environmental variables. (A) Open space; (B) EH the Shannon Diversity Index of land use; (C) Walkway density; 
(D) Road density; (E) Population density; (F) Income.
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4.2 Results of the OLS and RF models

Table  2 compares the results of two OLS regression models, 
namely, the model of all built environmental variables and the model 
of the micro-built environmental variables. The explanatory power of 
all built environmental variables for the public sentiment index is 
21.1%, with each variable having a VIF below 7.5, indicating no 
multiple collinearity issues between variables. Three micro-built and 
six macro-built environmental variables show significant correlations 
with the public sentiment index (p < 0.1). From the micro-built 
environment aspects, the green ratio index (Coef = 0.0592, p < 0.05) 
and building ratio index (Coef = 0.1298, p < 0.01) demonstrate a 
positive correlation with the sentiment index. Thermal comfort 
(Coef = −0.1185, p < 0.05) negatively affects the sentiment index, while 
the sky ratio and the noise exhibit no significant correlation with the 
sentiment index. In terms of the macro-built environment, the 
sentiment index is significantly positively correlated with the open 
space, the land use diversity, and the walkway density. Meanwhile, 
there is a significant negative correlation between the sentiment index 
and both road density and distance to the sea. Besides, this study also 
observed a negative correlation between income and the sentiment 
index, which differs from previous research (Ngamaba, 2016) and 
warrants further discussion.

After the exploration regression of OLS models, we import the 
sample data into the RF model for cross-validation and 
hyperparameter tuning to optimize the model’s performance. As a 
result, this study adopted the following hyperparameters to achieve a 
sound result without overfitting: 80% of the sample was allocated to 

the training set, while the remaining 20% was the test set. The number 
of learners (n_estimators) was 100, and the max_features was set to 3. 
Table 3 presents the model performance metrics, including MAE of 
0.039, MSE of 0.0027, MAPE of 1.092, and an R2 value of 0.6819. These 
results indicate that the model exhibits good accuracy and possesses 
predictive capabilities. Moreover, compared with the OLS models, the 
RF model significantly fits better with a higher R2, implying that there 
exists a complex relationship between the built environment variables 
and the sentiment index that OLS models cannot explain. Therefore, 
the SHAP and PDP analyses are conducted based on the RF model to 
further interpret the complex relationship between the built 
environment variables and the sentiment index.

4.3 Relative importance of the sentiment 
score

Figure 8 illustrates the relative importance and the ranking of the 
built environmental factors when predicting the sentiment index in 
the RF model, with all independent variables contributing to a total 
importance of 100%. On the left part of Figure 8, the variables are 
arranged in descending order based on the average value of the global 
feature importance, calculated by the weighted average of the absolute 
Shapley value of each sample. This average indicates the variable’s 
overall contribution to the model. The specific contribution values for 
each variable are listed in Table 4. The macro-built environmental 
factors account for 61.8% of the total, while the micro-built 
environmental factors contribute 38.2%. This significant difference in 

FIGURE 7

Spatial distribution of sentiment index.
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influence between the macro and micro factors highlights the essential 
role of both in affecting public emotions.

Among the macro-built environmental factors, the distance to sea 
is the most important variable, with an effect of 23.6% on predicting 
the sentiment index. This finding is consistent with the conclusions of 
previous studies (Brereton et al., 2008; Vlker and Kistemann, 2013), 
highlighting that people’s feelings of well-being is significantly related 
to the distance to beaches and other recreation places. San Francisco 
is surrounded by the sea on three sides and has rich natural resources, 
such as the ocean and green land. In comparison with other cities, 
people living in San Francisco are more likely to be affected by the 
richness of the natural environment in their living areas, which can 
also be confirmed from the spatial distribution of the sentiment index 
in Section 4.1. Additionally, income (16.9%), population density 
(7.7%), road density (4.8%), and land use diversity (4.3%) emerge as 
subsequent important macro-built environmental variables, with open 
space (1.7%) having a relatively lower importance. These conclusions 
align with expectations and existing research.

Streetview indicators suggest the most significant (16.7% overall) 
impact among the micro-built environmental variables. In the three 
streetscape indicators affecting the sentiment index, the building ratio 
index holds the highest importance (6.7%), followed by the sky ratio 
index (5.2%) and the green ratio index (4.8%). This finding 
underscores the significance of visual perception when studying and 

evaluating the micro-built environment. Noise is the second-most 
important factor, affecting the sentiment index by 14.2%. This notion 
supports the findings of Roe et al. (2020), indicating that the noise in 
the micro-built environment significantly influences human emotion 
and even mental health. Although thermal comfort is equally 
important (5.6%), it is lower than our expectations and the reports in 
relevant existing research. This discrepancy may be attributed to San 
Francisco’s pleasant climate, characterized by a minimal temperature 
variation throughout the year, resulting in a reduced impact of the 
temperature difference on the sentiment index compared with cities 
with significant temperature fluctuations.

