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Introduction: Self-regulated learning (SRL), or learners’ ability to monitor and 
change their own cognitive, affective, metacognitive, and motivational processes, 
encompasses several operations that should be deployed during learning 
including Searching, Monitoring, Assembling, Rehearsing, and Translating 
(SMART). Scaffolds are needed within GBLEs to both increase learning outcomes 
and promote the accurate and efficient use of SRL SMART operations. This study 
aims to examine how restricted agency (i.e., control over one’s actions) can be 
used to scaffold learners’ SMART operations as they learn about microbiology 
with Crystal Island, a game-based learning environment.

Methods: Undergraduate students (N = 94) were randomly assigned to one of 
two conditions: (1) Full Agency, where participants were able to make their own 
decisions about which actions they could take; and (2) Partial Agency, where 
participants were required to follow a pre-defined path that dictated the order 
in which buildings were visited, restricting one’s control. As participants played 
Crystal Island, participants’ multimodal data (i.e., log files, eye tracking) were 
collected to identify instances where participants deployed SMART operations.

Results: Results from this study support restricted agency as a successful scaffold 
of both learning outcomes and SRL SMART operations, where learners who were 
scaffolded demonstrated more efficient and accurate use of SMART operations.

Discussion: This study provides implications for future scaffolds to better support 
SRL SMART operations during learning and discussions for future directions for 
future studies scaffolding SRL during game-based learning.
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1. Introduction

In 2019, the US National Assessment of Educational Progress 
(NAEP) released a report that shows decreasing proficiency in 
science achievement levels as grade levels increase, where 24% of 
students in Grade 4, 32% of students in Grade 8, and 40% of students 
in Grade 12 demonstrated below basic proficiency. Within the same 
report, 50% of students in Grade 12 stated that they never or only 
once in a while engaged in scientific inquiry-related classroom 
activities [National Center for Education Statistics (NCES), 2019]. 
This report illuminates the decreasing scientific competency of 
students and provides researchers an avenue to understand how 
advanced learning technologies, such as game-based learning 
environments (GBLEs), can be integrated with traditional classroom 
instruction to increase learning outcomes. However, in a report 
about the uses of educational technology for instruction, only 33% 
of educators reported that they strongly agreed that technology 
within the classroom has helped their students become self-regulated 
learners (Gray and Lewis, 2021). Scaffolding techniques have been 
embedded within GBLEs to aid learners in their acquisition of 
domain knowledge (Chen and Law, 2016; Dever et al., 2020; Saleh 
et al., 2020; Taub et al., 2020; Kim et al., 2021; Chen et al., 2023), but 
few learning environments incorporate scaffolding techniques that 
are intended to support individual learners’ self-regulated learning 
(SRL) processes. As such, this study explores how scaffolding within 
a GBLE supports learners’ SRL processes and learning outcomes. 
This paper captures learners’ multimodal data (i.e., eye tracking, log 
files) to determine how learners temporally transition between SRL 
operations depending on the level of scaffolding provided and how 
these transitions are related to their learning outcomes. The findings 
from this study will be  used to inform adaptive, individualized 
scaffolding within GBLEs to support learners in deploying SRL 
processes and increasing learning outcomes.

2. Scaffolding self-regulated learning 
during game-based learning

Self-regulated learning (SRL) is learners’ ability to monitor and 
change their own cognitive, affective, metacognitive, and 
motivational processes to achieve a goal (Winne and Azevedo, 
2022). SRL has been touted as an attribute of a successful learner 
(Samruayruen et al., 2013; Karlen et al., 2020) as SRL is required to 
set goals, develop plans to reach those goals, deploy strategies 
during learning, reflect on learners’ progress toward goals and the 
effectiveness of deployed strategies, and re-prioritize or modify 
goals and plans to achieve greater learning outcomes (Winne, 
2018). SRL is a complex process to deploy, especially while learning 
about a difficult subject (e.g., STEM topics), as it involves learners 
constantly monitoring and changing their SRL processes during 
learning (Azevedo et  al., 2022; Dever et  al., 2022). Deploying 
accurate and effective SRL strategies becomes even more 
challenging during game-based learning. This is due to the open-
ended nature of GBLEs in which learners are able to explore the 
elements and affordances of the GBLE but are often left unsupported 
as most games for learning do not employ scaffolds that help 
learners engage in SRL. This section reviews how previous literature 
has captured and scaffolded SRL during game-based learning.

