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There is little significant work at the intersection of mathematical and

computational epidemiology and detailed psychological processes,

representations, and mechanisms. This is true despite general agreement in the

scientific community and the general public that human behavior in its seemingly

infinite variation and heterogeneity, susceptibility to bias, context, and habit is an

integral if not fundamental component of what drives the dynamics of infectious

disease. The COVID-19 pandemic serves as a close and poignant reminder.

We o�er a 10-year prospectus of kinds that centers around an unprecedented

scientific approach: the integration of detailed psychological models into

rigorous mathematical and computational epidemiological frameworks in a way

that pushes the boundaries of both psychological science and population models

of behavior.

KEYWORDS

cognitive modeling of human behavior, mathematical modeling and simulation, graph
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1. Introduction

Prospectus (noun) means an offering that provides a forward (pro) view (spectus), one

that is typically used to show potential investors what financial gains might be made of

shares in a product or company and a look at the features of said company that should

instill confidence in the investor. We offer a prospectus of kinds: a view of potential societal

gains if we invest in developing the next generation of at-scale, agent-based epidemiological

simulation modeling. This kind of modeling will build scientific understanding of at-scale,

meaningful, impactful, and real-world dynamics of human behavior across technological,

social and physical networks or contexts. Although our prospectus focuses on the dynamics

of infectious disease (e.g., SARS-CoV-2, Ebola, Influenza, Monkeypox), it applies equally

to social phenomena in general and beyond scientific interest alone—understanding, and

ultimately intervening on large scale human behavior during times of crises and major

sociotechnical system-level shocks is a key problem central for public health, national

security, climate change, economic stability, and disaster preparedness.

A major component of this prospectus relies on developing novel ways in which

human behavior is represented in at-scale, agent-based simulations. We have seen

some interesting work over the past decade that addressed the effects of human

behavior on infectious disease dynamics (Funk et al., 2015; Verelst et al., 2016), but

nothing that entails the integration of detailed psychological constructs, assumptions

and models. Because of the complex and dynamic nature of epidemiological contexts,

well-detailed and theoretic (as opposed to just descriptive and statistical) explanations

should derive from theories in psychology, economics, neuroscience, and the cognitive

sciences. To complicate matters, our prospectus puts tight constraints on how

we use psychological theory and constructs: (i) the psychological theory must be

Frontiers in Psychology 01 frontiersin.org

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2023.986289
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2023.986289&domain=pdf&date_stamp=2023-06-09
mailto:mo6xj@virginia.edu
https://doi.org/10.3389/fpsyg.2023.986289
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpsyg.2023.986289/full
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Orr et al. 10.3389/fpsyg.2023.986289

in formal terms precise enough for implementation in computer

code and definable as a mathematical object, and (ii) the

implementation of such theory must factor in the degree of

computational complexity in time and space.

Our prospectus not only provides methods for developing

richer representation of psychological processes and

representations in agent-based simulations but, critically,

includes a formal rigorous mathematical framework, Graph

Dynamical Systems (GDS), for both designing and understanding

the behavior of at-scale, complex systems. Graph Dynamical

Systems is a framework for efficient and accurate design of at-scale

agent-based models, one that is formal and rigorous, flexible,

and maps well to modern computing hardware (for scaling

purposes). Figure 1 puts these two notions together (figure details

are provided in the next section).

2. Scientific framework

The foundation of our 10-year prospectus is a scientific

framework for analysis, modeling and simulation of systems

that span multiple scales and networks. It captures the co-

evolving, coupled networked systems via what we call a system

graph composed of multiple sub-systems. Each sub-system (or

component) is a separate GDS and is described by a network G

over a set of vertices V . For each vertex v of this sub-system, there

is a state xv and a function fv. We denote the system state as a

sequence x = (xv1 , xv2 , . . . , xvn ), or simply x = (xv)v, and we

write f = (fv)v for the corresponding vertex-indexed sequence of

functions. The function fv captures the characteristics of that vertex

and governs how the state xv of vertex v evolves with time taking

as input the vertex’s own state as well as the state of its neighbors

in the network G. An update mechanism or schedule governs how

all the vertex functions fv with v ∈ V assemble to generate the

dynamics of the sub-system. In summary, each component system

is described by a network G, a sequence of vertex states x = (xv)v,

vertex functions f = (fv)v, and an updatemechanism. The complete

system is modeled using a collection of graphs as above. We thus

have graphs G = (Gi)i with matching vertex functions F = (f i)i
where f i = (f iv)v, and a corresponding (total) state X = (xi)i and