On the right part of Figure 8, each dot represents a sample. The 
vertical axis represents different built environmental variables, while 
the x-axis shows the sample’s Shapley value of each variable (i.e., local 
effect). The color indicates the feature value’s size (red for high value, 
blue for low value, and purple for median value). The direction on 
both sides of the axis indicates the positive or negative effect. This 
summary chart partially reveals the strength, distribution, and 
direction of the impact. For instance, the red line on the left side of the 
distance to sea variable is longer than the blue line on the right side, 
indicating that high-value samples significantly influence people’s 
emotions more than low-value samples. Moreover, the Shapley value 
of high-value samples far from the coastline is mostly negative, while 
that of low-value samples is predominantly positive. This notion 
indicates that the high-value samples inhibit positive emotions, while 
the low-value ones promote positive emotions. In summary, a 
significant negative correlation exists between the distance to sea and 
the public sentiment index. Although this chart offers valuable 
information, it cannot precisely quantify the effect of different value 
ranges on the sentiment index. Therefore, this study employed the 

TABLE 3 Performance of the RF models.

MAE MSE MAPE R-squared Train

RF 0.039 0.0027 1.092 0.68 0.8

TABLE 2 Results of the OLS models.

BE OLS 
model

Micro-BE 
OLS model

Variables Coef. St. Er. p-Value VIF Coef. St. Er. p-Value VIF

Micro-BE variables

Noise 0.0028 0.009 0.756 1.376 0.0501 0.009 0.000 1.222

Thermal comfort −0.119*** 0.0011 0.000 1.260 −0.0487*** 0.011 0.000 1.176

Sky ratio 0.0030 0.024 0.898 7.264 −0.0212 0.025 0.402 7.015

Green ratio 0.0428* 0.025 0.086 7.327 −0.0385 0.026 0.145 7.240

Building ratio 0.1108*** 0.023 0.000 6.92 0.0993*** 0.024 0.000 6.896

Macro-BE variables

Distance to sea −0.1270*** 0.005 0.000 1.315

Income −0.0263*** 0.006 0.000 1.172

Population density 0.0157 0.014 0.274 1.355

Road density −0.1369*** 0.014 0.000 1.355

EH 0.0141** 0.007 0.032

Open space 0.0401*** 0.007 0.000 2.398

Walkway density 0.0289*** 0.009 0.001 1.363

R-squared 0.211 0.071

Log-likelihood 4646.8 4295.2

AIC −9,268 −8,576

***p < 0.01; **p < 0.05; *p < 0.1.
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local dependence chart to elucidate the influence of the local effect on 
sentiment index changes.

4.4 PDPs between the built environmental 
variables and the sentiment index

We calculated the interaction of each factor on the independent 
variable and visualized the complex nonlinear relationship between the 
two using PDPs, as shown in Figure 9. Each PDP corresponds to an 
independent variable of the built environment, demonstrating how the 

variable influences the sentiment index at different values. Most 
variables exhibit a nonlinear relationship with the sentiment index, with 
evident threshold effects, demonstrating that the correlation slope 
differs in various ranges. Among the macro-built environmental 
variables, the distance to sea and the road density both show a 
downward trend, indicating negative correlations with the sentiment 
index. When the distance to sea is greater than 2.8 km, the interaction 
effect becomes more prominent, suggesting a marginal effect of the 
distance to sea, namely, the shortening of the distance to sea will no 
longer bring additional impact on promoting individuals’ positive 
emotions when one already lives in proximity to a certain range (2.8 km) 

FIGURE 8

Relative importance of independent variables and a summary of local explanations.

TABLE 4 Relative importance of independent variables.