2.1. Capturing and examining 
self-regulated learning during game-based 
learning

SRL operations during learning with a GBLE can be difficult to 
capture using unimodal traditional methods such as click stream data 
and self-reports. Multimodal data affords researchers the opportunity 
to use multiple data streams to reveal learners’ internal SRL processes 
including the use of strategies as they learn with GBLEs (Azevedo 
et al., 2018, 2019; Alonso-Fernández et al., 2019; Di Mitri et al., 2019; 
Sharma and Giannakos, 2020; Giannakos et al., 2022). Multimodal 
data includes both subjective (e.g., self-report measures) and objective 
(e.g., log files, eye tracking) data channels that can capture 
physiological, verbal, behavioral, and contextual data during learning 
to reveal how learners interact with information, what SRL strategies 
learners may deploy, and why learners enact certain behaviors (Järvelä 
et al., 2019, 2021; Azevedo et al., 2022; Molenaar et al., 2023). In this 
article, we focus on utilizing both log-file and eye-tracking behavioral 
data to capture how learners engage in SRL during learning 
with a GBLE.

Log-file data captures the click streams, keystrokes, navigation, 
and other behaviors (e.g., opening/closing an interface window, 
selecting specific choices within an interface menu) within an open-
ended environment such as a GBLE. These data report the actions and 
behaviors a learner takes as they interact with the system (Lim et al., 
2021; Molenaar et al., 2023). Eye-tracking data, like log files, captures 
learning behaviors through learners’ eye gaze movements. The 
position of learners’ eye gaze in relation to the instructional materials 
presented in a learning environment can indicate attention allocation, 
reading behaviors, cognitive load of a task, problem-solving events, 
and contextualize decision-making processes (Chen and Tsai, 2015; 
Dever and Azevedo, 2019; Molenaar et al., 2023).

Previous studies have shown that multimodal data can be used to 
capture SRL behaviors as learners interact with a GBLE. Taub et al. 
(2017) used both of these process data to identify when learners 
engaged in both cognitive and metacognitive SRL strategy use while 
learning with a GBLE. Relating these behaviors to performance data, 
their findings found that using both eye-gaze and log-file data can 
capture the quality of learners’ SRL behaviors. Another study by Dever 
et  al. (2020) used both data modalities to capture when learners 
engaged with instructional materials while learning with a 
GBLE. Results from this study showed that the use of both data 
modalities are essential for capturing when learners initiate specific 
SRL strategies, such as content evaluations. From these studies, it is 
critical to use multimodal data to capture SRL operations as learners 
interact with GBLEs to accurately and fully capture how learners 
deploy SRL operations during the learning process.

