
TYPE Opinion

PUBLISHED 28 April 2023

DOI 10.3389/fpsyg.2023.957517

OPEN ACCESS

EDITED BY

Paul Webb,

Nelson Mandela University, South Africa

REVIEWED BY

Leyre Castro,

The University of Iowa, United States

Sara Becker,

Rutgers University Camden, United States

*CORRESPONDENCE

Hilary J. Don

h.don@ucl.ac.uk

RECEIVED 31 May 2022

ACCEPTED 03 April 2023

PUBLISHED 28 April 2023

CITATION

Don HJ, Goldwater MB and Livesey EJ (2023)

Cognition of relational discovery: why it

matters for e�ective far transfer and e�ective

education? Front. Psychol. 14:957517.

doi: 10.3389/fpsyg.2023.957517

COPYRIGHT

© 2023 Don, Goldwater and Livesey. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Cognition of relational discovery:
why it matters for e�ective far
transfer and e�ective education?

Hilary J. Don1,2*, Micah B. Goldwater1 and Evan J. Livesey1

1School of Psychology, University of Sydney, Camperdown, NSW, Australia, 2Division of Psychological

and Language Sciences, University College London, London, United Kingdom

KEYWORDS

relational learning, far transfer, complex discriminations, category learning, individual

di�erences

In his essay “The Aims of Education,” Alfred North Whitehead (1929) famously

cautioned against “inert ideas.” He argued that an idea that was simply memorized and

not used—in the sense of relating it to other ideas or novel situations as they arise—was

potentially worse than learning no idea at all. The assumption at the core of this assertion

is that understanding requires a continual process of assessing, comparing, relating, and

extrapolating, and any “knowledge” that discourages this process is effectively harmful to

the cognitive development of the individual and to their education specifically. The aim of

education was, thus, to nurture this understanding and not to impart a series of seemingly

disconnected facts that serve little purpose beyond their immediate sphere of relevance.

Nearly a century later, Whitehead’s argument still resonates. Researchers in education,

psychology, and cognitive neuroscience are still in search of a complete understanding of

the processes that allow us to mentally represent abstract concepts such that they can be

discovered, compared, and applied to new domains. Relational discovery—the process of

coming to understand how entities interact—is a key aspect of this process because our

understanding of a complex system necessarily involves learning the relations among its

components. Hence, there is immense value in recognizing similarities in how things fit

together that cannot be gained from simply memorizing the specific instances in which we

encounter them. As Goldwater and Schalk (2016) have highlighted, research on relational

category learning in cognitive psychology is strongly aligned with these broad educational

goals. A relational category is defined in terms of the relations among its component

entities rather than the precise characteristics of those entities. A relational category is one

whose members share a common relational structure but not necessarily common features

(Gentner and Kurtz, 2005). For instance, a catalyst does not classify molecules by any

particular set of internal properties but by their role in facilitating chemical reactions.

In this article, we explain the general approach taken by cognitive psychologists to

study and understand relational categorization and discuss several recent developments

in methodology and theory. Laboratory studies investigating this question often take the

form of a train-then-transfer task in which participants first learn about several instances,

often requiring them to make judgments and predictions accompanied by corrective

feedback, followed by transfer problems that are related to the training material in carefully

controlled ways. This research provides laboratory models for the inert knowledge problem

(Whitehead, 1929), aiming to isolate the cognitive processes that produce or overcome inert

knowledge. We provide examples of this general methodology in the sections below and

discuss their relevance for educational settings.
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A consistent finding from research using these tasks is

that learners struggle to generalize what they have learned

from situations that differ in superficial ways and often apply

relational knowledge incorrectly if the surface features encourage

them to do so (Gick and Holyoak, 1980, 1983; Spencer and

Weisberg, 1986; Holyoak and Koh, 1987; Ross, 1987; Novick,

1988; Bassok and Holyoak, 1989; Gentner et al., 1993; Reeves

and Weisberg, 1994; Anolli et al., 2001; Perkins, 2009; Gonzalez

and Wong, 2012; Trench and Minervino, 2015). Thus, it seems

that there is often competition for the learner to acquire and

use information that is feature-specific vs. relational. At the same

time, relational categories typically evolve from an understanding

of (and comparison between) specific concrete instances. As such,

although theymay be defined in terms of their relational properties,

they often correlate with more concrete features, or at least

connote specific perceptual properties to the individual learner.

