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Amyotrophic lateral sclerosis (ALS) is an idiopathic, fatal, and fast-progressive 
neurodegenerative disease characterized by the degeneration of motor 
neurons. ALS patients often experience an initial misdiagnosis or a diagnostic 
delay due to the current unavailability of an efficient biomarker. Since impaired 
speech is typical in ALS, we hypothesized that functional differences between 
healthy and ALS participants during speech tasks can be explained by cortical 
pattern changes, thereby leading to the identification of a neural biomarker 
for ALS. In this pilot study, we  collected magnetoencephalography (MEG) 
recordings from three early-diagnosed patients with ALS and three healthy 
controls during imagined (covert) and overt speech tasks. First, we computed 
sensor correlations, which showed greater correlations for speakers with ALS 
than healthy controls. Second, we compared the power of the MEG signals in 
canonical bands between the two groups, which showed greater dissimilarity 
in the beta band for ALS participants. Third, we  assessed differences in 
functional connectivity, which showed greater beta band connectivity for ALS 
than healthy controls. Finally, we  performed single-trial classification, which 
resulted in highest performance with beta band features (∼ 98%). These findings 
were consistent across trials, phrases, and participants for both imagined and 
overt speech tasks. Our preliminary results indicate that speech-evoked beta 
oscillations could be a potential neural biomarker for diagnosing ALS. To our 
knowledge, this is the first demonstration of the detection of ALS from single-
trial neural signals.
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1 Introduction

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, causes rapidly 
progressive upper and lower motor neuron degeneration, thereby disrupting the ability of the 
brain to control voluntary motor function leading to dysphagia (disordered swallowing), 
dysarthria (disordered speech), impaired limb function, poor respiratory function, and 
ultimately fatality (Kiernan et al., 2011). The disease is categorized by significant across-patient 
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heterogeneity in onset region, pattern, and rate of progression (Ravits 
et  al., 2007). There is currently no universal standard for early 
detection or for monitoring the progression of ALS (Nzwalo et al., 
2014; Malekzadeh, 2021). Due to the lack of a biomarker, patients with 
ALS are often initially misdiagnosed (up to 45% of the time) and their 
diagnosis can be delayed up to 12 months (Iwasaki et al., 2001).

Regardless of the focality of motor neuron degeneration at clinical 
onset, progressive bulbar motor deterioration is common in most 
patients with ALS, which leads to dysarthria (Green et al., 2013). Thus, 
the identification of a speech-motor biomarker for early detection of 
ALS has been an active area of research recently (An et al., 2018; Vieira 
et al., 2019; Stegmann et al., 2020). The degree to which clinicians can 
identify speech impairments in ALS using perceptual characteristics 
of speech (e.g., listening for deviations in articulation, voice quality, 
resonance, and prosody) is only moderately reliable (Allison et al., 
2017). Early detection and monitoring of the progression of bulbar 
symptoms based on behavioral observations remain limited because 
oral-motor functional changes may not occur until muscle weakness 
progresses to a critical level (DePaul and Brooks, 1993; Green et al., 
2013). However, physiologically, these subtle symptoms could 
be identified earlier by quantifying the neural activity pattern changes 
during speech tasks.