2.2. Scaffolds for self-regulated learning

Past literature has attributed successful learning to SRL in which 
learning gains increase when learners can identify the objectives of the 
task, set goals and plans to achieve the goals of the task, deploy SRL 
strategies that are effective in achieving those goals, and reflecting on 
their progress toward goals to constantly modify SRL behaviors that 
are more efficient and effective in successfully completing a task 
(Samruayruen et  al., 2013; Dever et  al., 2020; Karlen et  al., 2020; 
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Winne and Azevedo, 2022). Because of this, learners’ accurate and 
consistent use of SRL strategies during learning are essential for 
successful learning. As noted above, and as supported by prior 
literature (Azevedo et al., 2004, 2010; Taub et al., 2020; Cloude et al., 
2021; Dever et al., 2023), SRL is challenging for learners to engage in, 
especially as instructional content and tasks become more complex in 
terms of difficulty. SRL is especially difficult to deploy during game-
based learning because GBLEs are typically open-ended, requiring 
learners to self-navigate the environment and deploy SRL to manage 
goals, monitor progress toward goals, and deploy SRL strategies and 
operations. Scaffolds are tools that can be  used either directly or 
indirectly to support learning objectives and outcomes (Stahl and 
Bromme, 2009; Winne, 2018; Winne and Marzouk, 2019; Dever et al., 
2022; Azevedo and Wiedbusch, 2023; Wiedbusch et al., 2023). Explicit 
scaffolds are more overt in supporting learners where, for example, 
GBLEs may interrupt learners during the task to prompt them to 
engage in metacognitive processes (Dever et al., 2021; Zheng et al., 
2023). Some GBLEs may be more implicit in scaffolding SRL. For 
example, several studies (e.g., Sawyer et al., 2017) have used restricted 
agency as a scaffold to guide how learners interact with the learning 
environment. Limiting agency acts as an indirect scaffold, as the 
learner is unaware of any controls the educator permits, to provide 
guidance to engagement meaningful to the GBLE’s learning gains. In 
GBLEs, agency may be restricted to guiding learners throughout the 
environment, promote learners’ monitoring of their progress toward 
goals, encourage learners to engage with certain instructional 
materials in the environment, etc. (Dever et  al., 2022). Restricted 
agency as a scaffold has been examined in the context of Crystal 
Island, a GBLE that focuses on teaching learners about microbiology 
(Rowe et al., 2011; Dever et al., 2022).

2.2.1. Crystal Island: review of past literature
Crystal Island is a game-based learning environment (GBLE) 

developed to support students as they learn about microbiology and 
improve scientific reasoning (Rowe et al., 2011; Dever et al., 2022). 
Studies have used Crystal Island to examine narrative within game-
based learning (Lester et al., 2014; Dickey, 2020), scientific reasoning 
(Cloude et al., 2020), and planning and reflection (Rowe and Lester, 
2015; Cloude et al., 2021; Dever et al., 2021), often using multimodal 
data collection methodologies (Taub et al., 2017; Cloude et al., 2020; 
Dever et  al., 2020; Emerson et  al., 2020). The Crystal Island 
environment typically affords learners full agency, or control over 
one’s own actions (Bandura, 2001); however, a few studies on Crystal 
Island have examined restricting agency as a scaffold of learning (Taub 
et al., 2019; Cloude et al., 2020).

For example, Taub et  al. (2019) examined how learning 
outcomes differed across varying levels of agency, including fully 
unrestricted gameplay (i.e., full agency), partially restricted 
gameplay (i.e., partial agency), and vicarious learning (i.e., no 
agency). Learners who had partially restricted gameplay were 
restricted to a “golden path” for exploring the island and were 
required to interact with all content material. Learners with no 
agency followed a vicarious learning paradigm in which they did not 
play Crystal Island at all, but rather watched an expert playthrough. 
The highest learning outcomes were associated with those afforded 
partial agency while those with full agency tended to focus on 
extraneous distractor information that was not relevant to the 
problem. Learners with no agency tended to become uninterested 

in Crystal Island and disengaged from the task. Another study by 
Taub et al. (2020) examined the role of agency on learning, emotions, 
and problem-solving behaviors. This study, similar to Taub et al. 
(2019), found that learners with partial agency had the greatest 
learning outcomes compared to learners in the high and no agency 
conditions. However, this study did find that learners in both the 
high and partial agency conditions demonstrated greater frustration, 
confusion, and joy. This further supports the previous work, 
suggesting that learners were affectively disengaging during the no 
agency condition as well as behaviorally and cognitively disengaging. 
That is, agency is associated with multiple facets and processes of 
self-regulation including cognition, affect, and metacognition.