xi = (xiv)v is the state in network Gi. In addition, there will be a

collection of transfer functions η between each pair of networks,

see Figure 1, that captures how a vertex state xv on one graph may

influence to the same vertex state on another graph.

The mapping to psychological constructs is straightforward.

The functions in the sequence (f iv)v capture the psychological

models relevant for all individuals represented and interacting on

the graph Gi. For the individuals present in multiple graphs, the

transfer functions η relate the psychological models on different

graphs (e.g., betweenGi andGj), something that can capture unique

transfer functions for specific individuals and are denoted by (η
ij
v )v.

The transfer functions can be directional, to mean that themapping

from (xiv)v to (x
j
v)v is not necessarily equal to that of (x

j
v)v to

(xiv)v; in notation this is (η
ji
v )v and (η

ij
v )v for the former and latter,

respectively.

To put this in real-world terms, consider the example shown on

the left panel of Figure 1; each of the two component graphs (e.g., an

online contact network such as Twitter and a physical, real-world

contact network) will encode vertices as individual people and

edges as possibilities of interactions among them. Some individuals

are represented on both GDS in which case we map the relation

between GDS (or contexts) with the transfer functions. An example

of a non-symmetric transfer function, for example, would be that

beliefs learned on Twitter (Gi) might transfer to the mechanism of

action (wear a mask) in the physical world (Gj) via η
ji
v , a relation

that may not be reciprocated by η
ij
v .

The identification of individuals into types is an important

feature of our system graph. Thus, for a given context and graph,

individuals are identified using a suitable equivalence relation

(all individual vertices fall under an equivalence class, e.g., all

vertices who are targets of a misinformation campaign are of

one equivalence class). The vertices of what we call the cognitive

situation graph (upper right of Figure 1) are the equivalence

classes under this relation, with edges being induced from the

full network of the given context. Referring to the upper right

of Figure 1, “Target” may represent all those who are vaccine

neutral, while “Influencer A” may represent the collection of people

who are against vaccine, both in an online network. Note that

such a class may be present in multiple situation graphs and

networks contexts (e.g., persons against vaccine in online and

offline networks). Deriving models for the agents of a situation

graph (i.e., the equivalence classes of agents) is both an efficient

and practical approach for embedding cognitive models into graph

representations. A similar approach was used in our work (Barrett

et al., 2013) in a different domain (disaster preparedness), but

the systems here are more complex, and also have more complex

coupling captured by the transfer functions.

In summary, our scientific framework speaks to a particular

kind of scientific application, what we call constrained multiscale

explanation, an approach that affords explanation of dynamic

phenomena in multiplex social systems at multiple levels of scale

and in a way that is constrained–in design and for analytic

purposes—by a formal mathematical treatment. Our prospectus

was developed with the recognition that building scientific

explanations for phenomena in at-scale social systems must

consider different classes of scientific issues: within disciplinary,

cross-disciplinary and the unique issues implied by the larger social

system. Further, our prospectus realizes mechanisms at different

levels of scale: individual psychological processes, the interaction

between individuals and social groups characterized by sociology

and economics, and large-scale contextual and emergent system-

wide processes.

The remainder of this article will explore (i) psychological

theory instantiated as cognitive models followed by (ii) graph

dynamical systems, (iii) the integration of cognitive modeling with

graph dynamical systems, and (iv) the simulation of infectious

disease dynamics in a way that incorporates cognitive models of

individuals and is informed by graph dynamical systems.