For instance, as a relational category, a conduit could be any

process, agent, or object that facilitates the secure and easy passage

of the substance that travels through it (whether that substance

is ideas, data, water, electricity, etc.). However, if one asks an

electrician to describe a conduit, they will likely have a much more

feature-specific class of objects in mind, namely forms of non-

conductive tubing that are used to protect the electrical wire. The

same can arguably be said of the problems that STEM students

encounter in formal education; while the concept is often intended

to be abstract and widely applicable, it needs to be taught in

the context of specific examples. Relational concepts are rarely

(if ever) completely independent of the featural context in which

they are encountered. Indeed, it is likely that the specific featural

contexts in which a relational category is first encountered are

beneficial for its inception (Snoddy and Kurtz, 2021). Early in

the learning of a concept, associations with specific stimuli may

facilitate initial understanding but also help the learner recall

the appropriate set of relational concepts while they are still

developing or consolidating relational knowledge. As Goldstone

and Barsalou (1998) note, it is possible that our abstract relational

ideas are never fully divorced from the concrete featural content

in which those ideas are first developed. Nevertheless, an ideal

outcome for later learning is to achieve not only rich context-

specific knowledge for a domain of expertise but also a deep and

abstract understanding that would allow the flexible application of

knowledge to novel contexts and problems from other domains

when needed. The goal was a coherent knowledge base at multiple

levels of abstraction.

Although the learning of specific instances and structural

relations may be synergistic in many circumstances, we suggest that

two related problems together pose a considerable challenge for

students wishing to extract and use general relational principles.

First, when discovering new underlying principles, feature-

based learning may compete with and prevent the discovery of

new relations. Second, when new relations apply to previously

encountered features or when previously learned relations need to

be applied to new features, attending to the wrong qualities of a

problem prevents appropriate generalization. Although the second

of these problems is at the core of students’ difficulty with far

transfer tasks, we argue that it cannot be considered in isolation

without also recognizing the influence of the first.

To summarize, relational discovery and transfer have long

been considered key components of education but, we argue,

usually come with a set of correlated concrete features, which

people also learn. In some cases, it may be necessary to learn the

associations between concrete features of a learning instance before

a common set of relations can be discovered across instances. This

raises important questions about the functional and mechanistic

relationships between relational and featural learning. Does featural

learning necessarily need to precede relational discovery? Under

what circumstances does featural learning facilitate vs. impede

relational discovery and relational transfer?

Relational discovery in the cognitive
laboratory

In the remainder of this article, we discuss promising lines of

research that address these questions using laboratory models of

relational transfer. We focus here on research using categorization

and predictive learning, two highly related paradigms with

similarities both in terms of the methodologies used and

in the hypothesized psychological processes responsible. Both

categorization and predictive learning usually involve supervised

learning, where the learner must make a predictive judgment on

each trial, on the basis of the information presented, and are then

given corrective feedback. In categorization, this takes the form of

presenting a particular exemplar and asking the learner to classify to

which category it belongs (a classification procedure). In predictive

learning, participants are presented with one or several cues and

must predict which outcome will follow. In practice and process,

these forms of learning are very similar and, indeed, they appear

to have similar properties. Next, we briefly describe several ways in

which relational discovery and transfer have been explored using

these methods.

Relational discovery in categorization

Relational categorization involves classifying an exemplar,

usually comprising several components or events, in terms of the

way its components relate to one another. Researchers have used

visual classification tasks to allow relational categories to coincide

(and/or compete) with rich visual characteristics of individual

exemplars (e.g., Goldwater et al., 2018; Patterson and Kurtz, 2020).

To use an example from our study, (Goldwater et al., 2018; see

Figure 1) used artificial categories in which category membership

was defined by a relational rule. Each exemplar comprised three

lines of small colored squares, each of a different length; if the lines

changed in length monotonically moving from left to right, then

they belonged to one category, and if the lengths changed non-

monotonically, then they belonged to another category. The surface

features, in this case, the colors of the squares, also correlated with

category membership and could be used to perform reasonably

accurately on the task even without knowledge of the relational

rule. The study aimed to determine which parameters of the

task facilitated learning in the relational category and whether

individual differences in learning strategy or cognitive ability would
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FIGURE 1

Example stimuli from a relational categorization experiment (Goldwater et al., 2018). (A) Participants are trained on exemplars that abide by a

relational spatial rule (line lengths change monotonically for one category and non-monotonically for the other) but also have color proportions that

correlate with category membership. (B) Participants are given “near” transfer test items that possess spatial relations and/or color proportions

consistent with one or other category. (C) Participants are given a new “far transfer” categorization task in which a similar monotonicity rule applies,

this time based on the shades of gray of the component features.

predict this facilitation. Most importantly, a far transfer test was

included in which the relational monotonicity rule was applicable

but on a completely different set of features; performance on this

test is aided by knowing the relational rule, but knowledge of the

correlation between precise features (i.e., colors of the squares) and

category label is of next to no use.

