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Introduction: The field of electroencephalogram (EEG)-based emotion

identification has received significant attention and has been widely utilized

in both human-computer interaction and therapeutic settings. The process

of manually analyzing electroencephalogram signals is characterized by a

significant investment of time and work. While machine learning methods have

shown promising results in classifying emotions based on EEG data, the task of

extracting distinct characteristics from these signals still poses a considerable

di�culty.

Methods: In this study, we provide a unique deep learning model that

incorporates an attention mechanism to e�ectively extract spatial and temporal

information from emotion EEG recordings. The purpose of this model is to

address the existing gap in the field. The implementation of emotion EEG

classification involves the utilization of a global average pooling layer and a fully

linked layer, which are employed to leverage the discernible characteristics. In

order to assess the e�ectiveness of the suggested methodology, we initially

gathered a dataset of EEG recordings related to music-induced emotions.

Experiments: Subsequently, we ran comparative tests between the state-

of-the-art algorithms and the method given in this study, utilizing this

proprietary dataset. Furthermore, a publicly accessible dataset was included in

the subsequent comparative trials.

Discussion: The experimental findings provide evidence that the suggested

methodology outperforms existing approaches in the categorization of emotion

EEG signals, both in binary (positive and negative) and ternary (positive, negative,

and neutral) scenarios.

KEYWORDS

music-evoked emotion, emotion classification, electroencephalographic, deep

learning, transformer

1 Introduction

Emotion is intricately intertwined with all facets of the human experience and

action. According to Jerritta et al. (2011), it has an impact on human attitudes and

perceptions in both human-human contact and human-computer interaction. In the

realm of artistic expression, music holds a paramount position as a means to convey

and articulate human emotions. Music has been widely recognized as a means of

evoking distinct emotive states, leading to its characterization as the language of emotions

(Vuilleumier and Trost, 2015). In their investigations, Ekman (1999) and Gilda et al. (2017)

introduced six distinct and quantifiable emotional states, namely happiness, sadness,

anger, fear, surprise, and disgust, as the basis for implementing emotion identification.
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Over time, other emotional states have been included in this

collection, such as neutrality, arousal, and relaxation (Bong et al.,

2012; Selvaraj et al., 2013; Goshvarpour et al., 2017; Minhad

et al., 2017; Wei et al., 2018; Sheykhivand et al., 2020; Liu et al.,

2022). In the context of machine learning, the establishment of

distinct states for emotions serves as a significant framework

for effectively addressing the challenge of emotion recognition.

Numerous algorithms for music emotion identification based on

machine learning have been proposed in the literature, with

applications spanning composition and psychotherapy (Eerola and

Vuoskoski, 2012; Cui et al., 2022).

Typically, a conventional music emotion identification system

based on machine learning encompasses the subsequent stages:

• The collection of changes in emotions elicited by music is

facilitated via the utilization of physiological information

obtained by specialized sensors.

• The physiological samples that have been gathered are

subjected to a processing procedure in order to remove any

potential artifacts.

• The generation of representation pertaining to emotional

states is thereafter accomplished by extracting features from

the pre-processed data.

• By utilizing a classifier, it is possible to generate the

corresponding category of music emotion for a given sample.

Numerous instruments utilized in the acquisition of

physiological signals have been employed for the purpose of

emotion recognition. Various physiological signals have been

investigated for the purpose of emotion recognition. These

include, body movement (Zhang et al., 2021), facial expression

(Song, 2021), respiration (Siddiqui et al., 2021), galvanic skin

response (Kipli et al., 2022), blood volume pulse (Semerci et al.,

2022), skin temperature (Semerci et al., 2022), electromyography

(Xu et al., 2023), photoplethysmographic (Cosoli et al., 2021),

electrocardiogram (Hasnul et al., 2021), and EEG (Li et al., 2021).