3. Psychological theory, cognitive
architectures, and cognitive modeling

Psychological theory provides (i) theoretical psychological

mechanisms, (ii) insights into the external social & environmental
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FIGURE 1

The 10-year prospectus imagined graphically shows the larger system graph illustrated on the left captured through coupled, co-evolving networks,

possibly including mass media. Transfer functions (e.g., η1 and η2) govern how states associated to a di�erent network layer (e.g., online) may

influence dynamics in another network layer (e.g., physical contacts). A cognitive situation graph is illustrated in the top right, capturing dynamics at a

compact level for the various agent classes present in the system network. Essential to this 10-year prospectus is the invocation of human cognitive

architectures to realistically constrain mathematical models of system-level behavior.

(contextual) cues/stimuli/communications that drive behavior,

and (iii) methods of measurement for theoretical constructs.

Besides rational/cognitive models—e.g., Theory of Planned

Behavior/Reasoned Action (Ajzen, 1991)—from social psychology,

theory can integrate insights from behavioral economics (Boyd,

2020), habit theory (Zhang et al., 2022), as well as the role of

emotions for identification of the features and cues in the social

context that shape behaviors (van Doorn et al., 2015). It is precisely

these kinds of theory that should be integrated into at-scale,

agent-based simulations of infectious disease.

In our scientific framework, psychological theory is wedded to

the vertex state functions (fv)v and the transfer functions (ηv)v.

Thus, its representation must yield something both mathematically

tractable and computationally implementable while retaining

important theoretical commitments relevant to behavior in

epidemic contexts. However, the psychological literature, primarily

in relation to social psychology, is limited in terms of formal

mathematical or computational theory for our purposes. For

example, computational models of attitude formation and change

have been developed as stylized, and highly abstracted analogs to

(i) hypothetical, (ii) specific tightly-controlled experimental, or (iii)

survey contexts (Van Overwalle and Siebler, 2005; Overwalle, 2007;

Monroe and Read, 2008; Dalege et al., 2016, 2018; Galesic et al.,

2021). It is unknown to what degree these models are relevant for

real-world behaviors and decisions that are social in nature and

relevant for infectious disease dynamics. There exist sporadic calls

in the public health literature for the integration of behavior change

theory with computational psychology in public health (Orr et al.,

2013, 2017, 2019; Orr and Plaut, 2014; Pirolli, 2016; Orr and Chen,

2017) but these suffer from similar issues to those found in the

social psychological literature. A more domain-general approach is

needed.

Our scientific framework, in contrast, invokes the notion

of cognitive architectures as the basis for models of behavior

implied in infectious disease. As is typical, we reserve the term

cognitive modeling to refer to the class of models of behavior that

are constrained by cognitive architectures and attempt to model

how the human mind drives behavior (as opposed to modeling

human-like behavior in any way possible). But what are cognitive

architectures and what is the value of cognitive modeling in terms

of infectious disease epidemiology?

Cognitive architectures, as computational implementations

of unified theories of cognition, provide predictive quantitative

constraints on human behavior across all fields of human activity.

A prominent example is ACT-R, a highly modular cognitive

architecture that was designed specifically for the purpose of

cognitive modeling. It is composed of a number of modules (e.g.,

procedural and declarative memory, perception and action) that

operate asynchronously through capacity-limited buffer interfaces

(Anderson, 2007). Each module is in turn composed of a number

of independent mechanisms, typically consisting of symbolic

information processing structures combined with equations that

represent specific phenomena and regularities (e.g., power law

of practice and forgetting). The architecture includes a number

of learning mechanisms to adapt its processing to the structure

of the environment. The combination of powerful mechanisms

together with human capacity limitations (e.g., working memory,

attention, etc.) provides a principled account of both human
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information processing capabilities as well as cognitive biases and

limitations.

An important feature of ACT-R, in comparison to other

cognitive architectures, is that it has sustained decades of

validation against human experimental data. This feature, we

argue, is imperative for epidemiology because it grounds at-scale

epidemiological population agent models in the psychological and

cognitive sciences. Our prospectus advocates the use of such

grounded cognitive architectures as the basis for developing agent-

level cognitive models in epidemiological simulations.