The task included “near” transfer items, answered without

corrective feedback, in which the relational and featural properties

of the line exemplars were manipulated independently to gauge

the degree to which individuals were using them. Across several

experiments, Goldwater et al. showed that many individuals

used the features to classify all near-test trials, while others

consistently used the relations, but no participant succeeded

in using both, even though doing so would be advantageous.

This suggests competition for learning about the featural and

relational category information; learning the feature information

could effectively prevent a learner from acquiring the relational

rule, and vice versa. Goldwater et al. also showed that verbal

hints (Experiment 1) and manipulations of the salience of

the features and relations (Experiment 3) had a significant

impact on near-transfer performance in a predictable fashion.

However, despite their obvious influence on how participants

classified the line stimuli, these manipulations had negligible

impact on far transfer. We will go on to describe some

manipulations that do improve far transfer, but first, we

introduce a complementary set of procedures that have emerged

alongside categorization.

Relational discovery in predictive
learning

Predictive learning describes various tasks in which participants

make explicit predictions about the occurrence of one or several

outcomes based on cues presented at the beginning of each trial.

For instance, in the food allergist task, participants are asked to

predict whether or not a fictitious patient will suffer an allergic

reaction when they have eaten the food presented in each trial.

The learner’s goal was to gain an understanding of how the cues

are related to the outcomes so that they can make judgments

about the cue and its ability to signal or generate the outcome.

Although predictive learning shares many attributes in common

with traditional category learning tasks, it has traditionally been

tied more strongly to other theoretical traditions (e.g., associative

learning). The relevance of predictive learning tasks to formal

education might not seem immediately obvious; however, there are

clear and important connections. For starters, predictive learning

tasks form one of the most commonly used paradigms for studying

causal cognition, which has clear relevance to STEM education.

At the very least, predictive learning helps us to understand

how children and adults engage in naïve investigations of the

causal structure of their world, which forms the basis of the

causal reasoning students bring to bear for the task of formal

STEM education (for better or worse). The differences between

naïve causal thinking and normative causal thinking in STEM

offer challenges for educators but understanding this naïve causal
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thinking is critical for effective instructional design that ideally can

bridge these gaps (Clement, 1993; Chi et al., 2012).

In this domain, attempts to separate relational from feature-

based learning and transfer have made use of learning tasks

in which the solution cannot be derived from a simple linear

sum of the outcomes predicted by individual cues (these are

often referred to simply as complex discriminations). For instance,

negative patterning involves a situation in which cue A leads to an

outcome, cue B leads to an outcome but cues A and B together

lead to the omission of that outcome. This pattern goes against

what would be expected by the default modes in which people

and other animals tend to generalize from past instances. It is

not so much that feature-based models of learning cannot explain

the solution to such problems (there are several ways in which

they can, see Whitlow and Wagner, 1972; Livesey et al., 2011;

Thorwart et al., 2012, 2017) but rather that if a consistent pattern

contradicting the usual trend is identified by the learner, then they

may extract structural qualities of the task and extrapolate them to

new learning instances.

One prominent example of this type of approach was developed

by Shanks and Darby (1998) (see Figure 2). Their task dissociates

predictions of associative feature-based learning, on the one hand,

and relational rule learning, on the other. Shanks and Darby

used a food allergist task in which food cues eaten by a fictitious

patient were sometimes followed by an allergic reaction outcome,

sometimes not. The participant learns about many cue–outcome

relationships, all of which follow a simple but counterintuitive set of

rules: Two foods that result in allergic reactions when eaten on their

ownwill not cause an allergic reaction when eaten together, whereas

two foods that cause an allergic reaction when eaten together will

not cause an allergic reaction when eaten on their own. This simple

rule describes the relations between cues and outcomes in a way

that makes the task of learning easier, overriding the feature-based

generalization that participants typically rely on and, thus, avoiding

confusion and interference (see Livesey et al., 2011; Thorwart and

Livesey, 2016; Thorwart et al., 2017). Participants also learn an

extra set of individual cues. On critical test trials, they are asked

what will happen when these cues occur in combination. Learners

using feature similarity to guide their judgments predict similar

outcomes to those they have witnessed; for instance, if cue X leads

to outcome 1 and cue Y leads to outcome 1, then cues X and

Y together will also lead to outcome 1. However, learners who

use the relational rule make the opposite prediction; if X leads

to outcome 1 and Y leads to outcome 1, then X and Y together

will lead to outcome 2. Our research (Don et al., 2016, 2020)