The non-invasive nature, affordability, and ability to capture data

in real-time have contributed to the extensive utilization of EEG

in the field of emotion identification (Alarcao and Fonseca, 2017),

with a particular emphasis on music emotion categorization (Lin

et al., 2006).

Several studies have introduced different approaches for

emotion categorization utilizing EEG in the context of machine

learning. For example, the study conducted by Sammler et al.

(2007) examined the impact of valence on human emotions by

analyzing EEG data and heart rate concurrently. The present

study aimed to gather data on positive and negative emotions

elicited by EEG signals during the auditory experience of consonant

and discordant musical stimuli. Subsequently, the authors of the

study (Koelstra et al., 2011) made available a publicly accessible

dataset. The study conducted by Balasubramanian et al. (2018)

Abbreviations: EEG, Electroencephalographic; fMRI, functional magnetic

resonance imaging; LSTM, long short term; CNN, convolutional neural

network; ECG, electrocardiogram; EOG, electro-oculugram; GAP, global

average pooling; FC, fully connected; GPU, graphical processing unit; TP, true

positive; FN, false negative; TN, true negative; FP, false positive.

examined the emotional reaction to various types of music using

EEG data. The experimental findings have indicated that there is

an increase in theta band activity in the frontal midline region

when individuals are exposed to their preferred music. Conversely,

the beta band would have an increase in activity when exposed to

music that is perceived as undesirable. In their study, Ozel et al.

(2019) introduced a methodology for emotion identification that

involves the analysis of temporal-spectral EEG signals. Hou and

Chen (2019) derived a set of 27-dimensional EEG characteristics to

represent music-induced emotions, including calmness, pleasure,

sadness, and rage. Recently, Qiu et al. (2022) proposed an integrated

framework of multi-modal EEG and functional near infrared

spectroscopy to explore the influence of music on brain activity.

In addition, the utilization of deep learning-based architectures

in music emotion categorization has been widely adopted due to

the shown effectiveness of deep learning in different domains such

as machine vision and natural language processing. In their study,

Han et al. (2022) conducted a comprehensive review of the existing

literature pertaining to the assessmentmetrics, algorithms, datasets,

and extracted features utilized in the analysis of EEG signals

in the context of music emotion detection. In their publication,

Nag et al. (2022) introduced the JUMusEmoDB dataset. The

music emotion categorization challenge was addressed by the

authors through the utilization of Convolutional Neural Network

(CNN) based models, namely resnet50, mobilenet, squeezenet, and

their own suggested ODE-Net. Eskine (2022) conducted a study

examining the impact of music listening on creative cognition, a

phenomenon that has been empirically demonstrated to enhance

creative cognitive processes. The experimental findings provided

evidence that cognitive function exhibited an increase inside the

default mode. This was supported by the observed augmentation of

spectral frequency power in the beta range throughout the entire

brain, as well as in the theta range within the parietal region,

and in the gamma range across the entire brain. In their study,

Daly (2023) investigated the integration of functional magnetic

resonance imaging (fMRI) and EEG techniques to develop an

acoustic decoder for the purpose of classifying music emotions.

The study employed an EEG-fMRI combined paradigm to capture

neural responses during music listening among individuals. In

this study, a deep learning model known as the long short-term

memory (LSTM) was utilized to extract neural information from

EEG signals during music listening. The objective was to rebuild

the matching music clips based on this extracted information.

Both machine learning and deep learning techniques have

demonstrated promising results in the categorization of music-

evoked emotions. Nevertheless, there are a number of constraints

associated with these approaches that must be addressed prior

to their practical implementation in contexts such as medical

diagnosis, namely in the realm of emotion identification. One

aspect to consider is that the efficacy of machine learning

techniques is heavily dependent on the selection of appropriate

features. The task at hand continues to provide an unsolved

problem as the extraction and selection of these characteristics from

EEG data must be done in a manual manner. In addition, it should

be noted that manually-designed features possess subjectivity and

susceptibility to errors, perhaps rendering them unsuitable for the

specific requirements of music emotion identification. In contrast,

deep learning models like as CNNs have the ability to automatically
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FIGURE 1

The data collecting process for classifying music-evoked emotions using an EEG equipment based on the 10–20 system (Homan et al., 1987).

extract internal representations from EEG inputs. Nevertheless, it

is expected that the features derived from CNN models prioritize

the consideration of the overall connection between distant EEG

signals. This is due to the fact that CNN utilizes a local receptive

field approach in the process of extracting features.

