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Beta oscillations in vision: a 
(preconscious) neural mechanism 
for the dorsal visual stream?
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Neural oscillations in alpha (8–12  Hz) and beta (13–30  Hz) frequency bands are 
thought to reflect feedback/reentrant loops and large-scale cortical interactions. 
In the last decades a main effort has been made in linking perception with alpha-
band oscillations, with converging evidence showing that alpha oscillations have a 
key role in the temporal and featural binding of visual input, configuring the alpha 
rhythm a key determinant of conscious visual experience. Less attention has been 
historically dedicated to link beta oscillations and visual processing. Nonetheless, 
increasing studies report that task conditions that require to segregate/integrate 
stimuli in space, to disentangle local/global shapes, to spatially reorganize visual 
inputs, and to achieve motion perception or form-motion integration, rely on 
the activity of beta oscillations, with a main hub in parietal areas. In the present 
review, we summarize the evidence linking oscillations within the beta band and 
visual perception. We propose that beta oscillations represent a neural code that 
supports the functionality of the magnocellular-dorsal (M-D) visual pathway, 
serving as a fast primary neural code to exert top-down influences on the slower 
parvocellular-ventral visual pathway activity. Such M-D-related beta activity is 
proposed to act mainly pre-consciously, providing the spatial coordinates of 
vision and guiding the conscious extraction of objects identity that are achieved 
with slower alpha rhythms in ventral areas. Finally, within this new theoretical 
framework, we  discuss the potential role of M-D-related beta oscillations in 
visuo-spatial attention, oculo-motor behavior and reading (dis)abilities.
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Introduction

Oscillatory activity in the alpha, beta and gamma frequency range (alpha: 8–12 Hz, beta: 
15–30 Hz, gamma: 30–80 Hz), have been previously extensively linked to perceptual processes, 
and also higher-level visual cognition (Tallon-Baudry and Bertrand, 1999; Womelsdorf et al., 
2006; Fries, 2009; Engel and Fries, 2010; Martinovic and Busch, 2011; Tan et al., 2013). Their 
precise role is still matter of intense scientific investigation, but a widely supported idea is that 
while activity at higher frequency (gamma) would reflect feed-forward stimulus processing 
restricted to local neural ensembles, activity modulation at lower frequency (alpha and beta) 
would reflect feedback/reentrant loops and large-scale cortical interactions (Donner and Siegel, 
2011; Fries, 2015; Jensen et al., 2015; Sherman et al., 2016; Palmigiano et al., 2017; Palva and 
Palva, 2018).
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Alpha oscillations have been framed as the fundamental rhythm 
of conscious perception, shaping the internal experience of the 
sensory world (Valera et al., 1981; VanRullen, 2016; Di Gregorio et al., 
2022; Kienitz et  al., 2022). Several studies showed that different 
parameters (e.g., power, phase, frequency) of alpha oscillations 
determine diverse aspects of visual perception (for recent reviews see: 
Clayton et al., 2018; Ghiani et al., 2021; Peylo et al., 2021; Keitel et al., 
2022; Samaha and Romei, 2023). In line with theoretical proposals 
that hypothesize a role for alpha oscillations in the temporal sampling 
of visual information (VanRullen, 2016; Mierau et al., 2017), the speed 
of alpha oscillations has been found to act as a pacer determining 
sensory sampling in the brain (Cecere et al., 2015; Samaha and Postle, 
2015; Ronconi et al., 2018; Marsicano et al., 2023). Relatedly, the phase 
of alpha oscillations can determine whether visual signals on a 
sub-second temporal scale will be temporally integrated or segregated 
(Wutz et al., 2014; Wutz and Melcher, 2014; Ronconi et al., 2017, 2023; 
Ronconi and Melcher, 2017). Furthermore, the integrative function of 
alpha oscillations also operates across features of visual objects. By 
acting over large scale networks, alpha oscillations would integrate 
different object features (e.g., orientation, color) which are processed 
in segregated and specialized brain areas, into one unitary percept 
(Zhang et al., 2019; Parto Dezfouli et al., 2021).