has found that even though most participants can articulate the

opposite rule post-experiment, only around half make generalized

predictions based on the rule. Their tendency to do so is related

to measures of cognitive reflection, strategic model-based choice in

reward learning tasks, and working memory resources (Wills et al.,

2011a,b; Don et al., 2015, 2016, 2020). There is also evidence that

associative and relational predictions co-exist when participants

are asked to make speeded vs. self-paced judgments (Cobos et al.,

2017). A key feature of the Shanks–Darby task (and one that

sets it apart from many of the categorization examples noted

earlier) is that in order to learn the relational rule, the individual

must also learn the basic predictive cue–outcome relationships

well. This means that effective learners have a strong basis for

conflicting predictions as they learn. This task is therefore useful

for determining how predictions from these two processes generate

different expectancies (measurable in brain and behavior) in the

lead-up to making an explicit prediction.

Other studies have made use of similar complex learning

tasks to explore how structural relations might be learned and

transferred. (Livesey et al., 2019; Experiment 2) trained participants

to make predictions in a similar task to that used by Don et al.

(2020). On each trial, the learner always observed two foods and,

on their basis, had to predict which of the two outcomes would

follow. However, this time the relationship between food cues and

reaction outcomes followed different sets of structural relations. For

instance, for one group of food cues, there was always a predictive

cue and an irrelevant cue within the pair that were shown.

For another set of food cues, the correct answer could only be

derived from the combination of foods that were shown (following

biconditional discrimination, which has similar properties to the

patterning example described earlier). In the second phase, the

learner was presented with the same cues but re-arranged in new

biconditional discriminations, with new outcomes. In this second

phase, the cues that had been learned about as part of biconditional

discrimination in the previous phase were initially learned about

faster in the second phase, even though the concrete associations

learned about in the first phase could not be generalized in a

beneficial way to the second phase. This suggests that participants

engaged in relational realignment as a consequence of learning the

biconditional discrimination but did not immediately transfer it to

all of the cues to which it applied. The results such as this potentially

point to the manner in which relational categories emerge and

generalize (initially in a concrete feature-based way), though more

research is needed to ascertain how this process unfolds.

What we can learn from relational
discovery in categorization and
predictive learning?

New results in these two domains are beginning to paint a

complex picture of relational discovery the process of coming to

understand how entities interact as a process that is both reliant on

and in direct competition with the learning of concrete features of

the task. We will describe some of these emerging patterns below.

However, one might ask the more general question, why does the

cognition of relational transfer matter for effective far transfer and

effective education?

The same sorts of tendencies for feature dominance that

we encounter in the laboratory are likely to be experienced by

learners in education settings. Although the tasks employed in

categorization and predictive learning contexts are artificial and

usually rely on a rigid respond-and-correct sequential learning

format, they still possess qualities that make them similar to

classroom learning and assessment tasks. The dual goals of these

tasks as they are presented to the learner—namely to understand

some underlying set of relations and to make correct answers to a

series of questions—are essentially the same as those that students

face (albeit to varying degrees) in the classroom. Furthermore, the

tendency to learn the concrete over the abstract, which is evident

in many of these tasks, is displayed by healthy adults engaged in
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FIGURE 2

Schematic examples of some of the trial types used in the Shanks and Darby (1998) task. (A) depicts a negative patterning discrimination. (B) depicts a

positive patterning discrimination. Each combination of food(s) and allergic reaction outcome constitutes one trial type that would be repeated

several times across the course of a lengthy learning phase. Participants learn several “complete discrimination” examples of food-outcome

contingencies that follow two variants (positive and negative) of a simple patterning rule. They also learn food-outcome contingencies which may or

may not follow the same rule (incomplete discriminations). Participants are asked to use all the knowledge they have learned in the task to predict

what will happen for the transfer items that involve combinations which they have not observed (bottom row).