Dever et al. (2021) expanded prior work on agency in Crystal 
Island to examine the temporality of these differences. Specifically, 
they examined how learners engaged in information-gathering 
behaviors across instructional materials over time. Similar to the 
previous studies, Dever et al. (2021) found that learners who received 
partial agency had greater learning gains than learners who received 
full agency. Results from this study also showed that learners who had 
full agency had greater fixations on books and research articles over 
time and lower fixations on posters compared to learners with partial 
agency, contradicting the higher learning gains of the partial agency 
condition group. These findings show that learners who received 
differing levels of agency interact with GBLEs differently, indicating a 
need to fully understand how agency affects not just learners’ 
interactions with the environment but the relationship to learners’ 
deployment of SRL strategies. In other words, while prior studies have 
shown the limiting agency relates to how learners interact with 
instructional materials or experience affective states during learning, 
more research is needed to identify how learners engage in the process 
of SRL and how this is related to increased learning outcomes.

Despite previous work examining the relationship between agency 
and learning outcomes, there remains many questions about the 
relationship between agency and self-regulation. Specifically, questions 
on restricted agency as a scaffold supports learners’ temporal use of 
SRL processes. That is, how does agency, especially when deployed as 
a scaffold within open-ended GBLEs, impact self-regulatory 
processes? When do learners begin to shift from being gently guided 
by external regulators to maladaptively overlying on the support? How 
do learners move between various cognitive and metacognitive 
processes with and without these types of scaffolds? This study further 
examines these gaps by exploring how restricted agency scaffolds 
learners’ temporal transitions between theoretically defined cognitive 
and metacognitive processes as learners self-regulate within 
Crystal Island.

3. Theoretical framework: SRL SMART 
operations

The current study is grounded within Winne (2018) conditions, 
operations, products, evaluations, and standards (COPES) model of 
SRL. The COPES model describes how learners’ internal and external 
conditions influence how operations are deployed during learning 
which results in the products that evidence learning and how those 
products are evaluated against internal and external standards. Within 
the operations phase of COPES, five temporally-unfolding cognitive 
operations – searching, monitoring, assembling, rehearsing, and 
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translating (SMART) – underly interactions between working 
memory and long-term memory during the operations phase of 
COPES. SMART processes are deployed to facilitate learners’ SRL 
strategy use: searching refers to the retrieval of goal-relevant 
information; monitoring is a cognitive process involving the 
comparison of information (i.e., products) against a standard; 
assembling involves the encoding of new information from the 
environment into working memory; rehearsing is a cognitive process 
which maintains information within working memory; and, 
translating involves searching for information in one modality and 
assembling that information in a different modality of representation 
(e.g., textual to graphical). These SMART operations are deployed by 
learners to generate new products (e.g., learning gains) as they learn 
within the GBLE.

These SMART operations may be behaviorally enacted within 
GBLEs. For example, searching can be defined as the movement 
within a GBLE as learners interact with instructional materials 
placed spatially throughout the environment. Monitoring operations 
can be identified as a learner completing performance measures, 
indicating a judgment of learning. Assembling operations can 
involve note-taking or summarizing where information is gathered 
from either single or multiple sources throughout the environment. 
Rehearsing operations include learners’ continual review of their 
new knowledge within working memory. Finally, translating 
operations include using one’s notes to make conclusions in which 
information from one or multiple sources is used within a new 
context. It is important to note that it is difficult to measure 
rehearsing directly through behavioral traces where most virtual 
learning environments and data capture methods (e.g., log-files) are 
unable to identify when and for how long learners rehearse 
information in working memory. While the SMART operations 
alone may not fully account for the range of functions performed by 
working memory relevant to learning, as addressed by other 
theoretical frameworks, these operations provide a foundation for 
understanding how learners regulate (i.e., monitor and control) 
their information processing to facilitate learning (Azevedo and 
Dever, 2022).