Many efforts have been made to build cognitive models of

human behavior across a wide range of applications, ranging

from simple psychology experiments to decision making to

complex dynamic task environments (e.g., decision making, sense-

making, game playing, and interactions over social networks);

see for example (Anderson, 2022). The practice and use of

building cognitive models varies in terms of the scope of

architectural components or modules. Some cognitive modeling

efforts have leveraged modeling frameworks to specify knowledge-

level structures and processes as additional constraints. For

instance, instance-based learning (IBL) assumes that decisions

are based on experience, leveraged through memory mechanisms

(Gonzalez et al., 2003) which can be implemented using

components of the ACT-R cognitive architecture. The notion

of accountable modeling attempts to cleanly separate aspects

of human performance that are based on theoretical cognitive

constraints from model parameterizations that reflect other factors

such as procedures and task environment. The former are assumed

to be invariant across tasks and contexts (Reitter, 2010).

A key feature of cognitive models in respect to epidemiology

is their generative and predictive nature. Thus, they can be used

to optimize behavior-change interventions, both in design or as an

online surveillance aid. For example, our recent work has integrated

cognitive modeling using ACT-R with network simulations

of population responses to public health messages of non-

pharmaceutical interventions and their impact on epidemiological

spread (Pirolli et al., 2020, 2021); another similar example is the

modeling of the effects of (in)coherence of messaging and sources

on credibility (Liao et al., 2012).

Our prospectus, in short, leverages cognitive models

constrained by a grounded cognitive architecture to provide a single

unified computational formulation of disparate psychological and

other behavioral theories, e.g., the integration of multiple factors

into a single predictive theory.

4. Graph dynamical systems

In this section, we provide a brief formal description of the

Graph Dynamical Systems approach (readers may find it useful to

refer to Section 2). We then introduce the reasoning behind using

this framework in the context of at-scale, agent-based simulations

of infectious disease, something that applies to many analogous

systems. To preface of our reasoning, we note that at-scale, agent-

based simulation approaches to human-relevant infectious disease

dynamics are quite complex. GDS provides several features for both

the analysis of such dynamics and the design of simulation systems

without which, we claim, would render it unreasonable to make

any substantive scientific or practical claims. The key focus of our

prospectus, to integrate psychological processes into such models,

brings such need into sharp relief.

4.1. Formal description

The mathematical and computational theory of GDS (see, e.g.,

Goles and Martinez, 1990; Barrett and Reidys, 1999; Barrett et al.,

2000b, 2001, 2003a,d, 2006, 2009; Mortveit and Reidys, 2001, 2007;

Rosenkrantz et al., 2015) is largely concerned with the formal

abstraction of dynamics evolving over networks. For this, the

theory is generally focused on finite state sets (e.g., {0, 1}) and

specific update mechanisms used to assemble local dynamics of

agents into global dynamics of the complete system. Formally, a

sequence of vertex function (fv)v indexed by the agents will, by

applying an update scheme U, assemble to a map FU : Kn −→ Kn

where K is the state set of each agent. For example, for a parallel

update scheme with n agents/vertices, we have

FU
(

x = (x1, . . . , xn)
)

=
(

f1(x), . . . , fn(x)
)

.

Here the variable dependencies in the functions fv reflect the

network G. Existing mathematical and computational theory is

concerned with how structural properties of the functions fv,

properties of the network G, and the choice of update mechanism

translate into properties of the system dynamics of the system map

FU . All standard questions and topics such as stability and control

are studied.