The role of beta oscillations in perception is much less 
documented. Nonetheless, mounting evidence in the last decade has 
linked this oscillatory rhythm to different visual phenomena. In this 
review, we will try to summarize this emerging literature highlighting 
the peculiar conditions under which beta oscillations are modulated 
in visual tasks, its possible functional meaning and its putative 
neuroanatomical networks. We  will propose that beta is likely to 
be the rhythm of the dorsal (“where”) visual pathway, which would act 
as a fast track that provides the spatial coordinates for visual 
perception, acting at a preconscious level to guide the active 
construction of stimulus identity in the ventral (“what”) stream areas, 
and plan action (e.g., eye movements) accordingly.

Spatial integration/segregation and 
dorsal-to-ventral guidance in perception

The parvocellular-ventral (P-V) and the magnocellular-dorsal 
(M-D) streams are the two major visual pathways. The P-V stream is 
characterized by both lower temporal resolution and superior 
sensitivity to high spatial frequencies, and it is also sensitive to color 
changes (Kaplan and Shapley, 1986; Kaplan et  al., 1990); it is 
responsible for object identity extraction (Goodale and Milner, 1992). 
The M-D stream is the other major visual pathway starting from the 
retina and projecting to occipital and parietal cortices via the M-layer 
of the lateral geniculate nucleus (Maunsell and Newsome, 1987).

The M-D stream is considered to be  color-blind, responds to 
subtle differences in luminance contrast, and is highly sensitive to low 
spatial and high temporal frequencies of visual stimulation, thus being 
the primary pathway for processing motion (Livingstone and Hubel, 
1988; Morrone et al., 2000). Moreover, the M-D stream is considered 
having a central role for contour integration and segregation. There 
are computational and theoretical reasons indicating that spatial 
grouping is likely achieved by an interplay between feedforward and 
feedback activity within the visual system (Roelfsema, 2006; Jehee 
et al., 2007). While the feedforward connections would promote the 

representation of visual features within a spatial map (Tootell et al., 
1998), feedback activity from higher-level regions would promote the 
selection of targets according to their spatial location (Foxe and 
Snyder, 2011). Specifically, fast bottom-up projections to the M-D 
stream would provide coarse spatial representations facilitating, via 
recursive feedback from the parietal cortex, the slower and attention-
demanding objects identification in ventral stream areas (Vidyasagar, 
1999, 2004; Levy et al., 2010; Vidyasagar and Pammer, 2010). Such 
dorsal-to-ventral communication is thought to promote the activation 
of receptive fields of appropriate size, resulting in an effective 
segregation of relevant input (Lamme and Roelfsema, 2000).

Because of the poor spatial resolution of representations carried 
by the dorsal stream, when encountering spatially complex displays, 
such as in the case of visually crowded elements, the parietal cortex 
may erroneously promote binding between targets and irrelevant 
flankers (Chakravarthi and Pelli, 2011). That would also explain why 
stimuli that preferentially activate the M-D stream appear to be more 
vulnerable to visual crowding effect (Atilgan et al., 2020).

When there is the opposing need for spatial integration, such as 
when solving a contour integration problem, information is 
bidirectionally exchanged between lateral occipital (i.e., LO1) and 
parietal regions (i.e., intraparietal sulcus) (Hanslmayr et al., 2013). 
While LO1 would preferentially respond to orientation (Larsson and 
Heeger, 2006) and collinearity (Kourtzi et al., 2003) of local elements, 
synchronization of this region with the parietal cortex would provide 
a spatial reference by enhancing LO1 neurons firing rates in the 
relevant locations (Roelfsema, 2006).

Beta oscillations as the “natural” rhythm of 
parietal areas

Converging evidence argues for a spatial and functional 
predominance of beta oscillations in parietal cortices, framing beta 
as the “natural” rhythm of such networks (Rosanova et al., 2009; 
Ferrarelli et al., 2012). With a data-driven approach applied to MEG 
and MRI data from the Open MEG Archive (OMEGA, Niso et al., 
2016), Capilla et  al. (2022) developed a voxel-by-voxel atlas of 
natural frequencies in the resting brain. They showed that the 
sources of beta oscillations were distributed following a posterior-
to-anterior gradient (see Figure 1) showing low-beta (~15–18 Hz) 
being generated mostly by lateral occipito-parietal regions 
(Superior Occipital, Middle Occipital, Superior Parietal, and Post-
Central Gyri), while high beta oscillations were located in motor 
(~20 Hz, Pre- and Post-Central Gyri) and prefrontal areas 
(~20–30 Hz, Middle Frontal Gyrus), corroborating previous 
findings by Ferrarelli et al. (2012). A complementary approach to 
unveil region-specific spectral patterns consists in perturbing 
endogenous oscillations via electrical/magnetic stimulation and 
recording the EEG response. Transcranial magnetic stimulation 
(TMS) can be used to transiently increase cortical excitability over 
specific cortical areas, enhancing their spontaneous oscillatory 
activity. Samaha et al. (2017) employed this approach and showed 
that when TMS was delivered to occipital areas, pre-stimulation 
alpha power predicted TMS-induced phosphenes perception; 
contrarily, when TMS was delivered to the posterior parietal cortex 
(PPC), it was the prestimulation beta power to be predictive of 
phosphenes perception.
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FIGURE 1