tertiary education. In Goldwater et al. (2018), Experiment 4 gave

a questionnaire to the participants frequently used in education

research concerning their study strategies (a subscale of the MSLQ;

Pintrich et al., 1993). Participants who reported engaging in

more elaborative study strategies, such as looking for connections

between lecture and reading assignments (without any particular

scaffolding by the teacher to do so), were more likely to learn the

relations in comparison to participants who indicated they did not

engage these strategies (who, in turn, were more likely to just learn

the features). These participants were students at a selective and

prestigious university, thus, it would be fair to assume that the

autonomous use of elaborative strategies would be lower in other

populations. What do these studies point to in terms of general

principles that might aid in relational discovery in the classroom?

Work on relational discovery in these domains reveals evidence of

general abiding principles but also a clear need for further research.

We will note several prominent examples here.

Sequencing of information during
learning

In categorization and predictive learning, as in most real-world

settings, the information relevant to a key relational concept is

rarely available all at once. Rather, it is distributed across multiple

learning instances. The manner in which this information is

distributed sequentially may have a strong impact on relational

discovery. Recent results suggest that the “optimal” sequence for

relational discovery does not necessarily match the conditions that

are best for memorizing learning instances, rote learning essential

information, or learning to discriminate between similar instances.

Interleaving schedules, in which there is a low chance of

exemplars from the same category repeating across trials, are

typically beneficial when tasks require discrimination between

confusable categories (e.g., Bjork et al., 2013), as they promote

between-category comparison (Rohrer and Pashler, 2010).

Blocking schedules, in which there is a much higher chance

of exemplars from the same category repeating across trials,

are suggested to support learning the common relations across

exemplars, as it promotes within-category comparison (e.g.,

Gentner, 2010). In our category learning study described earlier

(Goldwater et al., 2018), we found that a blocking schedule

improved relational discovery. A higher rate of alternation between

exemplars of the monotonic and non-monotonic categories

resulted in stronger learning of the superficial color features and

their correlation with category membership whereas a higher rate

of repetition of the same category was associated with the use of

the relational rule.
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Don et al. (2020) trained relatively simple (patterning) and

relatively complex (biconditional) discriminations in interleaved,

blocked, or clustered schedules. Clustering schedules involved

presenting the constitutive elements of relational structures

consecutively, which should assist the alignment of common

relational structures between exemplars (e.g., Gick and Holyoak,

1983; Catrambone and Holyoak, 1989; Gentner et al., 2003;

Goldwater and Gentner, 2015). Here, blocking was only beneficial

for the transfer of the more complex biconditional discrimination,

whereas clustering was beneficial for both types, regardless of

individual differences in cognitive reflection. The difference in

effects of trial sequencing could be explained by desirable difficulty

(Bjork, 1994), that is, tasks that are more difficult can lead to

better learning and retention (see Bjork et al., 2013), but these

benefits disappear when the learning material is of sufficient

complexity (e.g., Leahy et al., 2015). With simpler relational

rules (such as patterning), blocking trials might be too simple

for effective processing, while more difficult training sequences

(such as clustering) could lead to better encoding and transfer

of the relational rule. With a more complex relational rule

(such as biconditional), more difficult training sequences may not

be beneficial.

The evidence from these studies suggests that relations are

easier to learn when the right amount of information is given

in an uninterrupted sequence. However, what counts as the

ideal amount of contiguous information (or grain size) may

depend on the nature of the task and the underlying relation

that needs to be learned. The sequencing considerations are

a little different in the case of predictive learning than they

are for categorization; in the case of predictive learning, it is

often the way that predictive relations are experienced over

different (but repeated) trial types that define the relational

structure of interest. In contrast, in categorization, it is often

the manner in which the simultaneously presented components

of the exemplar are arranged that determines relational category

membership. However, each trial provides a unique exemplar

of this arrangement. In either case, comparison across trials is

necessary to understand the abstract relations of interest and

presenting relevant information in an uninterrupted sequence may

be of importance for the discovery of those relations.