Categories Variable Sentiment score

Rank Relative importance (%) Total

Macro-BE variables

Distance to sea 1 23.6

Income 2 16.9

Population density 4 7.7

Road density 8 4.8

Walkway density 10 4.5

EH 11 4.3

61.8

Micro-BE variables

Noise 3 14.2

Building ratio 5 6.7

Thermal comfort 6 5.6

Sky ratio 7 5.2

Green ratio 9 4.8

Open space 12 1.7

38.2
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of coastlines. In the proportion of road density exceeding 0.015, the 
slope significantly increases, and the two variables are close to a negative 
linear relationship. This indicates that people may have a threshold to 
the acceptance of road density, when the road density surpasses the 
threshold, the corresponding transportation environment will have a 
more pronounced influence on emotions. The negative impact between 
the income and the sentiment index changes turns positive at $125,000. 
Below this threshold, the income and the sentiment index exhibit a 
negative correlation. This finding is inconsistent with common sense 
and previous research (Ball and Chernova, 2008). We found that the 
median household income in San Francisco is approximately $121,107, 
which is close to this threshold. Therefore, this inconsistency may 
be related to the corresponding nature of work at different income 
levels. To be specific, residents with an income below the average level 
are more likely to engage in more strenuous manual labor, and the 
increase in income usually means a longer work time or a larger 
workload, which causes more negative emotions. However, the incomes 
of the high-income individuals are not necessarily correlated with the 
work hours or workload, their income growth is more likely to be driven 
by favorable external factors, such as an upward trend in the stock 
market. Hence, the relationship between income and the sentiment 
index is complex, the income heterogeneity and inequality requires 
further discussion (Schurer and Yong, 2016). Besides, the appropriate 
high population density can enhance street vitality thus promoting the 
generation of positive emotions. The promotion effect sharply 
diminishes after the density exceeds 0.0035 person/m2, suggesting that 
overcrowding resulting from increased population density inhibits 
further improvement in positive emotions. Finally, the land use diversity 
is also positively correlated with the sentiment index. When the land use 
diversity index exceeds 0.38, mixed land use can significantly trigger 
more socioeconomic activities, promoting the generation of 
positive emotions.

In the micro-built environmental variables, the noise, the thermal 
comfort, and the sky ratio all show a trend of downward impact on the 
sentiment index, indicating that they are significantly negatively 
correlated with the sentiment index. The results about the noise and 
the thermal comfort are consistent with the study’s expectations. 
Specifically, the increase of the noise index (i.e., the noise decibel 

value) and the thermal comfort index (i.e., the difference from the 
comfortable temperature) would have a significant negative effect on 
the sentiment index. Unlike social, cultural, urban, and other factors, 
this negative effect is directly caused by physiological factors, but it is 
often disregarded in previous studies. The increase in the sky ratio 
index means a decrease in the proportion of other cityscape elements, 
such as buildings and green space, in city street views, the visual 
experience of desolation and emptiness can bring up negative 
emotions. On the other hand, the increase of greenery visibility in the 
environment can make people happy, which has been unanimously 
recognized by scholars (He et al., 2022).

4.5 Interaction effects among built 
environmental variables

This section delves deeper into the local interaction effects among 
built environmental variables through the PDP analysis. We computed 
the pairwise interaction effects between the built environment 
variables using the absolute value of Shapley. Figure 10 displays the 
groups of built environment variables that have instructive interaction 
effects. In each graph of Figure 10, the X-axis represents the variable 
of interest, and the right Y-axis suggests the variable that has the 
strongest interaction effect with the variable of interest. The color of 
the dots corresponds with the value of the right Y-axis. Meanwhile, the 
positive and negative Shapley values on the left Y-axis indicate the 
correlation between the dependent and independent variables. A 
Shapley value greater than zero indicates a synergistic effect, jointly 
promoting the increase of the dependent variable, while a value less 
than zero indicates an antagonistic effect. The distance on the Y-axis 
represents the degree of significance of the correlation.

The distance to sea exhibits the strongest interaction with the 
income variable. In areas located within 3 km from the coastline, an 
increase in the residents’ income significantly promotes the increase 
of the sentiment index. This suggests that low-income individuals 
might have poorer access to the surrounding beaches and recreation 
places compared with high-income individuals, possibly due to time 
and energy constraints for enjoying holidays and entertainment 

FIGURE 9

PDPs of the built environmental variables.
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among low-income groups. In terms of the building ratio index, a 
worth noting interaction effect is noise. When the building ratio index 
is between 0.04 and 0.1, and the noise levels are higher (above 49 dB), 
the two variables exhibit antagonism. However, when the building 
ratio index exceeds 0.2, the interaction between two variables turns 
into synergy. This may be because a low building ratio index can 
indicate a location in the suburbs or a high-quality low-density 
residential area where people are more sensitive to noise. In the central 
city area with a high building ratio index, people might get accustomed 
to noise and be less sensitive to it. Besides, high noise levels also occur 
in those vibrant city areas where various socioeconomic activities 
aggregate, thus promoting the generation of positive emotions. 
Furthermore, the synergistic effect between the thermal comfort index 
and the noise is strongest. Under appropriate thermal comfort 
conditions (the absolute difference from the comfortable temperature 
is less than 2°C) and a quiet acoustic environment (less than 47 dB), 
the two variables exhibit synergy. This finding aligns with existing 
research that indicates that a comfortable microenvironment 
contributes to physical and mental well-being (Nagano and Horikoshi, 
2005), thereby stimulating positive emotions. Finally, the synergistic 
effect between land use diversity and the distance to sea is strongest. 
For areas far from the coastline (over 4 km), a synergistic effect can 
be  observed when the land use diversity exceeds 0.7, while the 
opposite effect becomes antagonistic. This result is reasonable because 
areas far from recreational places tend to have less land use diversity. 
Higher land use diversity implies more diverse urban function and 
enables rich activities, thereby promoting positive emotions.