Learners’ SMART operations have been examined across several 
contexts. Zhang et al. (2022) examined how machine learning could 
detect when learners used SMART operations during learning on a 
mathematical platform. This study collected learners’ log-file data as 
well as verbalizations during mathematical problem-solving to 
construct a robust detector of when SMART operations were used by 
students. In another study, Hutt et al. (2021) examined how learners 
used SMART operations as they interacted with Betty’s Brain, a 
computer-based learning environment that maps learners’ 
understanding of causal scientific processes. This study used 
multimodal data, including interview, interaction, and survey data, 
and found that using multimodal data to automate detection of 
SMART operations is a reliable methodology to predict future 
learning performance. This provides evidence that understanding how 
learners use SMART processes during a task is essential to identify 
learning performance. Such evidence provides a first step in informing 
more intelligent, adaptive scaffolds for SRL. It is important to note 
however, that within Hutt et al. (2021) study, multimodal data could 
not capture when learners used rehearsal operations. This limitation 
may be due to the difficulty in capturing SRL operations in real time 
during learning, especially as such operations can encompass several 

different behaviors within a single learning session or are difficult for 
learners to deploy due to the complexity of the information, the task, 
and the SRL operation.

These prior studies on Winne (2018) SMART operations show 
that traditional methods such as self-report measures can capture 
learners’ perceptions of their SRL abilities and deployment of 
strategies but are limited to learners’ knowledge, understanding, 
and accurate reflection of their SRL. Additionally, the use of a single 
data channel to capture these SRL SMART operations limits 
researchers’ ability to accurately detect and identify behaviors to 
triangulate instances of operation use. As such, to capture learners’ 
deployment of SRL operations during game-based learning, 
multimodal data should be captured and analyzed (Azevedo et al., 
2019). We argue that researchers’ examination of learners’ SMART 
operations during learning should incorporate a temporal element, 
expanding the methodologies of previous studies (Hutt et al., 2021; 
Zhang et  al., 2022). The current study examined how learners’ 
sequential transitions across SMART operations during learning 
changed depending on the amount of agency afforded to learners 
during the task and how this informed learners’ understanding of 
the content.

4. Current study

The current study aims to identify how restricted agency during 
game-based learning scaffolds learners’ deployment of SRL SMART 
operations and how these operations are related to learning outcomes. 
To achieve this goal, this study examines how learners differing in the 
degree of scaffolding, embedded within Crystal Island, temporally 
deploy SMART operations during game-based learning and how each 
of the sequential transitions between individual SMART operations 
relate to learning outcomes. This study asked three research questions: 
(1) Are there differences in the frequency proportions of SMART 
operation deployment during game-based learning between agency 
conditions?; (2) Are there differences in the way learners transitioned 
between SMART operations during game-based learning across 
agency conditions?; and (3) To what extent do the probabilities of 
learners’ SRL SMART operation transitions relate to learning gains 
and agency conditions?

For the first research question, we hypothesize that learners who 
are restricted in their agency will demonstrate a greater number of 
SMART operations than learners who do not receive scaffolding 
during game-based learning. For the second research question, 
we hypothesize that learners who are scaffolded during game-based 
learning will demonstrate greater transition probabilities across all 
SMART operations as they dynamically deploy SRL more often and 
effectively than learners who are not scaffolded. Lastly, for the third 
research question, we hypothesize that learners who are scaffolded will 
demonstrate a stronger relationship between SRL SMART operations 
and learning outcomes where the probability that they transition 
across SMART operations will be more positively related to learning 
gains. All hypotheses follow prior literature in which restricted agency 
as a scaffold has been shown to increase learning outcomes (Taub 
et al., 2019, 2020; Cloude et al., 2021) and support SRL processes 
(Dever et  al., 2021, 2022), and SMART operation use has been 
associated with increased learning outcomes (Hutt et al., 2021; Zhang 
et al., 2022).
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5. Methods

5.1. Participants

A total of 120 undergraduate students from a North American 
public university were recruited to play Crystal Island. However, due to 
data loss, 26 students were removed from the analyses which resulted 
in a total of 94 participants (Age Range: 18–26, M = 20.0, SD = 1.65; 67% 
female) whose data were used to answer our research questions. The 94 
participants were randomly assigned to one of two scaffolding 
conditions: the Full Agency condition (N = 56) and the Partial Agency 
condition (N = 38) in which participants were afforded varying levels 
of agency (see Embedded Scaffolding Conditions section for more 
details). Demographic questionnaires administered prior to the Crystal 
Island task revealed that the majority of participants reported that they 
do not or rarely play video games (55%), have average, limited, or no 
video game playing skills (73%), and play between 0 to 2 h of video 
games every week (68%). Participants were compensated $10 per hour, 
up to $30, for participating in this study. This study was approved by 
North Carolina State University’s Institutional Review Board for the 
Use of Human Subjects in Research (Protocol#: 5623).