4.2. Rationale for GDS

The GDS framework has been central for analytics and

design of simulation models for co-evolving networked systems

in prior work for more than two decades, having been applied

to epidemiological studies, evacuation scenarios, and large-scale

models for resilience in socio-technical system at large (Barrett

et al., 2000a, 2013; Cedeno-Mieles et al., 2018; Adiga et al., 2019;

Chen et al., 2020a,b; Islam et al., 2020; Meyur et al., 2020; Swarup

andMortveit, 2020;Wang et al., 2020). The framework of GDS, and

in particular the notion of vertex function, was designed specifically

to support (i) precise modeling of networked systems, while (ii)

being amenable to mathematical and computational analysis, and

at the same time (iii) mapping well to high performance computing

hardware (Barrett et al., 1998, 2000b, 2001, 2003d; Barrett and

Reidys, 1999; Atkins et al., 2008; Laubenbacher et al., 2009). Each

of these features has important implications for the feasibility of

use of at-scale, agent-based epidemiological simulations.

The key distinguishing factors at the level of behavioral

aspects in our prospectus include (i) the vertex functions, derived

from cognitive models, are significantly more complex, (ii) the

dependencies on other agents within a network (i.e., the network

structure) are not that well known, and (iii) agents may only be

privy to partial observations of state of the agents with whom

they interact, and the latter party may additionally choose to apply

deceptive strategies when revealing their partial state. To address

(i)–(iii), significant extensions of theory and structure of GDS are
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needed both at the level of fundamental theory and for integration

within the design of simulation models, as detailed in the next

section. In plain terms, vertices that represent human behavior

as cognitive models pose challenges to the GDS framework. We

provide a sketch of how this might be accomplished in the

next section.

5. Integration of cognitive
architectures and graph dynamical
systems

Our prospectus follows the design illustrated in Figure 2 for

modeling vertex functions. Key features of our approach are: (i)

it is applicable across agent classes, (ii) the choice of framework

for representing vertex functions (e.g., Markov decision process,

Boolean functions) is flexible, and (iii) it provides a mechanism

for quantifying how well vertex functions approximate the domain

(e.g., cognitive) model, and thus a means for assessing the balance

between fidelity of agent representations with computational

scaling in the simulation models (Figure 2 caption provides further

details on these features). More broadly, our approach provides

a generic approach for integrating domain knowledge of a context

or situation graph into a computational framework for networked

systems while keeping track of the fidelity of the mapping from

domain knowledge and expertise (e.g., the kind of cognitive model

to represent) to vertex functions.

In the diagrams of Equation (1) the map βv,c is the cognitive

model for agent v in the context c, while (η′v,(c,c′))c′ is the

collection of transfer functions factoring into the cognitive model

for agent v in the context c impacted by other contexts c′.

These are formalizations of the cognitive models of behavior.

While one would typically expect that the cognitive models for

agents βv,c to be computationally heavy, one may in principle use

a suitable update mechanism U ′ to assemble these functions across

networks to form the full system model Mβ ,U driving the system

dynamics as illustrated at the top in the rightmost diagram of

Equation (1).

The cognitive behavioral components can be mapped into a

GDS form by constructing a general approach to (i) translate

cognitive models into GDS vertex functions βv,c −→ fv,c, (ii) match

this for the associated transfer functions η′v,(c′ ,c) −→ ηv,(c′ ,c), and

(iii) develop metrics for how well fv,c captures βv,c in preparation

for assessing how well the system map at the GDS level (i.e., Mf ,U

in Equation (1)) captures the composed cognitive model Mβ ,U ′ . It

is worth pointing out that the state space for the cognitive model

and for the GDS translation need not be the same, thus there may

be a mapping π connecting the two. Similarly, while it is likely

that the update mechanism U and U ′ for the assembly of local-to-

global dynamics may be the same in both cases, this is not generally

required (Róka, 1999).