There have been intense investigations for diagnostic and 
prognostic biomarkers in the brain that can provide evidence for ALS 
mechanisms and thus novel targets for therapeutic intervention. 
Studies using functional magnetic resonance imaging (fMRI) have 
shown evidence of increased functional connectivity in ALS patients 
(Konrad et al., 2002; Lulé et al., 2007; Verstraete et al., 2010; Agosta 
et al., 2013). Similar findings have been reported using resting-state 
electroencephalography (EEG) (Iyer et al., 2015; Fraschini et al., 2016; 
Dukic et al., 2021) and magnetoencephalography (MEG) (Proudfoot 
et al., 2018; Sorrentino et al., 2018). Using MEG during a spinal motor 
task, another study demonstrated intensified cortical beta 
desynchronization followed by a delayed rebound for participants 
with ALS (Proudfoot et  al., 2017), which hinted that beta-band 
oscillation may be used as an early distinguishing cortical feature for 
ALS. Such prior neuroimaging studies have provided tremendously 
impactful insights toward a better understanding of the major 
mechanisms of neurodegeneration due to ALS in the attempt to 
identify a neural biomarker. However, most neuroimaging studies 
have focused on group-level connectivity analyses during resting-state 
or spinal motor tasks. How cortical activation is impacted by ALS 
during speech-motor tasks has not been investigated. In addition, it is 
unknown if single-trial detection of ALS from neural signals is 
possible. In theory, single-trial ALS detection could instantly diagnose 
ALS in real-time thereby strengthening medical treatments for 
ALS. Classifying ALS on a single-trial basis involves training a 
machine learning model with multiple samples/trials of a quantifiable 
objective marker that can efficiently predict a sample/trial as ALS or 
healthy after proper training. Single-trial detection using machine 
learning has shown great potential in several neural disorders 
including major depressive disorder (MDD) (Liu et al., 2022), autism 
spectrum disorder (ASD) (Ezabadi and Moradi, 2021), post-traumatic 
stress disorder (PTSD) (Georgopoulos et al., 2010), schizophrenia (Xu 
et al., 2013), amongst other neurologic disorders (Aoe et al., 2019).

In this study, we investigated cortical differences between healthy 
and ALS brain signals during overt (involving bulbar motor 
coordination) and imagined speech (without motor involvement). The 

assumption is that there is a cortical disturbance during motor 
functions in the early stage of ALS which has been shown in previous 
studies (Kew et al., 1993; Mills and Nithi, 1997; Geevasinga et al., 2016; 
Shibuya et al., 2016; Eisen et al., 2017). Here, we used speech-motor 
tasks to trigger the disturbance and then detect the presence of ALS 
using machine learning. To our knowledge, this is the first study to use 
functional neuroimaging data during speech tasks for ALS detection. 
We  examined cortical differences between healthy controls and 
patients with ALS using the following approaches: (1) signal 
correlation across sensors, (2) band power distance estimation for 
individual neural oscillations, (3) functional connectivity analysis, and 
(4) single-trial classification of ALS and healthy samples using 
machine learning. These approaches have been widely used in the 
literature to examine cortical differences between neurotypical 
controls and patients with neural disorders (Bob et al., 2010; Proudfoot 
et al., 2017, 2018; Aoe et al., 2019). Using these approaches, we found 
significant cortical differences between patients with ALS and healthy 
controls, particularly in the beta band MEG activity, which we detected 
at the single-trial level.

2 Materials and methods

2.1 Data collection

This study included data collected from three healthy volunteers 
(1 female; 52 ± 14 years) and three patients with ALS (1 female; 
52 ± 12 years); see Table 1. Informed consent in accordance with the 
ethical committee of the participating institutions was collected from 
all the participants prior to data collection. The patients with ALS were 
in the early to mid-stage of the disease. A certified neurologist 
confirmed the diagnosis of ALS (one bulbar onset, one spinal onset, 
and one had generalized ALS symptoms). All the patients had a mild, 
but noticeable speech impairment (Table 1). Speech intelligibility was 
auditorily evaluated by a speech-language pathologist trainee who is 
not familiar with these patients. A commonly used software, Sentence 
Intelligibility Test (SIT), was used in this procedure. SIT first generated 
a randomized list of sentences with an increasing length from 5 to 15 
words (Yorkston et al., 1996). The listener typed down what they heard 
from the patient’s recording in the SIT software. The software then 
automatically calculated the percentage of correct words (speech 
intelligibility) as well as speaking rate.