5.2. Crystal Island environment

Crystal Island: Lost Investigation is an immersive narrative-
centered GBLE designed to foster the use of scientific reasoning while 
problem solving, improve engagement with science topics, and help 
students gain content knowledge about microbiology (Rowe et al., 
2011; Dever et al., 2022). Within this GBLE, learners assume the role 
of an epidemic expert undertaking the responsibility of diagnosing an 
unknown ailment afflicting their fellow researchers stationed on a 
remote volcanic island. The central gameplay revolves around solving 
a mysterious ailment, collecting data by talking to other sick research 
team members and analyzing clues, researching details about how 
viruses, bacteria, and other illness-causing infections develop, spread, 
and can be  cured, and self-testing their new game and content 
knowledge. To successfully complete the game, learners are required 
to diagnose the mystery ailment (e.g., influenza, smallpox, 
salmonellosis), provide a suitable treatment (e.g., vaccination, 
relaxation, other preventive measures), and determine the origin of 
that outbreak (e.g., from the contaminated food and drink such as 
bread, apple, milk, etc.). This requires that learners engage in dialog 
with non-player characters (NCPs) who supply pertinent information 
related to a subject matter (e.g., what are bacteria, their shape, size, and 
characteristics; see Figure 1) or steps that can aid in solving the puzzle 
(e.g., symptoms).

Additionally, learners have access to informational content 
presented in the form of books and research articles spread throughout 
the remote island. These resources provide critical microbiology 
information that may be crucial for the successful completion of the 
investigation. Concept matrices act as evaluative metrics (Figure 2A) 
of participants’ understanding and application of the information 
extracted from the corresponding text (Figure 2B). If the learner does 
not get the correct answer, the system provides feedback and asks the 
learner to reread the passage (Figure 2C). Learners are not required to 
complete or interact with the concept matrix, unless they are in the 
Partial Agency condition. If a learner fails to correctly answer the 
concept matrix within three attempts, the game prompts the learner 

to move on. In addition to these informational texts, learners must 
also collect and document data on the symptoms of the mystery 
illness. To do so, they must talk to the camp nurse (Figure 2D) as well 
as sick residents about their symptoms (Figure 2E), what residents 
were doing prior to becoming sick, and then explore the island to 
collect potential contaminates for testing.

A lab scanner (Figure 3A) is made available to learners for testing 
hypothesized contagions across different food items that can 
be gathered throughout the environment. These hypotheses are then 
translated into the final diagnosis within the diagnostic worksheet (see 
Figure  3B). To successfully complete the game, participants must 
successfully identify and submit the disease, the transmission of the 
disease, and the appropriate treatment to Kim, the NPC camp nurse 
via the diagnostic worksheet.

5.2.1. Embedded scaffolding conditions
Learners were randomly assigned to one of three agency 

conditions which impacted how they could interact with Crystal 
Island. The ‘Full Agency’ condition provided participants total agency 
by allowing them the freedom to initiate any actions without 
restrictions during their learning experience. The “Partial Agency” 
condition-imposed limitations on participants’ actions by setting an 
optimal path that they needed to adhere to for the successful 
completion of the mystery. For instance, participants had to explore 
the camp and visit specific buildings (such as the infirmary, camp 
kitchen, lab center, etc.) in a predetermined sequence designed to 
optimize information acquisition. Finally, participants in the “No 
Agency” condition had a vicarious learning experience by observing 
a playthrough of the game from a third-person perspective, devoid of 
any interaction with game elements or the capacity to manipulate the 
playthrough video (e.g., play, pause). As participants were not able to 
interact with the game themselves, we have excluded these participants 
from our current study.