Inference learning

As noted, most work in categorization and predictive learning

uses a trial-and-error format in which the participant indicates

what they think is the appropriate category or predicts which

outcome will occur and then receives corrective feedback, a format

we refer to here as classification. This classification format itself

may promote a focus on perceptual features, at the expense of

learning underlying relations. An alternative approach, sometimes

referred to as inference learning, is to provide a partial category

exemplar and information about the correct category and ask

the learner to infer the missing components of the exemplar. A

previous study on inference learning has shown that it benefits

learning the statistical relations among exemplar features (e.g.,

Sakamoto and Love, 2010). Erickson et al. (2005) and see Higgins

(2017) also showed that inference learning improved learning of

abstract coherent categories compared to a typical classification

approach. In our study (Goldwater et al., 2018), we found that

inference learning promotes a focus on relations among stimulus

properties and results in stronger relational discovery. In this study,

we found that inference learning improved relational learning

as well as far transfer but did not result in a more general

performance advantage; participants in the inference learning

conditions actually performed significantly worse at their learning

task during training and on near transfer test were worse at

classifying other exemplars that were similar to those seen during

training. Thus, the advantage was specifically in identifying the

underlying relational rule.

Labeling and categorizing relational
principles

The process of discovering and transferring abstract knowledge

first requires learning appropriate relations that are represented

as separate entities, independent of the features across which they

are first encountered. Second, given a new isomorphic problem

in which the same relational structure may be relevant, the

learner must identify the appropriate way to map their relational

knowledge to the new situation, potentially selecting among several

candidate relations that could be relevant. Both the first and second

parts of this problem present unique challenges. However, the

strength and clarity of the relational representation are relevant

factors in both cases. Kurtz and Honke (2020), Patterson and Kurtz

(2020); and Snoddy and Kurtz (2021) have argued that far transfer

requires the relational representation to reach category status, that

is, the relation must be recognized as a known concept. What this

affords for the learner is an efficient way to map specific instances

of a given relation to a quickly identifiable category with known

properties, rather than engaging in the potentially more effortful

and error-prone process of generalizing from a series of less well-

connected memories of previous (relationally) similar experiences.

Similarly, our group’s new work (in progress) shows that learning

symbolic representations for relational categories facilitates transfer

between disparate sets of features, compared to attempting to map

the relations directly between feature sets (see, e.g., Gentner, 2010

for a thorough discussion).

Progressive alignment

The analogical comparison provides a foundation for

discovering, abstracting, and transferring structural relations, and

a key component of this process is aligning the corresponding

components of the two examples. Studies using humans and other

animals have shown that providing several different instantiations

of a relational concept increases the salience of abstract (e.g.,

same/different) properties of stimuli, and this effect increases

when more unique instantiations are used (for a review, see

Wasserman et al., 2017). In many cases, this might well be because

presenting multiple instances results in a comparison process from

which relational stimulus commonalities are either emphasized or

discovered de novo. However, Gentner and Hoyos (2017) argue

that what counts most for relational abstraction is not just any
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exposure to exemplars that share relational structure but having

multiple alignable examples that conform to the same relational

structure in a way that facilitates comparison between them.

There are multiple ways to make a pair of exemplars easier to

compare. At least in young children, relational alignment is easier

when there is a high featural similarity between the objects that

require alignment. Evidence from a range of sources suggests that

exposure to analogies where alignment is easier because the surface

similarity of the components matches their relational similarities

will facilitate more difficult structural alignment later (see Gentner

et al., 1995; Kotovsky and Gentner, 1996; Gentner and Hoyos,

2017).

This method of scaffolding the analogical comparison process

is referred to as progressive alignment. Notably, the facilitative

effects of progressive alignment do not appear to rely on corrective

feedback and may go unnoticed until far transfer is actually tested.

There are several reasons why it may be effective. When the objects

themselves are similar across two cases, this invites putting them in

correspondence. This may help the learner then discover structural

qualities that are only apparent when components are aligned

appropriately. Alternatively, progressive alignment may shift our

inductive biases toward looking for, and using, relational qualities,

especially after initial alignments rely on the “training wheels” of

more superficial similarity and attention has been shifted to more

purely structural matches.