The present work introduces a transformer architecture

for music-evoked emotion categorization, using a self-attention

mechanism. This model incorporates the self-attention mechanism

and positional embedding to describe the sequence of channels in

EEG data, drawing inspiration from the vision transformer’s work

(Dosovitskiy et al., 2020). The suggested transformer model has the

ability to extract both spatial representations, which correspond

to self-attention modules, and temporal representations, which

correspond to positional embedding. These representations are

derived from multi-channel EEG data acquired from subjects who

were listening to music. Furthermore, the transformer model that

has been introduced has the capability to extract the relationships

that exist among EEG signals across extended distances. In

order to assess the efficacy of the suggested methodology, the

experiments were conducted using both a publicly accessible

dataset (Koelstra et al., 2011) and a privately held dataset.

Furthermore, comparative tests were conducted to evaluate the

performance of the proposed model in comparison to state-of-the-

art algorithms. The experimental findings provide evidence that the

suggested methodology exhibits superior performance compared

to existing binary and ternary music emotion categorization

algorithms. The suggested model has a positive conclusion,

indicating its potential value as a tool for classifying music-evoked

emotions.

The main contributions of this work can be summarized as

follows:

• This is an early application of the spatial-temporal transformer

into the classification of music-evoked emotions.

• A novel dataset of music-evoked EEG signals was established.

• The proposed approach considers both the spatial connections

among a set of EEG channels and the temporal sequence of each

individual EEG signal.
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TABLE 1 The descriptions of the music excerpts used in this study.

ID Type Title Singer Durating (mm:ss)

1 Positive Honey Xinling Wang 03:33

2 Negative Advanced animals Wei Dou 04:38

3 Neutral Reiki meditation Reiki 06:03

4 Positive Wu Ha Weibo Pan 03:46

5 Negative In case SHIN 04:24

6 Neutral Calm dreams Sleep Tech 04:27

7 Positive In Spring Feng Wang 05:10

8 Negative Cloudy day Wenwei Mo 04:02

9 Neutral Let the sun shine Milk & Sugar 07:02

10 Positive As broad as the sea and sky Beyond 03:59

11 Negative Negative Black sun empire 05:44

12 Neutral Illusionary daytime Shirfine 04:10

13 Positive Invisible wings Shaohan Zhang 03:44

14 Negative Unfortunately, its not you Jingru Liang 04:45

15 Neutral Song from a secret garden Secret garden 03:33

• The performance of our approach surpassed the state-of-the-art

deep learning algorithms on both public and private datasets.

The subsequent sections of this article are structured as

follows: The methodology Section 2 contains information on the

acquisition of EEG signals during music listening as well as the

details of the presented deep learning model. Section 3 presents a

detailed account of the experimental procedures conducted in this

investigation, as well as a comprehensive comparison between the

existing state-of-the-art methods and the technique proposed in the

current study. This research concluded at Section 4.

2 Methodology

This section provides a comprehensive overview of the

data gathering process employed in the present investigation.

Furthermore, the subsequent sections of the article will present a

comprehensive analysis of the suggested transformer model.

2.1 Dataset and pre-processing

The initial step in this study included the creation of a private

dataset using multi-channel EEG, which involved the collection

of three distinct music-evoked emotions: positive, negative, and

neutral. The complete workflow is depicted in Figure 1.

