Previous longitudinal studies identified various factors predicting changes in Quality of Life (QoL) in people with diabetes mellitus (PwDM). However, in these studies, the stability of QoL has not been assessed with respect to individual differences.
We studied the predictive influence of variables on the development of QoL in PwDM across three waves (2013–2017) from the cross-national panel dataset Survey of Health, Ageing, and Retirement in Europe (SHARE). To determine clinically meaningful changes in QoL, we identified minimal clinically important difference (MCID). Linear regressions and Linear Mixed Models (LMM) were conducted to determine factors associated with changes in QoL.
On average, QoL remained stable across three waves in 2989 PwDM, with a marginal difference only present between the first and last wave. However, when looking at individual trajectories, 19 different longitudinal patterns of QoL were identified across the three time-points, with 38.8% of participants showing stable QoL. Linear regression linked lower QoL to female gender, less education, loneliness, reduced memory function, physical inactivity, reduced health, depression, and mobility limitations. LMM showed that the random effect of ID had the strongest impact on QoL across the three waves, suggesting highly individual QoL patterns.
This study enhances the understanding of the stability of QoL measures, which are often used as primary endpoints in clinical research. We demonstrated that using traditional averaging methods, QoL appears stable on group level. However, our analysis indicated that QoL should be measured on an individual level.