MEG (Neuromag TRIUX; MEGIN, LCC) was used to collect the 
neuromagnetic signals from the participants (Figure 1). This device 
has 306 SQUID sensors (204 gradiometers and 102 magnetometers). 
A magnetically shielded room (MSIR) housed the MEG machine to 
restrict external magnetic noise. A digital light processing projector 
was used to present the visual stimuli approximately 90 cm from the 
subjects on a back projection screen. The stimuli were generated by a 
computer running the STIM2 software (Compumedics, Ltd.). Two 
pairs of bipolar EEG electrodes were used to record the 
electrocardiogram (EKG) and the electrooculogram (EOG) signals. A 
custom air-pressure transducer located outside the MSR and 
connected to the analog input of the MEG system was used to measure 
jaw displacement during the tasks. An air-bladder was fixed under the 
subjects’ chin and relayed jaw movement (via pressure on the bladder) 
to the transducer via tubing connected to the air-inlet on the sensor. 
Voice data was recorded using a standard built-in microphone 
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connected to a transducer placed outside the MSR. Both voice and jaw 
movement analog signals were then digitized by feeding into the MEG 
ADC in real-time as separate channels. Five commonly used phrases 
were used as stimuli for the speech tasks: 1. Do you understand me; 2. 
That’s perfect; 3. How are you? Good-bye; 5. I  need help. The task 
phrases came from phrase lists commonly used in alternative 
augmented communication (AAC) devices and were selected to 
be more familiar to the patients and easier to recite than novel speech 
(Beukelman et  al., 1984; Dash et  al., 2020). The experiment was 
designed as a time-locked delayed overt reading task where each trial 
was time-locked to stimulus onset (display of phrases on the screen). 
The phrases were individually presented for 1 s in a pseudorandomized 
order followed by a 1 s fixation cross. The subjects were previously 
instructed to think of speaking the phrase without mouthing during 
the fixation and to overtly articulate the phrase at their normal 
speaking rate and loudness when the fixation disappeared. The 
subjects had 3 s to perform the articulation before the next stimulus 
trial. Each participant completed 100 trials per phrase. To overcome 
potential difficulties verifying the timing of imagined speech (Cooney 
et  al., 2018), we  designed our protocol to collect both speech 
imagination and speech production consecutively, in the same trial 
and under time constraints.

The MEG data were recorded with 4 kHz sampling frequency with 
an online filter of 0.3–1,330 Hz. The data were low pass filtered to 

250 Hz with a 4th order Butterworth filter and resampled to 1 kHz. 
Power line noise (60 Hz) and harmonics were removed with a 2nd 
order infinite impulse response (IIR) notch filter. Only gradiometer 
sensors were used for analysis. From the 204 gradiometer sensors, it 
was observed that four sensors exhibited substantial channel noise 
during the data collection process from various participants. 
Additionally, in certain cases, one or two additional sensors displayed 
irregularities resembling artifacts. Consequently, a total of eight 
sensors were deemed unsuitable and excluded from the analysis. The 
discarded sensors were the same for both ALS and healthy data. 
Therefore, the analysis was conducted using data exclusively from 196 
sensors. Independent component analysis (ICA) was used to remove 
artifacts (cardiac activity, eye blinks, and saccades) from the data. The 
continuous MEG signals were epoched into trials from −0.5 to +4.5 s 
centered at stimulus onset. Covert speech segment was parsed as the 
data from 1 s to 2 s and overt speech segment was parsed as the data 
from 2 s to 4.5 s of each trial. By visually inspecting the data, trials were 
discarded if they contained high-amplitude artifacts or if the 
participant did not comply with the paradigm timing (e.g., the 
participant spoke before being provided the cue to articulate). Jaw 
movement data during the covert speech segment was used to verify 
that the participants were not moving their articulators during the 
covert speech task. Jaw movement data were not used for analysis in 
this study. Following preprocessing, a single participant’s dataset 

TABLE 1 Demographics of ALS patients.

Participant Gender Age (years) Speech intelligibility (%) Speaking rate (words/min)

A1 M 56 71.81 116.83

A2 F 39 100.00 179.45

A3 M 61 92.00 132.53

SI: Speech Intelligibility; SR: Speaking rate; wpm: words per minute.