During the course of data gathering, a total of 48 individuals

were registered, including 24 females and 24 men. The age range of

the participants was between 18 and 25 years, with an average age of

20.6. All individuals involved in the study were enrolled as students

at the same institution’s campus. Furthermore, it should be noted

that the individuals exhibit robust physical and mental well-being.

During the course of the project, the research team received advice

and supervision from two psychology specialists, one female and

one male, who possessed significant expertise in the field.

To ensure the consistency of the data gathering process, the

following challenges were proactively addressed. Additionally, all

participants were provided with instructions to thoroughly review

the handbook and become acquainted with the workflow of

EEG signal collecting. It should be noted that the manual has

identified and emphasized the entries that are prone to errors,

with the intention of facilitating the reader’s attention toward

the vital operations. Subsequently, the participants were requested

to complete a questionnaire pertaining to their personal details.

Subsequently, the participants were provided with instructions

and guidance from the specialists in order to properly don the

EEG electrode caps. Subsequently, the specialists would assess

the adequacy of the EEG electrodes’ contact and ensure that

no detachment has occurred. Furthermore, the participants were

instructed by the experts to initiate the signal gathering procedure

by hitting the designated buttons. In addition, the EEG collection

device utilized in the study was the Biosemi ActiveTwo system. The

system employs the international 10–20 system, consisting of 32

channels, notably Fp1, AF3, F3, F7, FC5, FC1, C3, T7, CP5, CP1,

P3, P7, PO3, O1, Oz, Pz, Fp2, AF4, Fz, F4, F8, FC6, FC, Cz, C4, T8,

Cp6, Cp2, P4, P8, PO4, and O2. Additionally, the sampling rate is

set at 512Hz.

During the process of data collection, each participant was

provided with instructions to listen to a total of 15 music

clips. These clips were categorized into three distinct emotional

categories, namely positive, negative, and neutral, with each

category consisting of five clips. To note that the categories of

these clips were determined by three psychological experts using

a majority voting mechanism. The specifics about the music may

be found in Table 1. The initial duration of the music clips varies

among them. Nevertheless, the participant received a standardized

1-min audio clip for each piece of music. Each participant
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FIGURE 2

The architectural design of the proposed transformer model. The

symbol L is used to describe the number of encoder blocks in the

proposed model. The proposed model has several variants, with L(.)

being either 12, 18, or 24. The abbreviation GAP is used to denote

global average pooling, while FC represents fully-connected.

was instructed to listen to the music clips in a randomized

sequence.

The subsequent section presents a comprehensive

overview of the data collecting procedure involved

in capturing EEG signals related to music-induced

emotions.

(1) The participants were provided with instructions to achieve

a state of calmness, following which the experts started the

marking process to denote the commencement of each EEG

recording. The duration of this process is expected to be 5

seconds.

(2) In each 75-second interval, the participants would undergo a

15-second pause to transition between music clips, followed

by a 60-second period of actively listening to the music clip.

Simultaneously, the experts would provide guidance to the

participants on how to minimize superfluous bodily motions.

(3) Following the auditory experience, the individuals were

directed by the experimental personnel to assign a value to

the musical composition, with positive being denoted as +1,

negative as –1, and neutral as 0. The duration of this procedure

should not exceed 15 seconds, during which it is utilized for the

purpose of transitioning the music.

FIGURE 3

The encoder block utilized in the transformer model under

consideration. The acronym MSA refers to multi-head self attention.

(4) The participants proceeded with the auditory experience by

sequentially engaging with the subsequent musical excerpt

until the entirety of the 12 excerpts had been presented.

So as to guarantee the optimal state of the participants, the

collection of music-evoked emotion EEG samples was limited to

the time periods of 9 a.m. to 11 a.m. and 3 p.m. to 5 p.m. In

order to mitigate interference from many sources such as heart

rate, breathing, electrocardiogram (ECG), and electro-scalogram

(EOG), the participants were given instructions to cover their eyes

while the recording procedures were being conducted.