To develop the mapping βv,c −→ fv,c from cognitive models

into suitable vertex functions, future work could leverage prior

work (Sycara et al., 2015) as a starting point. In this prior

FIGURE 2

A major component of our 10-year prospectus is to develop and design vertex functions for the GDS framework from cognitive first principles (i.e.,

derived from or constrained by a human cognitive architecture). The left portion above shows the development from cognitive architecture to

cognitive model. The dotted-arrow represents an iterative process that is designed to vary the degree of abstraction (more abstraction means less

fidelity) in the mathematical representation of an agent’s cognitive model. Scaling criteria are considered in respect to the time and space complexity

of computations on the graph; for large graphs with high-fidelity vertex functions, this may be a serious consideration. The mathematical

frameworks for representing vertices are various and may be explored as part of the development of a GDS formalism.
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work, the cognitive model abstracted human performance and

was in turn abstracted into an analytical framework captured

as a Markov decision process (MDP). The mechanisms of the

ACT-R cognitive architecture provided additional theoretical

constraints on a limited amount of human data, especially when

developing personalized models (see Cranford et al., 2020). In

turn, the representation of the IBL process in ACT-R declarative

memory provided additional constraints on the states of the

MDP. Thus, the framework for Markov decision processes

(MDP) can be used to represent vertex functions capturing

cognitive models that are represented and calibrated using ACT-R

(Sycara et al., 2015).

MDP is a natural framework for modeling stochastic processes

or phenomena with inherent uncertainties, and also lend

themselves well to controlling computational scaling by (i)

adapting the resolution of selected states (e.g., more fine-

grained states) and (ii) by an increase in fidelity resulting from

modifying the dimension of the agent’s state space used in its

vertex function representation (see, e.g., Barrett et al., 2006;

Rosenkrantz et al., 2015) for a joint characterization of the

boundary for which many GDS problems become intractable

formulated in terms of the network and vertex function

complexity.) In addition to MDPs, future work could consider

deterministic Boolean- and finite state space representation for

vertex functions (Mortveit and Reidys, 2001, 2007). This could

be used for (a) simplified models, (b) studying scenarios for

large systems involving scaling, (c) and for model validation

and verification of the simulation framework. This allows for

bridging from existing mathematical and computational theory

of GDS (Goles and Olivos, 1980, 1981; Goles-Chacc et al.,

1985; Goles and Martinez, 1990; Barrett and Reidys, 1999;

Barrett et al., 2000b, 2003a,b,c,d, 2006; Mortveit and Reidys,

2001, 2007; Laubenbacher and Pareigis, 2003, 2006; Macauley

and Mortveit, 2008, 2009, 2011; Laubenbacher et al., 2009;

Rosenkrantz et al., 2015). We remark that it is also possible

to consider algorithmic or procedural representations for vertex

functions.

6. Integration into at-scale systems

The methodological considerations when building an at-scale

agent-based simulation are vast for any domain of study. Several

well-vetted, industry-grade platforms exist for such efforts (e.g.,

AnyLogic, REPAST) as do academic, in-house enterprises [e.g.,

Matrix (Bhattacharya et al., 2019); EpiHiper (Machi et al., 2021)].

Our prospectus does not advocate methods or platforms.

Instead, we offer a framework for incorporating psychological

theory into at-scale agent-based simulations. Naturally, our

framework increases the complexity of the system components

and, potentially, the dynamics of the system. GDS provides a

mathematical framework for taming such complexities.

7. Summary

The overarching offering of our 10-year prospectus is a more

nuanced understanding of the implications of human behavior

on the dynamics of infectious disease. The primary scientific

advance will stem from the coupling of high-fidelity models

of human behavior, derived from the domain-general cognitive

architecture, and the rigorous mathematical framework of GDS for

understanding complex system dynamics. This, we surmise, will

form the foundation for more detailed, realistic and usable agent-

based simulations of infectious disease in human populations.

Is this 10-year prospectus feasible? It leverages long-standing

results and methods from mathematical and computational

epidemiology, human cognitive architectures, and graph dynamical

systems into a convergent approach. We think the technological

and scientific advances have set the stage to tackle some of the more

difficult issues that implicate human behavior, e.g., fatigue effects,

trust/credibility, attitudinal polarization, social learning; utility-

satisficing, etc. and how these are interdependent with proximal

behaviors that drive disease dynamics, e.g., non-pharmaceutical

intervention/protection, vaccination, and medical intervention.
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