FIGURE 1

The MEG scanner and a subject with ALS.
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contained only 63 valid trials for a particular phrase. Therefore, to 
ensure an impartial comparison, we exclusively considered the initial 
60 trials per phrase per participant. The preprocessing of the raw MEG 
data was conducted using FieldTrip (Oostenveld et  al., 2011) in 
MATLAB 2021b.

2.2 Data analysis

2.2.1 Sensor correlation
Sensor correlation has been often used to characterize neurological 

disorders (Schindler et al., 2007; Bob et al., 2010). Here, we computed 
Pearson’s correlation between each pair of gradiometer sensor signals. 
Analyses were performed for both speech imagination and speech 
production for each stimulus (phrase) and participant separately. 
Correlation values were computed at the single-trial level and then 
averaged across all trials. For this analysis, we used all the spectral 
information (0.3–250 Hz) in the signals. Statistical 2-sample t-tests 
were used to compare the ALS and healthy groups (N = 15: 3 
participants × 5 phrases) based on number of sensors showing larger 
absolute correlation coefficients (r > 0.5) and correlation density (sum 
of all absolute correlation values over total number of sensor-pairs) for 
both imagined and overt speech separately.

2.2.2 Band power distance
Each neural oscillation is associated with a key functional role in 

the brain and could potentially carry a neural biomarker of a disorder. 
Beta-band power has traditionally been associated with motor 
function in the brain (Fisher et al., 2012; Khanna and Carmena, 2015). 
Thus, for the speech-motor task (overt speech) and the speech-motor 
imagination task (imagined speech), we compared power in this band 
and other canonical bands between the two groups. We computed the 
average power of the neuromagnetic signals for each frequency range 
of interest: delta (1–4 Hz), theta (4–8 Hz), alpha (8–16 Hz), beta 
(16–30 Hz), gamma (30–59 Hz), and high gamma (61–119 Hz). 
We then averaged the band powers (this was completed separately for 
each band) across both trials and participants. The pairwise Euclidian 
distances between healthy and ALS band powers were calculated 
across all sensors for each phrase and after averaging across the 5 
phrases. 1-way analysis of variance (ANOVA) and post-hoc Tukey test 
was conducted with the six bands as independent groups and 5 
phrases as different samples for both imagination and articulation.

2.2.3 Functional connectivity
Functional connectivity is defined as the statistical dependence 

among measured neural signals which explains the temporal 
coincidence of spatially distant neurophysiological events (Friston, 
1994). Functional connectivity analysis has become the conventional 
choice for a better understanding of the in vivo pathology of ALS. In 
this study, we used amplitude envelope correlation (AEC) (O’Neill 
et al., 2015) to measure the functional connectivity for each frequency 
band. For single-trial functional connectivity analysis, we used a 4th 
order Butterworth bandpass filter to first bandpass the gradiometer 
signals from all 196 sensors at each frequency range of interest, 
obtained the amplitude envelopes using Hilbert transform, and then 
computed the pairwise linear correlation of the amplitude envelopes 
across all sensors for each frequency range of interest separately. 
Connectivity was defined as the averaged pair-wise correlation across 

trials. For the individual subject analysis, first, we  temporally 
concatenated all bandpass-filtered single trials, extracted the envelope, 
and then computed the correlations. We performed the AEC-based 
functional connectivity analysis for each phrase separately during 
both imagined and overt speech. A 2-sample one-sided t-test was 
conducted between healthy and ALS samples (3 subjects × 5 phrases—
for each group) of functional connectivity density (sum of AEC values 
over total number of sensor pairs) to check for the hypothesis of 
whether patients with ALS show greater beta band connectivity than 
healthy controls.