The dataset contains a total of 43,200 (48× 15× 60 = 43, 200)

seconds of EEG signals, with each second including 32 channels.

Furthermore, the initial samples were partitioned into the epochs

of 1 second duration, each consisting of 60, 000 data points. To

note that there were still overlapping epochs in the samples since

the trivial errors are difficult to avoid due to the human reaction

times. Given the absence of any imbalance issue within the dataset,

it can be observed that each category of music emotion EEG

signals is comprised of an equal number of samples, specifically

20,000 epochs. Hence, in the context of binary classification, namely

distinguishing between positive and negative classes, the proposed

model was trained using a dataset including 40,000 epochs as input

samples. In contrast, in the context of the ternary classification job,

the entirety of the 60,000 epochs were utilized as the input. It should
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FIGURE 4

The MLP block used in the proposed transformer model. GELU

denotes the activation function (Lee, 2023).

be noted that the presence of overlapping epochs has the potential

to somewhat mitigate over-fitting.

In the pre-processing phase, the acquired EEG signals were

subjected to a Notch filter (Serra et al., 2017) in order to

remove the 50 Hz components originating from the power supply.

Subsequently, a first-order low-pass filter with a frequency range of

0.5 to 45 Hz was utilized. Subsequently, the electroencephalography

(EEG) data underwent a normalization process resulting in a range

of values between 0 and 1.

2.2 The proposed transformer architecture

The transformer model presented in Figure 2 draws inspiration

from the architecture of the vision transformer (Dosovitskiy et al.,

2020). The suggested transformer model comprises three main

components: (1) a linear embedding layer, (2) an encoder block,

and (3) amultiple-layer perception (MLP) block. Initially, the linear

embedding unit was utilized to turn a sequence of EEG data into

a fixed-length input for the suggested transformer model. The

flattened embedding includes the class token of the music emotion

for each series of EEG data. In addition, the linear embedding is

constructed by including the positional embedding, which encodes

the sequential order of an individual EEG signal inside a sequence

of EEG signals. It should be noted that every input sequence of

EEG data pertains to the identical category of emotion elicited by

music. Furthermore, the pivotal self-attention module (Fan et al.,

2021; Liu et al., 2021; Wang et al., 2021), which aims to reveal the

TABLE 2 The proposed transformer model exhibits binary and ternary

classification outcomes (average values and standard deviations).

Number of
classes

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Binary 96.85 (1.73) 95.17 (1.68) 95.69 (2.01)

Ternary 95.74 (2.32) 94.32 (1.97) 95.25 (1.69)

connections among distant EEG data, is located within the encoder

block. In order to create a cohesive encoder module, it is necessary

for the encoder block to be iteratively repeated. In addition to the

self-attention layer included in each encoder block, there are many

additional sorts of layers, namely layer normalization, dropout,

and MLP block. The generation of representations for music

emotion EEG signals may be achieved by the utilization of stacked

transformer encoder blocks. Ultimately, the use of the MLP block

was implemented to get the classification result by integrating a

global average pooling (GAP) layer and a fully connected (FC) layer,

commonly referred to as a linear layer. The transformer model

under consideration has the potential to significantly expand the

scope of receptive fields in comparison to designs based on CNNs.

Additionally, the recovered representation from the multi-channel

EEG data encompasses both local information pertaining to a series

of signals and the global association between signals that are far

apart.

In the proposed transformermodel, the input sequences consist

of individual EEG signals, each spanning a duration of 1 second and

including 30 channels. Subsequently, the EEG signal sequence was

flattened and transformed into a vector. In addition, it should be

noted that the encoder block is iterated a varying number of times

(12, 18, or 24) across different versions of the proposed transformer

model. Furthermore, the structural composition of this encoder

block is illustrated in Figure 3.