Key structures of visual streams with their natural oscillatory rhythms and their functional properties as highlighted by correlational and causal evidence. 
(A) Key cortical and subcortical structures of the magnocellular dorsal and the parvocellular ventral visual streams. Colors indicate the frequencies of the 
“natural” oscillatory activity in the 8-30 Hz interval across the occipital and temporal cortex (blue = alpha, 8-12 Hz), the parietal cortex (azure = low beta, 
15-20 Hz), and the frontal cortex (fuchsia = high beta, 20-30 Hz) as indicated by Rosanova et al. (2009), Ferrarelli et al. (2012) and Capilla et al. (2022). 
White balloons indicate cortical structures while gray balloons indicate subcortical ones. Black arrows indicate feedforward/feedback connections. FEF: 
Frontal Eye FIelds; PPC: Posterior Parietal Cortex; MT/V5: Middle Temporal Cortex/Visual Cortex 5; V1,V2,V3, V4: Visual cortices 1, 2, 3,4; LGN: Lateral 
Geniculate Nucleus; TEO: Temporo-Occipital Cortex; IT: Inferior Temporal Cortex. (B-D) Tasks and results from studies investigating the role of beta 
oscillations in bistable motion (B), visual crowding (C) and local and global Motion (D). Participants were presented with rotating dots and reported 

(Continued)
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Beta oscillations along the frontoparietal 
network control spatial attention and eye 
movements

The M-D stream has direct projections also from early visual 
cortices to prefrontal cortices (PFC) in primates (Goldman-Rakic and 
Porrino, 1985; Rempel-Clower and Barbas, 2000) and to inferior 
frontal gyrus (IFG) (Miller and Cohen, 2001). In addition, the M-D 
stream has a direct natural continuation in the frontoparietal “dorsal” 
network for visual attention (Corbetta, 1998; Corbetta and Shulman, 
2002; Giesbrecht et al., 2003; Siegel et al., 2008; Shulman et al., 2009; 
Szczepanski et al., 2010). Bar et al. (2001) suggested that low-level 
coarse visual representations are rapidly projected from early visual 
areas to PFC, which then conveys an initial guess of the image back to 
the temporal cortex, integrating it in the bottom-up flow. Recently, 
Soyuhos and Baldauf (2023) used resting-state 
magnetoencephalography (MEG) recordings to directly test the 
hypothesis that the frontal eyes field (FEF) areas, which is part of the 
dorsal attention network, has predominant functional coupling with 
spatiotopically organized regions in the dorsal (“where”) visual stream. 
They analyzed functional connectivity of spontaneous brain activity, 
and their results show that FEF has a robust power correlation with 
the dorsal visual pathway in both the beta and gamma bands. 
Similarly, beta power modulations in FEF have been associated with 
frontoparietal feedback activity leading to the suppression of eye 
movements and attentional shifts, again suggesting an important role 
of beta band activity in the control of visuospatial attention (Gregoriou 
et al., 2012; Fiebelkorn et al., 2018; Fiebelkorn and Kastner, 2020).

Modulations of beta oscillations in the fronto-parietal network 
occur in relation to different visual attention tasks. In particular, beta-
band global power at resting state showed correlations with fronto-
parietal connectivity and behavioral performance at visual search and 
gun shooting tasks (Rogala et al., 2020). In addition, early-occurring 
beta-band connectivity between frontal and parietal regions associated 
with visual discrimination is suppressed in neglect patients during 
visual full-field attention tasks (Yordanova et al., 2017).