2.2.4 Single-trial classification
We used power in the six canonical frequency bands of the MEG 

signals as features to train a linear discriminant analysis (LDA) 
algorithm and classified ALS and healthy data during both speech 
imagination and overt speech. We trained the model separately for 
each frequency range of interest and separately using a wide frequency 
range (0.3–250 Hz) which contained spectral information from all the 
neural oscillations. The choice of the LDA model was inspired by our 
previous work on speech decoding for ALS where the LDA model 
performed equivalently to both support vector machines and 
multilayer perceptron classifiers (Dash et al., 2020) at classifying 5 
phrases. The fitcdiscr function in the Statistical and Machine Learning 
Toolbox of MATLAB was used for classification. The lower sample size 
than the feature dimension motivated for a linear type of discriminant. 
The linear coefficient threshold (‘Delta’) and the amount of 
regularization (‘Gamma’) of the model were tuned as the 
hyperparameters of the model, computed based on the Bayesian 
optimization search using a 10-fold cross-validation on the training 
data. All other parameters were set to the default values of the toolbox. 
We  used a leave one-pair out cross-validation strategy where 
we  trained the model with all trials from 2 healthy and 2 ALS 
participants and tested using the remaining data from 1 healthy and 1 
ALS participant, irrespective of the phrase. This was repeated until 
each healthy-ALS pair was tested. This led to a training data size of 
1,200 trials (4 participants (2 healthy +2 ALS) × 5 phrases × 60 trials) 
and a test data size of 600 trials (2 participants (1 healthy +1 ALS) × 5 
phrases × 60 trials) for each fold. In this manner, the trained decoder 
was tested with completely unseen new participant data.

3 Results

Figure 2 shows the comparative histogram distribution of sensor-
level signal correlations for ALS and healthy controls for each phrase 
(top for imagined speech and bottom for overt speech). A significantly 
larger number of sensors showed greater correlations for ALS 
compared to healthy controls across all phrases during both overt 
(one-sided, 2-sample t-test: t = 3.76, df = 28, p < 0.001) and imagined 
speech (one-sided, 2-sample t-test: t = 6.01, df = 28, p < 0.001). This is 
also evident by the higher variance in the distribution of correlations 
for ALS compared to healthy controls for both imagined and overt 
speech across all phrases. In other words, the majority of the 
correlations were near mean (i.e., zero correlation) for the controls 
compared to ALS. For imagined speech, 95% (Bayesian analysis based 
on Monte Carlo simulations) of the correlation values were in a range 
of −0.5 to 0.5 for healthy participants. The range was between −0.8 to 
0.8 for ALS participants. For overt speech, the correlation range for 
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healthy controls was approximately within the range − 0.8 to 0.8, 
which was greater for the ALS ranging from −1 to 1. A heatmap plot 
of the correlation distribution for each subject is shown in Figure 3 
(Top for imagined speech and middle for overt speech), which depicts 
stronger correlations across the whole brain for participants with ALS 
compared to the healthy controls, especially for the first participant 
with ALS (A1) who also had the lowest speech intelligibility and 
speaking rate scores (Table 1). To interpret these correlation heatmaps, 
correlation density was calculated as the sum of all absolute correlation 

values over total number of sensor-pairs and shown for each 
participant in Figure 3—Bottom panel. Mean correlation density was 
higher for participants with ALS (Overt: 0.428; Imagination: 0.326) 
compared to healthy subjects (Overt: 0.292; Imagination: 0.192) 
averaged across trials, phrases, and participants as well as statistically 
across all phrases and participants (one-sided, 2 sample t-tests: overt: 
t = 6.13, df = 28, p < 0.001; imagined: t = 6.68, df = 28, p < 0.001). As 
expected, a stronger correlation for overt speech was observed 
compared to speech imagination, irrespective of healthy or ALS data.