As seen in Figure 3, the encoder block has many components,

namely layer normalization, MSA, dropout, and MLP block. The

study did not include a comprehensive examination of the MSA

unit due to its extensive coverage in existing studies (Vaswani

et al., 2017; Dosovitskiy et al., 2020). The unit consisting of H

heads was employed to assess the similarity between a query

and its associated keys based on the assigned weight for each

value (Vaswani et al., 2017). Furthermore, the utilization of the

Layer normalizing module is employed to calculate the mean and

variance required for normalizing from the entirety of the inputs to

the neurons within a layer throughout a singular training instance

(Ba et al., 2016). In this study, the dropout layer (Choe and

Shim, 2019) is utilized as a regularization technique to mitigate

the risk of overfitting. The architecture of the MLP block is seen

in Figure 4.

The proposed technique allows for the formulation of the

process of music emotion categorization in Equation 1–4:

z0 = [xclass; x
1
pE; x

2
pE; ...; x

N
p ]+ Eposition, (1)

where the variable z0 represents the output of the linear embedding

layer. In this context, N = 30 represents the number of channels
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used as input. The variables xclass and Eposition refer to the class token

and positional embedding, respectively.

z
′

l = MSA(LN(zl−1))+ zl−1, (2)

zl = MLP(LN(z
′

l ))+ z
′

l , (3)

y = LN(z0L), (4)

where the layer normalization unit is denoted

as LN(.), where zl represents the output of

layer l, and y represents the output classification

outcome.

3 Experimental results

3.1 Implementation details

The transformer model described in this study was constructed

using the PyTorch framework (Paszke et al., 2019). The

computational resources employed for the implementation were

four NVidia RTX 3080 Graphical Processing Units (GPUs) with a

total of 64 GB RAM. The best parameters of the proposed network

were discovered using a trial and error technique. The learning rate

is configured to be 0.004, accompanied by a weight decay of 0.05.

Subsequently, a 10-fold cross-validation procedure was employed

to assess the resilience of the suggested methodology. Initially, the

input EEG data were partitioned into ten equitably sized groups.

During each iteration, one out of the 10 groups was designated as

the testing set, while the remaining nine groups were utilized as the

FIGURE 5

The suggested model’s inaccuracy in (Top) binary classification and (Bottom) ternary classification.
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TABLE 3 Binary classification comparison between the state-of-the-arts

and ours.

Method Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

U-Net

(Ronneberger et al.,

2015)

88.56 88.71 89.05

Mask R-CNN (He

et al., 2017)

87.43 86.39 86.56

ExtremeNet (Zhou

et al., 2019)

89.49 89.87 88.51

TensorMask (Chen

et al., 2019)

90.56 90.18 91.27

4D-CRNN (Shen

et al., 2020)

92.57 92.32 93.08

FBCCNN (Pan and

Zheng, 2021)

92.53 91.68 91.24

MTCNN (Rudakov,

2021)

93.02 93.55 94.17

SSGMC (Kan et al.,

2022)

94.82 94.18 94.23

MViT (Fan et al.,

2021)

90.42 91.39 90.72

PVT (Wang et al.,

2021)

92.27 91.15 92.01

PiT (Heo et al.,

2021)

93.53 92.85 93.78

Swin Transformer

(Liu et al., 2021)

95.32 94.64 94.37

GPViT (Yang et al.,

2022)

96.38 94.88 95.27

The proposed

approach

96.85 95.17 95.69

training set. Hence, the mean result of 10 iterations was utilized as

the ultimate output.

Furthermore, the assessment measures utilized in the

experiments involved sensitivity, specificity, and accuracy. The

mathematical formulation of these metrics is elucidated in in

Equations 5–7.

Sensitivity =
TP

TP + FN
, (5)

Specificity =
TN

TN + FP
, (6)

Accuracy =
TP + TN

TP + FN + TN + FP
, (7)

where TP, FN, TN, and FP represent the terms true positive, false

negative, true negative, and false positive, respectively.