The predominance of beta functional connectivity along the 
dorsal visual pathway highlights the relevance of beta oscillations for 
visual perception, considering also the role of the fronto-parietal 
network along the M-D stream in the generation of saccadic eye 
movements. Indeed, saccades depend on the activity of the lateral 
intraparietal cortex (LIP) in the PPC, responsible for directing spatial 
attention, and the FEF, responsible for sending motor signal to the 
superior colliculus, a visuomotor integrative relay innervating the 
brainstem (Paré and Wurtz, 2001; Curtis and Connolly, 2008). In this 
network, beta-band oscillations were shown to be fundamental both 
for saccades preparation and execution, reaching behavior and 

eye-hand coordination (Dean et  al., 2012; Hagan et  al., 2012; 
Mooshagian et al., 2021).

The aforementioned studies frame beta-oscillations within the 
M-D stream as the core brain rhythm subserving action-oriented 
behavior, from the orientation of spatial attention, to reaching a target 
object with gaze and limbs. To this regard, it is important to mention 
that beta oscillations have been associated with a general mechanism 
for the maintenance of a motor and/or cognitive state (Engel and 
Fries, 2010). A possible link between beta oscillations in the dorsal 
stream and all the key components of action-oriented behaviors may 
fundamentally lie in the correct perception and maintenance of the 
representation of space, which is particularly challenging in conditions 
in which acting in the environment requires a continuous update of 
such representations. This latter point will be discussed in more detail 
later (see the Reconciling old and new perspectives for beta oscillations 
in visual perception section).

Oscillations in the beta band and 
visuo-spatial perception: correlational and 
causal evidence

Mounting evidence highlighted a relationship between beta-band 
activity and perceptual phenomena that require different levels of 
spatial analysis. Indeed, modulations of beta-band oscillations have 
been associated with perceptual reorganization (Belitski et al., 2008) 
such as the one occurring during perceptual switches in bi-stable 
pictures (Okazaki et al., 2008; Ehm et al., 2011; Kornmeier and Bach, 
2012) or even during form-motion integration (Aissani et al., 2014). 
Of particular relevance, Zaretskaya and Bartels (2015) provided 
evidence for beta power modulation in PPC during a perceptual 
switch between global and local motion (and vice-versa) in bistable 
animations, suggesting that beta oscillations reflect the state of 
individual perceptual set (Engel and Fries, 2010) in terms of visuo-
spatial attention and/or feature grouping (Grassi et  al., 2018) in 
moving displays (see Figure 1). In line with other studies using bistable 
visual stimuli, beta power modulations in parieto-occital sites is found 
in correspondence of a switch between local and global vision 
(VanRullen et al., 2006; Yokota et al., 2014; Kloosterman et al., 2015) 
suggesting that beta oscillations mediate fast large-scale coordination 
along the dorsal visual stream (Devia et al., 2022).

Further, in a visual crowding task employing letter stimuli, 
Ronconi et  al. (2016) reported a larger post-stimulus beta power 
reduction in a strong crowding condition (small target-flankers 
distance) with respect to a weak crowding condition (larger target-
flankers distance). In addition, Ronconi and Bellacosa Marotti (2017) 
showed that the correct performance in the same task was linked to a 

when they perceived them as couples of dots rotating along their center or when they perceived two squares enclosed in quadruplets of dots rotating 
along their center (B-1). A larger decrease of steady-state beta power found for local vs. global perception (B-2, leftmost subplot). A larger beta 
desynchronization was found when switching from local to global with respect to global to local (B-2, rightmost subplot). Participants were requested 
to identify the orientation of a target letter “T” embedded in a vertical array of flanker “Hs” with different levels of visual crowding (C-1). Higher pre-
stimulus beta power was associated with correct identification (C-2, higher subplot) and a larger beta desynchronization was found with strong 
crowding between target and flankers (C-2, lower subplot). In a subsequent study, a higher crowding resilience (lower threshold) was found when 
participants received beta tACS over right parietal sensors (C-3). Participants performed a Navon task in which they reported the presence of a local 
stimulus (“H” or “S”) letter in an “H-shaped” or “S-shaped” spatial disposition. Before each trials they either received theta or beta rTMS over the IPS  
(D-1). In the incongruent condition of the local-target task (“find the local H in the S-shaped disposition”), theta rTMS lead to a decrement in behavioural 
performance while beta rTMS to an increment, while theta rTMS lead to improvements only in the same condition of the global-target task (“find the 
global H in an H-like disposition of S letters”) (D-2).