4.6 Hierarchical clustering analysis of 
sentiment index

The above-mentioned studies have demonstrated the complex 
relationship between the built environment and the semantic 
orientations of public emotion. Assessing the effect of built 

environmental variables on public emotion based on the Twitter 
sentiment analysis can help provide useful policy recommendations 
for promoting overall positive emotions at the city level. As 
previously mentioned, the distribution of the public sentiment index 
is determined by complex environmental factors, including spatial, 
environmental, and population differences. Hence, relatively general 
policy recommendations are not universal and cannot meet the 
detailed requirements of precisely promoting overall positive 
emotions in different regions. We  conducted the hierarchical 
clustering analysis on the grid cells based on the synergistic effects 
of the environmental variables (SHAP values; Xiao et al., 2021). As 
a result, the grid cells were classified into three clusters according to 
the Elbow Method, in grid cells of the same cluster, the built 
environment variables have similar local effects on the sentiment 
index. Among the three clusters, Cluster 1 exhibits the highest 
sentiment index values, while Cluster 2 shows the lowest (Figure 11). 
As shown in the right part of Figure 11, the number of grid cells in 
three clusters is 1,655, 582, and 1994 respectively, and they are sorted 
on the X-axis according to similarity. Blue represents negative 
Shapley values, which inhibit the sentiment index. Red represents 
positive Shapley values, which increase the sentiment index. The 
lower left part of Figure 11 also shows the spatial distribution of the 
three clusters. Cluster 2, which has significantly more negative 
Shapley values among the three groups, is located in the middle of 
the city. Grid cells of Cluster 1 with more positive Shapley values 
mainly locate at the periphery area of the city and close to the 
coastline, while the grid cells of Cluster 3 locate between the Cluster 
1 and 2. The three clusters also suggest an aggregation in spatial 
distribution as Figure 11 shows.

Given the different local effects of each cluster, targeted 
recommendations are necessary to promote positive emotions in the 
respective areas. In particular, Cluster 2 located in the central area 
has the lowest sentiment index among the three clusters and must 
be given priority consideration. The major environmental variables 
that decrease the sentiment index in Cluster 2 areas are the distance 

FIGURE 10

Local interaction effects among built environmental variables.
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to sea and the noise. Meanwhile, the important variables that can 
effectively stimulate positive emotions in Cluster 2 areas are the land 
use diversity, the green ratio index, the road density, and the thermal 
comfort index. This result suggests that the low sentiment index in 
Cluster 2 areas may be affected by issues related to their distance 
from the coastline, parks, and other recreational areas. Moreover, the 
sensitivity to noise and insufficiency in land use diversity and 
greenery are also major issues that inhibit positive emotions. 
Considering the nonlinear relationship and synergistic effect, we can 
propose targeted policy recommendations to promote positive 
emotions in various urban areas. For instance, in the cluster 2 region 
characterized by the most negative emotions, initiatives such as 
constructing parks, lakes, and other recreational spaces should 
be implemented. Furthermore, efforts should be directed toward 
enhancing the regional acoustic environment and minimizing both 
traffic and construction noise. The current land use diversity should 
be increased from 0.54 to 0.8 or above, and the green ratio index 
should be  increased from 0.011 to 0.07 or above to produce 
synergistic effects and promote positive emotion. Similarly, 
according to the local effects of environmental variables in Cluster 3 
areas, income inequality should be reduced and population density 
should be  increased, which will effectively help generate more 
positive emotions in the corresponding grid cells. Besides, the 
improvement in the micro-environment can also help Cluster 3 
areas effectively promote positive emotions, such as increasing the 
green land ratio, reducing the sky ratio, and enriching the visual 
diversity of the environment.

5 Conclusion and discussion

This study quantifies the positiveness of public emotions through 
Tweet sentiment analysis and explores the spatial relationship between 
the urban environment and public emotions taking San Francisco as 
a study case. From macro- and micro-built environment perspectives, 
this study provides a new viewpoint for exploring the complex 
relationship between the semantic orientation of public emotions and 
the urban environment.