3.2 Outcome of the proposed approach

Table 2 presents a summary of the average values and standard

deviations (SD) obtained from the proposed method in the

TABLE 4 Ternary classification comparison between the state-of-the-arts

and ours.

Method Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

U-Net

(Ronneberger et al.,

2015)

85.52 83.86 84.20

Mask R-CNN (He

et al., 2017)

85.24 84.21 85.41

ExtremeNet (Zhou

et al., 2019)

86.28 83.17 84.53

TensorMask (Chen

et al., 2019)

88.32 86.51 87.02

4D-CRNN (Shen

et al., 2020)

91.57 92.24 91.89

FBCCNN (Pan and

Zheng, 2021)

91.27 91.38 92.24

MTCNN (Rudakov,

2021)

92.21 92.19 93.43

SSGMC (Kan et al.,

2022)

92.18 91.57 94.28

MViT (Fan et al.,

2021)

92.15 91.93 92.78

PVT (Wang et al.,

2021)

91.23 90.46 91.37

PiT (Heo et al.,

2021)

92.43 92.14 91.62

Swin transformer

(Liu et al., 2021)

92.57 91.38 93.27

GPViT (Yang et al.,

2022)

93.14 92.25 93.18

The proposed

approach

95.74 94.32 95.25

binary classification task, specifically in terms of average accuracy,

sensitivity, and specificity. The average accuracy was found to

be 96.85%, while the sensitivity and specificity were measured

at 95.17% and 95.69% respectively. Furthermore, in the ternary

categorization, the outcome rates were recorded as 95.74%, 94.32%,

and 95.25%.

Furthermore, the loss curves of the suggested methodology

throughout both the training and validation procedures were

illustrated in Figure 5 It should be noted that the results presented

in Figure 5 only include the initial 100 iterations of both the training

and validation processes.

3.3 Comparison experiments between the
state-of-the-arts and the proposed
approach

To assess the efficacy of our suggested technique for music-

evoked emotion categorization, we conducted comparative tests

between our work and the state-of-the-art algorithms. Tables 2–4

present a comparative analysis of the current state-of-the-art

deep learning models and our proposed approach. The proposed
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TABLE 5 Comparison between the state-of-the-arts and ours on DEAP

dataset (Koelstra et al., 2011).

Method Detail Accuracy

Valence Arousal

3DCNN (Shawky

et al., 2018)

CNN 88.52 89.36

CNN-LSTM (Yang

et al., 2018)

LSTM 92.43 89.51

SAE-LSTM (Xing

et al., 2019)

LSTM 86.32 81.27

Multi-column CNN

(Yang et al., 2019)

CNN 93.81 94.15

4D-CRNN (Shen

et al., 2020)

CRNN 95.34 93.62

FGCCNN (Pan and

Zheng, 2021)

CNN 91.72 90.28

MTCNN (Rudakov,

2021)

CNN 95.34 95.49

GANSER (Zhang

et al., 2022)

GAN 94.18 93.58

SSGMC (Kan et al.,

2022)

Contrastive

learning

96.12 94.62

The proposed

approach

Transformer 97.41 97.02

methodology demonstrated superior performance compared to the

current leading method. To note that we did not take the traditional

machine learning models (Qiu et al., 2022) into the comparison since

they usually relied on manually-designed features. The comparison

experiments included the following models: U-Net (Ronneberger

et al., 2015), Mask R-CNN (He et al., 2017), ExtremeNet (Zhou

et al., 2019), TensorMask (Chen et al., 2019), 4D-CRNN (Shen

et al., 2020), FBCCNN (Pan and Zheng, 2021), MTCNN (Rudakov,

2021), SSGMC (Kan et al., 2022) for the CNN-based models, and

MViT (Fan et al., 2021), PVT (Wang et al., 2021), PiT (Heo et al.,

2021), Swin Transformer (Liu et al., 2021), and GPViT (Yang et al.,

2022) for the transformer-based models.