FIGURE 1 (Continued)

https://doi.org/10.3389/fpsyg.2023.1296483
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Di Dona and Ronconi 10.3389/fpsyg.2023.1296483

Frontiers in Psychology 05 frontiersin.org

stronger pre-stimulus beta power (see Figure 1). Ronconi et al. (2020) 
replicated evidence of an association between letter crowding and beta 
oscillations in children, by showing an event-related desynchronization 
(i.e., power reduction) in the beta band spanning both pre- and post- 
stimulus time windows. This beta power reduction was not evident in 
a group of children with autism spectrum disorders, potentially 
suggesting an impaired frontoparietal top-down influence on ventral 
stream regions as a signature of their hyperlocal perception.

The aforementioned studies provide important correlational 
evidence about the role of beta oscillations in visuo-spatial perception. 
However, casual links should be inferred when behavioral changes are 
observed following a direct modulation of neural oscillations. 
Transcranial Alternating Current Stimulation (tACS) represents one 
promising medium to achieve this purpose for its capacity to modulate 
the activity of specific frequency bands via neuronal entrainment 
(Helfrich et al., 2014; Witkowski et al., 2016; Lakatos et al., 2019). 
Battaglini et al. (2020) showed that right parietal beta-band (18 Hz) 
tACS, as compared to alpha tACS (10 Hz) and sham (placebo) 
stimulation ameliorated performance in a visual crowding task when 
crowded displays were presented to the contralateral hemifield. This 
study provided the first causal evidence for the involvement of beta 
oscillations in visual crowding corroborating the link between beta 
activity and visuo-spatial perception.

The relevance of beta-band oscillations in fronto-parietal regions 
during visual perception is further corroborated by multiple 
transcranial magnetic stimulation (TMS) studies. Modulating beta 
oscillations via repetitive TMS (rTMS) in right parietal cortex 
facilitated local processing in a Navon task (Romei et al., 2011; see 
Figure  1), in accordance with the global–local switch in bi-stable 
motion shown by Zaretskaya and Bartels (2015). More recently, it has 
been shown that single-pulse TMS applied to frontal eye fields (FEF) 
triggers phase reset of beta oscillations at occipital sensors and 
modulate the accuracy of motion discrimination (Veniero et al., 2021), 
indicating that the activity of frontal lobes exerts a top-down influence 
on parietal activity shaping visual perception. Relatedly, rTMS at high 
beta frequency (30 Hz) applied to FEF resulted in higher inter-regional 
synchronization in beta oscillations between FEF and bilateral parietal 
sensors and increased visual sensitivity in a visual detection task 
(Stengel et al., 2021), while low beta rTMS (20 Hz) delivered to right 
Intraparietal sulcus (IPS) or right FEF interfered with visual 
identification (Capotosto et  al., 2009). Thus, top-down beta-band 
rhythmic communication within the fronto-parietal network appears 
as having an evident role for visual perception and attention, in 
agreement with its putative role for the dorsal stream functionality.

The role of beta oscillations in reading, 
developmental dyslexia, and related 
visuo-attentional impairments

The functions of the M-D stream are crucial for reading and its 
acquisition (Vidyasagar and Pammer, 2010; Gori et al., 2016; Stein, 
2019). In this context, the parietal cortex facilitates attention-
demanding letters/words identification grounded in the ventral 
stream by providing coarse spatial representations allowing for the 
segregation of target items from the other neighboring ones. In this 
way, speech sounds can be finally mapped to single letters, syllables 
and words. To this regard, the magnocellular theory of developmental 

dyslexia (Stein and Walsh, 1997; Stein, 2019) suggests that alterations 
of the M-D pathway have a primary role in determining reading 
impairments but also impaired visual search (Vidyasagar, 1999) and 
visuo-spatial attention (Visser et al., 2004; Vidyasagar and Pammer, 
2010). A few studies reported alterations in beta oscillations as well as 
in other frequency bands in individuals with DD during linguistic 
tasks tapping into phonological, orthographic and semantic processing 
(Rippon, 2000; Klimesch et al., 2001; Spironelli et al., 2008), but also 
in auditory rhythmic tracking tasks (De Vos et al., 2017; Chang et al., 
2021). Importantly, Turri et al. (2023) reported lower resting-state beta 
power over parieto-occipital sites in adults with DD, and showed that 
beta power in these cortical sites was a predictor of reading accuracy 
in DD but not in typical readers.