 (1) This paper addresses several key points. Compared to previous 
studies focusing on the macro-built environment, our research 
demonstrated that micro-built environmental factors have a 
significant impact on the semantic orientation of public 
emotions. For example, visual and auditory experience can 
affect human perception of an environment and have a greater 
impact on people’s feelings in an environment compared with 
temperature perception, which is consistent with some existing 
studies (Jiang et  al., 2021). The finding emphasizes the 
importance of taking a micro-environment perspective when 
formulating policies to improve the urban environment. 
Traditional data collection methods, which primarily focus on 
the macro perspective, are not sufficient in capturing human 
perceptions of the urban environment. Nevertheless, with the 
advancement of technology and the widespread use of the 
internet, we  now have access to abundant social data that 
allows us to directly understand how people feel about the 

FIGURE 11

Sentiment index distribution clusters identified based on local effects.
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urban environment. Therefore, this study suggests that urban 
planners and policymakers should consider the micro 
perspective based on human feelings in urban environments 
when designing strategies and initiatives to create better urban 
environments. This approach is crucial for achieving detailed 
urban governance and prioritizing public well-being.

 (2) Combining Random Forest (RF) and SHAP algorithms, this 
study confirmed the nonlinear influence of the built 
environmental factors on the polarity of public emotions. For 
instance, we  observed a marginal effect in the relationship 
between residents’ proximity to the coastline and the sentiment 
index. As the distance from the coastline increases in residential 
areas, the sentiment index tends to decrease, signifying a more 
negative emotional state among residents–a trend that aligns 
with Brereton’s findings (Brereton et al., 2008). However, when 
this distance is less than 2.8 kilometers, the proximity to the 
coastline does not significantly impact the sentiment index. 
Namely, there is a noticeable threshold effect of urban 
environments on the promotion of public positive emotions. 
This result is instructive for it helps policymakers to choose the 
most effective environment improvement decision under finite 
financial budget based on the impact strength and usefulness 
range of different environment aspects.

 (3) This study discovered various synergistic effects among built 
environmental variables, thereby further revealing the intricate 
relationship between the built environment factors and public 
emotions. There is evident inequality in the promoting effects of 
built environment factors on public positive emotions, such as 
heightened sensitivity to noise among residents in suburban 
areas with lower building density. Moreover, this study also 
addressed various synergic relationships between urban 
environmental factors and asserted that considering the 
synergies between certain variables can maximize the promotion 
of positive emotions among the public. For instance, an 
appropriate thermal comfort environment (with an absolute 
temperature difference less than 2) and suitable acoustic 
conditions (with decibel levels less than 47) have the greatest 
impact on fostering positive emotions.

Accordingly, this study proposed a fine-grained urban 
environment governance approach that formulates customized 
strategies for promoting positive emotions in regions with different 
local synergistic effects (i.e., clustering based on SHAP values). Unlike 
those one-size-fits-all strategies, this approach enables urban planners 
and policymakers to consider the inequality in environmental 
perceptions and the interactions between environmental factors. For 
example, in the relative importance ranking in Section 4.3, we found 
that for the entire city of San Francisco, income ranked second in its 
impact on public emotions. However, in the hierarchical clustering 
analysis in Section 4.6, we discovered that in cluster 2, where public 
emotions were most negative, the impact of noise was more significant 
than income. We believe that this will aid in formulating more efficient 
and targeted strategies for urban improvement, thus holding practical 
significance in effectively enhancing residents’ well-being.

However, this study also has certain limitations. First, this study 
only focuses on the public emotion distribution in San Francisco, which 
is surrounded by three seas and has a pleasant climate, and the 
relationship between the environmental variables and the sentiment 
index may not necessarily be transferrable to other cities. For example, 

the distance to sea and the thermal comfort, which have already 
suggested an inconsistency with previous studies. Future research can 
explore the emotion distribution and its influencing factors in different 
types of cities. Second, the greater the size of the tweet data, the more 
valuable the results may be obtained. More samples (such as more than 
a few million data) may implicitly suggest deeper influencing 
relationships, such as spatiotemporal distribution differences in emotion 
among residents of varying genders, ages, and races. Finally, this study 
focuses on the nonlinear influence of micro- and macro-built 
environmental factors on the semantic orientations of public emotions 
and the synergistic effect between variables, paying limited attention to 
the spatial heterogeneity of emotion distribution. Despite the 
shortcomings, we hope that this empirical study can provide references 
and suggestions for relevant policymakers to reduce inequality and 
negative sentiment and achieve healthy and sustainable cities.
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