FIGURE 2

Histogram distribution of all pair-wise sensor correlations of healthy and ALS participants for each phrase during imagined speech (top) and overt 
speech (articulation) (bottom) for patients with ALS and healthy controls, respectively.
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FIGURE 3

Heatmap of pair-wise sensor correlations for each subject on phrase “Do you understand me” for imagination (top) and articulation (middle), and the 
distribution of sensor density across the phrase for all participants (bottom). In the heatmaps, each colorful dot/point represents the correlation 

(Continued)
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Figure 4 shows the mean band-power distances between healthy 
and ALS for each during overt speech task (articulation), where panels 
(A) to (F) are for delta, theta, alpha, beta, gamma, and high gamma 
bands, respectively. For better visualization, the distances are shown 
as heatmaps where the color range from blue to red indicates 
minimum to maximum range of the normalized distance values. Each 
cell in the heatmap represents a pairwise distance between the band 
powers of a healthy sensor (y-axis) and an ALS sensor (x-axis) across 
all the phrases. The distances were significantly greater for the beta 
band powers than the other canonical bands for both imagination 
(1-way ANOVA: F = 208.55, p < 0.001; post-hoc Tukey tests: beta vs. 
rest: p < 0.0019) and articulation (1-way ANOVA: F = 206.59, p < 0.001; 
post-hoc Tukey tests: beta vs. rest: p < 0.0021, see Figure 4—Panel G 
and H). Also, a larger number of pairwise (ALS—healthy) 
dissimilarities were observed in the beta band. These oscillatory 
patterns were similar for each phrase and across all phrases for 
individual and group subject analysis irrespective of speech task, i.e., 
imagination or production. A couple of sensors showed the highest 
distance (solid red lines in the heatmap) which could be because those 
sensors were noisy.

Figure 5 shows the AEC-based beta-band functional connectivity 
for both groups during the production of the phrase ‘Do 
you understand me?’ in the form of heatmaps; showing the correlation 
range of −1 to 1 (from blue [minimum] to red [maximum]). Greater 
beta band connectivity was significant for ALS patients compared to 
healthy subjects (one sided, 2-sample t-test: p < 0.05; see 
Supplementary Figure S3 for distributions of connectivity strengths 
for both patients with ALS and healthy controls). This is notably 
apparent in the first patient (A1), who had more severe bulbar 
impairment than the other two (A2 and A3). Interestingly, similar 
patterns of increased connectivity were also prominent during speech 
imagination (Supplementary Figure S2). A more diverse connectivity 
pattern among the 3 patients with ALS compared to the healthy 
participants can be observed by visualizing the connectivity strengths.

Figure 6 shows the median single-trial classification accuracy for 
the healthy versus ALS group for both speech imagination and overt 
speech tasks. The best performance (median accuracy ~98%) was 
obtained using beta bands and was similar for both speech tasks. The 
performance using each individual frequency range of interest 
(excluding delta) was significantly higher than chance level (50%) and 
was also higher when compared to performance using all frequency 
information (all: 0.3–250 Hz). The distribution of the test performance 
for different folds (i.e., for each pair of ALS-healthy single-trial test 
accuracy) is shown in Supplementary Figure S4. The performance 
accuracy was lowest for the first ALS patient (A1) (mean across 
folds = 65% for overt speech; 83% for imagined speech), likely because 
this participant’s speech symptoms were severe compared to the other 
two participants with ALS. Although median performance was 
highest for beta band, statistically, 1-way ANOVA based comparison 
did not show a significant difference between the performances of 
different bands (F = 1.33, p = 0.05), possibly due to the low sample size. 
For the case of imagined speech, performances obtained with theta 
and gamma band were comparable to beta band performance.

4 Discussion

The evidence of greater inter-sensor correlation for ALS compared 
to healthy participants is a clear distinguishable marker between the 
two groups. This has been previously observed with M/EEG resting 
state (Proudfoot et al., 2019) and motor imagery studies (Yang et al., 
2018). This difference in sensor correlations was apparent across all 
phrases and participants which further illustrates that this feature is 
independent of stimuli and an across-subject observation. A stronger 
correlation during the overt speech task compared to the imagined 
speech task indicated greater cortical activity for producing overt 
speech compared to speech imagination, which was true for both 
healthy and ALS groups and was expected. The signal artifacts 
introduced by movement during the production of speech gestures 
could have also contributed to the higher sensor correlation during 
overt speech production (Dash et al., 2018). Participant (A1) with the 
most severe symptoms (lowest speech intelligibility and speaking rate 
scores: Table 1) showed the strongest correlation (Figure 3) suggesting 
that the proposed approach may be useful as a marker of disease 
progression. We  must note that a larger sample size is needed to 
statistically validate this observation. Further, sensor correlation 
differences could also arise from the differences in the head positions 
inside the scanner. Mapping the sensor data into source space and 
performing the correlations across parcels/voxels would be a better 
way to remove these confounds, as planned for future studies.