In order to conduct a comprehensive evaluation of the

proposed approach, we proceeded to assess its performance

alongside several state-of-the-art algorithms (Shawky et al., 2018;

Yang et al., 2018; Xing et al., 2019; Yang et al., 2019; Shen et al.,

2020; Pan and Zheng, 2021; Rudakov, 2021; Kan et al., 2022; Zhang

et al., 2022) using the publicly accessible DEAP dataset (Koelstra

et al., 2011). The results of this evaluation are presented in Table 5.

4 Discussion

Based on the empirical findings, it can be concluded that

this approach exhibits greater efficacy compared to the existing

state-of-the-art algorithms. It is worth mentioning that the

comparative trials encompassed both CNN-based and transformer-

based models. In contrast to CNN-based models, the suggested

model has the capability to extract global connections between

long-range multi-channels in EEG data, in addition to the local

TABLE 6 The impact of H and L on the performance of the proposed

model in binary classification.

Model Number of
heads (H)

Number of
layers (L)

Accuracy
(%)

M_4_4 4 4 90.08

M_4_8 4 8 90.37

M_8_4 8 4 91.15

M_8_8 8 8 91.63

M_8_12 8 12 93.35

M_12_12 12 12 93.21

M_16_12 16 12 94.16

M_8_18 8 18 94.58

M_12_18 12 18 95.39

M_16_18 16 18 95.65

M_8_24 8 24 96.28

M_12_24 12 24 96.12

M_16_24 16 24 96.53

The bold value represents the best performance of accuracy with 16 heads and 24 layers.

information already present in the EEG signals. In contrast to

transformer-based models (He et al., 2017; Chen et al., 2019; Zhou

et al., 2019; Wu et al., 2020; Fan et al., 2021; Heo et al., 2021;

Wang et al., 2021), the proposed approach has been specifically

optimized to accommodate the unique characteristics of multi-

channel EEG signals. For instance, the linear embedding layer of

the proposed approach has been tailored to effectively align with the

structural properties of multi-channel EEG signals. Furthermore,

the outcomes shown in the ablation research also exhibited the

efficacy of self-attention modules and encoder blocks.

4.1 Ablation study

As demonstrated in Table 6, the optimal configuration of the

primary hyper-parameters was determined through comparison

experiments. These experiments involved testing different

combinations of the number of heads (H) in the MSA module and

the number of transformer encoder layers (L) on a dataset that was

manually collected and constituted 50% of the total dataset. The

trials solely included binary music emotion categorization in order

to streamline the ablation study procedure.

Therefore, the suggested model exhibits an ideal configuration

while utilizing 16 heads (H = 16) and 24 layers (L = 24).

4.2 Limitations and future research

In addition, this study possesses certain limitations in addition

to its contributions. The tests solely focused on the binary and

ternary classification problems. In order to enhance the evaluation

of the proposed approach, it is recommended to integrate the

categorization of other types of emotions and employ a multi-

label classification methodology. Meanwhile, this study adopted an
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offline learning strategy since the vision transformer-based models

suffering from high resource occupancy. In addition, this study did

not take cross-subject emotion recognition (He et al., 2021; Pan

et al., 2023) into consideration, which may affect the applicability

and universality of this study.

In subsequent investigations, further electroencephalography

(EEG) data pertaining to the elicitation of emotions through music

will be gathered. Furthermore, the suggested methodology holds

potential for the identification of emotions across a wide range of

applications.

5 Conclusion

The present work introduces a transformer model as a

means of classifying music-evoked emotions. The model under

consideration consists of three distinct phases, namely linear

embedding, transformer encoder, and MLP layer. The purpose

of the first phase is to generate flattened input features for the

proposed model. These features are aimed to extract both local

and global correlations between the multi-channel EEG data.

Additionally, the MLP blocks aim to enhance the classification

outcome. This study presents an initial implementation of a

vision transformer-based model for the purpose of music emotion

identification.
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