Collectively, these findings suggest that the study of beta 
oscillations’ functional role in the dorsal stream might foster the 
development of new treatment approaches to visuo-attentional and 
reading impairment, possibly aiming at modulations of beta-
band activity.

Reconciling old and new perspectives for 
beta oscillations in visual perception

In their seminal work, Engel and Fries (2010) outlined the first 
theoretical framework describing the role of beta oscillations for 
motor and perceptual functions. In their view, beta oscillations reflect 
the maintenance of the “status-quo” of a motor set while preventing 
the execution of new movements and favouring the re-establishment 
of such sets post-movement. They further extend this proposal to the 
perceptual domain suggesting that beta oscillations act in the same 
ways in tasks requiring top-down control, which can be perturbed 
when behavioural responses depend mainly on exogenous factors. 
This particular view possibly depicts beta oscillations as a sustained 
rhythm acting in a putatively passive/resistive way. In a following 
work, Fries (2015) further suggested that beta oscillations may have a 
rather active role in feedback loops modulating gamma band activity 
and interareal communication through synchronization. Notably, the 
notion of beta oscillations as a continuous rhythm has been challenged 
by recent works depicting beta as emerging in brief transient bursts 
(<150 ms) in frontal (Lundqvist et al., 2016), somatosensory (Jones 
et al., 2009; Ziegler et al., 2010; Sherman et al., 2016), motor (Feingold 
et al., 2015; Rule et al., 2017), and occipital (Freyer et al., 2009) areas, 
across species and recording modalities (Sherman et al., 2016; Shin 
et al., 2017; Bonaiuto et al., 2021; Rassi et al., 2023a,b).

Capitalizing on the role of beta oscillations as a rather “active” 
rhythm underlying interareal communication (Donner and Siegel, 
2011; Fries, 2015; Jensen et al., 2015; Sherman et al., 2016; Palmigiano 
et al., 2017; Palva and Palva, 2018) and top-down processing (Shulman 
et al., 2009; Bastos et al., 2015), which would appear in transient bursts 
across different cortical sites, Spitzer and Haegens (2017) developed a 
new theoretical framework inspired by several works showing the 
involvement of beta oscillations in working memory and decision 
making within the somatosensory domain. Specifically, beta 
oscillations were associated with the maintenance, reactivation and 
updating of content-specific representations of scalar magnitudes 
pertaining to different stimulus features in the vibrotactile, auditory 
and visual domains (Spitzer et  al., 2010, 2014; Rose et  al., 2016; 
Vergara et al., 2016; Wimmer et al., 2016; Shin et al., 2017; Rassi et al., 
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2023a,b). In Spitzer and Haegens’ perspective, considering the 
association between beta oscillations and top-down processing 
(Shulman et al., 2009; Bastos et al., 2015), their suitability to govern 
long-range communication (Donner and Siegel, 2011; Fries, 2015; 
Jensen et al., 2015; Sherman et al., 2016; Palmigiano et al., 2017; Palva 
and Palva, 2018), and their putative role in the formation of cell 
ensembles and their firing patterns (Roopun et al., 2008; Kopell et al., 
2011), beta oscillations essentially support the endogenous 
re-activation of cortical representations acting as a short-lived 
mediator within and between cortical ensembles.

Such transient (burst-like) nature of beta oscillations offers the 
possibility to discuss previous studies linking beta oscillations and 
visual perception in light of less and more recent theoretical accounts. 
Perceptual sets (e.g., as in Engel and Fries, 2010) could putatively 
be  ascribable to a set of high-level information concerning the 
organization of perceptual input, hence encodable in a memory trace 
that may be active or latent. Several works reviewed in the present 
work reported correlational (VanRullen et al., 2006; Yokota et al., 2014; 
Zaretskaya and Bartels, 2015) and causal (Capotosto et  al., 2009; 
Romei et  al., 2011; Battaglini et  al., 2020; Veniero et  al., 2021) 
involvement of frontoparietal/parietal beta oscillations in visual tasks 
in which spatial information must be maintained in working memory 
and routed to other networks to exert top-down influence, rapidly 
updated in the form of a new perceptual set. While the evidence about 
the transient nature of beta oscillations in the parietal cortex and/or 
the visual pathways is scarce, it could in principle support the need of 
the visual system to actively monitor and update spatial information 
and rapidly route it across the visual streams.