Beta band has been traditionally associated with motor function, 
and the observed differences in the beta band power during overt 
speech are consistent with the hypotheses that ALS is associated with 
cortical hyperexcitability, possibly due to the loss of inhibitory 
interneuron (Proudfoot et  al., 2017). Our results reproduced the 
importance of beta band for identifying ALS during a bulbar motor 
task (speech). The prominent beta band differences during the speech 
imagination task (which does not involve motor execution) 
(Supplementary Figure S1) suggest that the beta band during speech 
tasks that involve motor planning could be  a potential neural 
biomarker of ALS. Crucially, the pattern of band-power differences 
was similar for both imagination and overt speech in the beta band, 
possibly indicating a functional similarity between the two speech 
tasks. Clear differences in band power were also observed in the theta 
and the gamma band; however, they were less prominent compared 
to the beta band differences.

This finding of significantly greater beta band connectivity in the 
ALS group compared to healthy controls was expected since beta band 
functional connectivity changes have been previously shown (Verstraete 
et al., 2010; Agosta et al., 2013; Proudfoot et al., 2017) both during 
resting state as well as for spinal motor tasks. An increase in beta band 
functional connectivity has been hypothesized as the result from loss of 
intracortical inhibitory influence supported in vivo by neurophysiology 
findings of accentuated cortical beta-desynchronization during 
movement preparation and diminished post-movement beta-rebound 
(Proudfoot et  al., 2017). This inhibitory influence may lead to 
compensatory mechanisms in early-stage ALS resulting in higher 
functional connectivity. Behaviorally, it may be  explained as a 

between a pair of the 196 gradiometers. In the bottom panel, correlation density was calculated as the sum of all absolute correlation values over total 
number of sensor-pairs across five phrases for each participant.

FIGURE 3 (Continued)
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FIGURE 4

Heatmap of pairwise band-power distances between healthy and ALS sensors for each band during articulation. (A) Delta; (B) Theta; (C) Alpha; (D) Beta; 
(E) Gamma; (F) High Gamma. In the heatmaps, each colorful dot/point represents the bandpower distance between a pair of the 196 gradiometers. The 
bottom panels provide the bandpower distances for all frequency bands in speech imagination (G) and articulation task (H), respectively.
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compensatory mechanism for speech tasks in early-stage ALS due to the 
recruitment of larger neural networks, supported by tongue kinematic 
studies (Green et  al., 2013; Kuruvilla-Dugdale and Mefferd, 2017; 
Teplansky et  al., 2019). Additionally, disruption of efficient motor 
control networks in ALS may lead to higher cognitive control demands 

and attention increases, both of which are known to modulate beta-
band oscillation power and connectivity (Cheyne and Ferrari, 2013; 
Riddle et al., 2021). This study provides the first evidence of increased 
beta band connectivity during a speech-motor task. Interestingly, 
increased connectivity was also prominent during speech imagination 

FIGURE 5

Heatmap of beta band AEC based functional connectivity across all sensors for participants with ALS (top row) and healthy controls (bottom row) 
during the overt speech task.

FIGURE 6

Single-trial ALS detection accuracy using band power [Delta: 1–4  Hz; Theta: 4–8  Hz; Alpha: 8–16  Hz; Beta: 16–30  Hz; Gamma: 30–59  Hz; High 
Gamma: 61–119  Hz; Broadband: 1–119  Hz].
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(Supplementary Figure S2) indicating higher beta band connectivity 
during speech planning, thereby strengthening the role of beta band as 
a neural biomarker for ALS. Similar to the observations with band-
power differences, beta-band functional connectivity was greatest for 
our most severe patient (participant A1), providing additional 
confidence in the specificity of this marker. Accumulating the 
connectivity strength (i.e., correlation values) of all three subjects and 
for all 5 phrases showed greater connectivity strength for the ALS group 
than the control group (Supplementary Figure S2) indicating beta-band 
connectivity to be an across-subject marker.