Changing inductive biases to favor
relational transfer

When faced with a novel (e.g., far transfer) task, the learner

must decide which of many possible properties should form the

foundation for transferring past knowledge. The same problem

applies when identifying similarities between instances. For

instance, Kroupin and Carey (2021) discuss this issue in the

context of relational matching to sample, which entails identifying

a relational attribute like “same” or “different” in the sample and

choosing the option that contains the same relational attribute

even if the surface features are very different. Kroupin and Carey

note that people are necessarily heavily constrained by inductive

biases, which allow them to select a subset of features that

they consider likely to be relevant for matching (based on past

experience). In at least some instances in which learners (e.g.,

crows, primates, and young human infants) fail to spontaneously

produce relational same/different matching-to-sample behavior, it

appears the same/different relation is simply not a feature that

the learner is disposed to selecting even though they may have

learned sufficient representations to support relational matching

and, in principle, have the cognitive capacity to do so. This parallels

the circumstances often faced by students encountering the inert

knowledge problem. Although, inmany cases, they have learned the

appropriate relational concept and can apply it in some contexts,

they simply fail to identify its relevance to a new situation.

Kroupin and Carey (2022) found that training on non-

relational matching-to-sample tasks that still emphasize qualities

that often form the foundations of relational comparison (e.g., size

or number) could enhance relational matching to sample in adult

humans. Since adult humans clearly hold (and spontaneously use)

relations such as “same” and “different” in these tasks, this result

can only be explained by changing inductive biases toward using

some (e.g., same/different) features and inhibiting using others

(e.g., color).

Individual di�erences

When an educational intervention succeeds in improving

outcomes, a key question that needs to be asked is who benefits

the most? If the improvements are not universal, then they may

level the playing field by improving the performance of weaker

students or they may exacerbate differences between learners if

they largely benefit more proficient learners. This is an important

question in the domain of relational discovery specifically. Several

psychological factors might predict how learners respond to a

manipulation of the learning task. Here, we focus on two: first,

cognitive capacity, broadly defined as proficiency in measures

of fluid intelligence, working memory capacity, and analytical

thinking, and second, learning strategy, which we conceptualize as

the learner’s natural disposition to search for underlying principles

and rules as opposed to being content memorizing answers. These

two factors are thought to be particularly relevant because concept

learning is often considered the product of deeper or more involved

engagement with the content. Where this assumption is accurate, it

can be assumed that conceptual understanding will be a product

of the learner’s ability to engage at a deeper level, and their

motivation to do so. Indeed, relational transfer in several contexts

appears to be predicted by measures of cognitive capacity and

learning strategy. Where a learning manipulation simultaneously

improves relational transfer and removes the correlation between

these personal variables and relational transfer, it suggests that the

intervention has succeeded in elevating the performance of weaker

learners in particular.

In relational categorization, several results suggest that learning

strategy is a consistent predictor of relational discovery. McDaniel

et al. (2014) found evidence that there are large and stable

individual differences in individuals’ tendencies to look for

structure; participants who explicitly searched for rules in one

learning task tended to learn underlying functions determining the

answer in other content domains. Participants who were content

to memorize examples to learn the correct answer tended to do so

across multiple learning tasks. Little andMcDaniel (2015a,b) found

that this tendency to look for underlying rules benefitted learning

regardless of whether the rule was feature-based or relational in

nature, suggesting it is the strategy of searching for connecting

principles that makes the difference rather than the precise content

on which those principles are based. The tendency to search for

rules did not appear to be related to fluid abilities (measured

using Ravens Progressive Matrices) in Little and McDaniel’s study.

Goldwater et al. (2018) found a similar pattern of results in which

rule searching strategy but not fluid ability predicted relational

discovery across multiple versions of the classification task.

A key problem that is evident in recent results (e.g., Goldwater

et al., 2018) is that although there are many ways to enhance

the discovery of a relation, many seem to benefit those who seek

out relations in the first place. In other words, one has to be

generally disposed to look for underlying relations in order to

Frontiers in Psychology 07 frontiersin.org

https://doi.org/10.3389/fpsyg.2023.957517
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Don et al. 10.3389/fpsyg.2023.957517

benefit from the scaffolding that the experimenter (or instructor)

provides. Goldwater et al. (2018) found that grouping the exemplars

of the same category together improved performance on transfer

tests, but this was mostly carried out by participants who reported

that they were actively seeking rules in another learning task.

Are there methods that might benefit all, or even level the

playing field by encouraging relational discovery, particularly

in those less inclined to look for overarching rules? Some

evidence suggests that inference learning might be particularly

effective in encouraging relational discovery in those who do not

naturally seek out rules. In our study of relational discovery using

inference learning (Goldwater et al., 2018), we found that inference

learning benefitted learners with self-reported suboptimal learning

strategies (i.e., the students who did not engage in the elaborative

learning strategies as mentioned above). Although this result needs

further research, it suggests that the inference learning format

assists relational learning for those who are not predisposed to

engage in activities that promote relational learning generally. In

contexts where learners’ natural motivation to think more deeply

about a problem may be low, or for classes where students seem

satisfied with rote learning facts, inference learning may prove

particularly valuable for encouraging conceptual understanding.