Conclusion

Historically, alpha oscillations have been the most well 
characterized brain rhythm, and also the most studied in the context 
of visual perception. In the present review, we have summarized the 
emerging evidence showing a preliminary, but at the same time 
coherent, picture of the role of beta oscillations in the context of visual 
perception. We have shown that beta oscillations are modulated in a 
wide range of visual tasks that require a precise spatial representation 
of visual input, specifically where forming a faithful representation of 
its spatial coordinates is essential. These include tasks where visual 
elements need to be perceptually reorganized, such as in the case of 
bistable picture, when there is a need to switch from a global to a local 
level of visual analysis (and vice versa), when there is a need to 
spatially segregate stimuli in cluttered visual scenes, such as in the case 
of crowding, and finally, when there is a need to extrapolate visual 
motion and accomplish form-motion integration. All these are 
conditions where beta oscillations have been shown to play a crucial 
role, supporting the claim that this brain rhythm is primarily serving 
the activity of the magnocellular-dorsal (or “where”) visual pathway. 
The role of beta oscillations can be seen as complementary to the 
function of alpha, which would be the preferential rhythm supporting 
the combination of object features into longer neurocomputational 
cycles to merge emerging representations from distributed areas 
within the ventral (or “what”) visual pathway.

Framing beta-oscillations as the main rhythm of the dorsal 
stream has of course also implications for action-oriented 
behaviors (perception for action), from the orientation of spatial 

attention, to eyes and body movement. The proposal of beta 
oscillation as the rhythm of the dorsal stream reconciles the 
emerging evidence that beta-band rhythmic communication has 
a key role within the fronto-parietal dorsal attentional network. It 
remains an open question (Table  1) whether it is possible to 
differentiate a ‘perceptual’ and an ‘attentional’ beta rhythm, or 
whether they are orchestrated in partially different neural 
networks, but with a common underlying rhythmic neural code. 
Regarding eye and upper limb movements, increasing evidence 
show that beta-band oscillations in both parietal (PPC) and 
frontal (FEF) areas are fundamental both for saccades execution, 
reaching behavior and eye-hand coordination, reconciling our 
perspective with the idea that beta oscillations are important for 
the maintenance of a particular motor and/or cognitive state 
(Engel and Fries, 2010). A key underlying component of different 
action-oriented behaviors may be, indeed, the setting, maintaining 
and continuously updating of a faithful representation of spatial 
coordinates. In this sense, fast updating of spatial information 
could exploit the burst-like properties of beta oscillations, which 
according to mounting evidence is a key distinctive feature 
that differentiate beta from alpha oscillations in different 
sensory modalities.

Although there are no studies to date designed to address the 
relationship between beta oscillations and perceptual awareness, a 
reasonable speculation is that such dorsal beta activity in vision acts 
at a preconscious level. This seems plausible considering that it is a fast 
rhythm that would convey only a transient, coarse and undetailed 
representation of the visual scene and its spatial properties toward a 
more distributed network, fostering attention-demanding object 
identification in ventral stream areas at the speed of the (slower) 
alpha rhythm.

Finally, the growing literature on the role of beta oscillation in 
visual perception in healthy individuals is corroborated also by initial 
studies highlighting anomalies of beta oscillations in developmental 
dyslexia, a neurodevelopmental condition where the core visuo-
attentional deficits are widely recognized to arise from a M-D stream 
deficit. Thus, targeting beta oscillations in the dorsal visual stream 
seems a promising new rehabilitative strategy, especially considering 
the different neuromodulatory (tACS/TMS) studies that have 

TABLE 1 Open questions regarding beta oscillations in the magnocellular 
dorsal visual pathway.

Open questions

 1. Perceptual segregation/integration and visuo-spatial attention: unique or 

differentiated functions of beta oscillations?

 2. What is the relationship between alpha and beta-band oscillations considering 

the existence of ‘bimodal’ areas in which alpha and beta bands are both 

predominant frequencies?

 3. Is it possible to use neuromodulation to treat clinical conditions characterized 

by reading, visuo-spatial (e.g., impaired objects segregation) and visuo-

attentional impairments?

 4. Is it possible to extend the role of beta band activity found in visual perception 

to other sensory modalities and multisensory processing?

 5. Do beta oscillations have a role in mediating the formation and reactivation of 

memory traces related to visuo-spatial processes? Can perceptual sets 

be ascribed to memory traces?
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effectively modulated beta oscillations with functional consequences 
for perception in the typical population.
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