Evidence of a high single-trial ALS detection accuracy with beta-
band suggests that the neural mechanisms for ALS could be specific 
to spectral content, particularly to the beta band during speech tasks. 
From the previous qualitative analyses (sensor correlation, band 
power difference, and functional connectivity) beta-band was 
expected to perform the best for single-trial classification. The median 
accuracy with beta band was superior when both overt and imagined 
phrases were considered, although theta and gamma band also 
showed comparable performance with beta band for the case of 
imagined phrases. A recent study suggested covert speech emphasizes 
both beta and gamma band (Moon et al., 2022), which may explain 
why gamma band also obtained high accuracies. In short, greater 
performance accuracies during the speech imagination task suggest 
that neural signals derived while imagining speech may be optimal for 
diagnosing early-onset ALS, whereas overt speech may be  more 
appropriate for evaluating the rate of disease progression. Crucially, 
this is the first demonstration of ALS detection from single-trial 
neural signals.

In terms of behavior, individuals with ALS exhibited larger onset 
latency and duration in overt speech tasks when compared to their 
healthy counterparts (2-sample t-tests, t = 3.09, p = 0.002, N = 900 [3 
participants × 5 phrases × 60 trials]; Supplementary Figure S5), as one 
would expect the patients to take longer time to complete the task. It is 
plausible that these behavioral effects manifest in elevated sensor 
correlation and functional connectivity strength for ALS patients as 
opposed to healthy controls. However, there is notable convergence in 
these behaviors at the single-trial level between the two population 
groups, with more than 44% overlap in onset time and over 22% overlap 
in duration. The behavioral difference was mostly driven by the first ALS 
participant (A1) with the lowest speaking rate and speech intelligibility. 
Consequently, relying solely on behavioral indicators for single-trial 
detection proves to be inefficient. In addition, similar cortical differences 
were also observed during the covert speech task, a scenario where these 
behavioral markers are absent. Further, covert speech segments are 
immune to movement artifacts that can be present during overt speech 
and bias the results. Hence, the optimal approach for single-trial ALS 
detection involves analyzing neural activity during covert speech tasks.

Although these results are encouraging, this study suffers from a 
very small sample size and the omission of a non-ALS clinical control 
group. Future studies should include larger cohorts and include 
another patient population with a movement disorder, e.g., Parkinson’s 
disease and other motor neural diseases, in order to reveal the 
specificity of these detection methods. If validated, neuromagnetic 
signals during speech tasks with machine learning would open a new 
direction for assisting the diagnosis of ALS. As bulbar onset of ALS 
represents about 30% of the total and spinal onset accounts for about 
70% (Van Es et al., 2017), we plan to combine neural signals during 
speech and spinal motor tasks (e.g., finger tapping) in future studies. 
A further step is to combine neuromagnetic signals with (speech) 

audio (An et  al., 2018). Finally, individuals with ALS and other 
neurological diseases that show some similar symptoms such as 
Parkinson’s disease will be included for differential analysis.

5 Conclusion

In this study, we  investigated the neuromagnetic pattern 
differences between individuals with ALS and healthy subjects during 
imagined and overt speech tasks, towards identifying a potential 
neural biomarker. Our preliminary results showed a greater number 
of sensors with larger correlations, a higher dissimilarity in the beta 
band power, and a larger beta band connectivity for ALS patients 
compared to healthy controls. Single-trial ALS detection analysis 
resulted in the highest median classification accuracy using beta band 
features, which were significant across trials, phrases, and participants 
for both speech imagination and articulation. The preliminary results 
of this study provide a proof of concept for the use of beta band as a 
potential neural biomarker during speech tasks and machine learning 
for early detection of ALS.
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