In contrast to the differences in learning strategy described

above, relational transfer in some learning tasks seems to load

much more heavily on fluid abilities and working memory. A

consistent result found with the Shanks–Darby task, for instance,

is that participants with higher working memory capacity, fluid

ability as measured using Ravens, and cognitive reflection tend to

use the relational rule much more readily on new transfer items.

One thing that is different about this task compared to relational

categorization examples is the need to hold information in working

memory to even identify one specific instance of the structural

relations governing the task, i.e., the learner needs to actively

consider A+, B+, AB– (in contrast, the learner samples all the

components that are related to one another all at once in the most

relational categorization tasks).

Future directions

The emerging patterns of results described above offer exciting

avenues for future research but also provide hints at how

a key aspect of effective education—the efficient transfer of

relevant relational knowledge—might be improved for all learners.

Key challenges remain for establishing how the collection of

manipulations described above connects, especially the causal

mechanisms by which they improve relational discovery and

relational transfer.

Prompting spontaneous relational
discovery when motivation is lacking

One of the promising findings concerning inference learning

is that it appears to elevate relational discovery in those who are

not disposed to look for rules and or connecting principles. Studies

have found little evidence that a rule-based strategy is correlated

with ability per se, and it may be that learning strategy is associated

more with motivational factors, such as the intrinsic value of

satisfying a need for complex thought. If this is, in fact, the case,

then it implies that the significant challenge is one of encouraging

relational discoveries among those who are not motivated to search

for such relations.

Minimizing the di�culty of relational
discovery and transfer by minimizing
working memory load

In those instances where relational discovery does require a

substantial investment of working memory or other cognitive

resources, then the challenge is finding ways to minimize that

load. The strategies that work best in this circumstance may be

quite different from those that work when the main obstacle is

motivation to search for rules.

From competition to sca�olding

We have discussed the idea that ideal expert reasoning involves

both rich context-specific knowledge (within their domain of

expertise) and the flexible transfer of knowledge to novel contexts

when needed. Tasks such as the one used in Goldwater et al. (2018)

suggest that learning relations and learning features are in direct

competition, and so the processes that support a more integrated

knowledge base with multiple levels of abstraction are currently

unclear. A study from Kemp et al. showed how learners can learn

multiple levels of abstraction simultaneously, but the ease with

which learners do so in these tasks suggests that they may be

too simple to serve as laboratory models of real STEM learning

(Kemp et al., 2010). Future studies will need to design appropriately

challenging tasks where multiple levels of abstraction need to be

learned and all levels of knowledge need to be maintained to

support task performance (getting past the potential competition).

From discriminating between categories to
integrated systems of concepts

In typical laboratory category learning research, the task is to

classify an exemplar as one of the small numbers of categories,

where the relationship among these categories is simply how they

differ from one another. The task is to learn to discriminate between

the category options. However, in real knowledge domains,

concepts and categories are related in meaningful ways beyond

just how they differ. One could treat catalysts and reagents as

contrasting roles in chemical reactions that chemistry students

need to learn, but the schema (of catalytic chemical processes)

that governs these roles is critical to understand, which entails

understanding how these different relational categories relate

to one another. Domain knowledge ideally is composed of an

integrated system of relational concepts. Future research should try

to reflect this desired goal state of expert knowledge.
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From cognitive laboratory to classroom

In order to be truly effective, any insights gained from studying

relational discovery and transfer in the cognitive laboratory will

need to have translatable benefits for the classroom. There is

a cause for optimism in this regard. For instance, most of the

manipulations discussed above are relatively easy and cost-effective

to implement, and several have been shown to significantly improve

understanding of real-world educational material. However, we

acknowledge that translating insights in the laboratory to gains

in the classroom is not trivial or straightforward. In the endeavor

to learn materials that benefit all students—and particularly

those who lack the motivation, strategies, or natural ability

that could make spontaneous conceptual understanding easy—

the cognitive study of relational discovery has a lot to offer.

We argue that examining cognitive processes under carefully

controlled conditions affords a unique level of understanding

and one that can inform coordinated efforts to improve

educational outcomes.
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