5.3. Experimental procedure

Following informed consent, participants completed a battery of 
self-reports and questionnaires about demographics, microbiology 
content knowledge, emotions (Achievement Emotions Questionnaire; 
Pekrun et  al., 2011) and motivation (Achievement Goals 
Questionnaire; Elliot and Murayama, 2008). The microbiology content 
knowledge pre-test included 21, 4-option multiple choice questions 
The questions incorporated within the pretest questionnaire cover a 
broad spectrum of topics ranging from what microbiology is, its 
purpose to cellular morphology to detecting a genetic aliment from a 
provided list of symptoms. Following the completion of the pretest, 
participants underwent calibration with the SMI EYERED 250 eye 
tracker, using a precise 9-point calibration process. Eye-tracking data 
collected participants’ fixations, which are relatively stable gaze 
behaviors on a single area of interest. These fixations were then used 
to calculate participants/ dwell times on areas of interest to identify 
when, for how long, and the frequency of participants’ attention 
toward an object within the Crystal Island environment. Subsequently, 
for calibration accuracy, participants were instructed to maintain a 
neutral facial expression and composure during the calibration 
process with both the facial recognition of emotions software and the 
electrodermal bracelet to measure galvanic skin response. This 
calibration established a baseline captured using the Attention Tool 
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FIGURE 1

Crystal Island NPC dialog with participants. Screenshots from Crystal Island adapted with permission from JL from North Carolina State University 
IntelliMEDIA Group (https://www.intellimedia.ncsu.edu/about/).

FIGURE 2

Screenshots of elements in Crystal Island; (A) concept matrix; (B) book; (C) feedback on concept matrix; (D) example of dialog with the camp nurse, an 
NPC; (E) patient conveying symptoms. Screenshots from Crystal Island adapted with permission from JL from North Carolina State University 
IntelliMEDIA Group (https://www.intellimedia.ncsu.edu/about/).
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6.3 (shown in Figure 4 of participant setup). For the purposes of this 
study, we did not examine facial expressions or physiological data.

Following the calibration process, participants begin their 
learning experience with Crystal Island beginning with a tutorial to 
teach participants how to move around the island and interact with 
various elements. During the tutorial phase of the game, learners 
(participants) were reminded of the essentiality of employing a variety 
of resources such as books, virtual posters, research articles, and 
interacting with non-player characters while engaging in game-based 
learning. Throughout their engagement with Crystal Island, 
we documented their process data, which spanned various factors like 
eye movements (e.g., fixation and saccade), emotional facial 
expressions (e.g., joy, neutral, frustration), and log files (e.g., duration 
of time spent in participating in the activity). However, for this study, 
we have only examined participant’s eye movements and log files. 

Upon accurately solving the mystery, participants were given a posttest 
designed to evaluate discrepancies in their microbiology knowledge 
and several self-report questionnaires. These questionnaires included 
the same pre-test questionnaires in addition to the Intrinsic 
Motivation Inventory (Ryan et  al., 1983), the Perceived Interest 
Questionnaire (Schraw et al., 1995), and the Presence Questionnaire 
(Witmer and Singer, 1998). Upon completion of the study, the 
researcher conducted a debriefing session, provided monetary 
compensation, and thanked participants for their involvement and 
time. It is important to note that the aforementioned self-reports and 
facial expressions of emotions were included for replicability purposes 
and were not used for addressing the research questions within this 
study. The data used to support the research questions included eye 
movements, log files, and performance data from microbiology 
knowledge pre- and post-tests.

FIGURE 3

Crystal Island screenshot of elements; (A) scanner and hypothesis generation; (B) diagnostic worksheet. Screenshots from Crystal Island adapted with 
permission from JL from North Carolina State University IntelliMEDIA Group (https://www.intellimedia.ncsu.edu/about/).
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5.4. Apparatus

As participants completed the Crystal Island task, several 
trace data were collected including eye tracking, facial expressions 
of emotions, galvanic skin response, and log files. For the 
purposes of these research questions, only eye tracking and log 
files were analyzed. An SMI RED250 eye tracker was used to 
collect and contextualize participants’ eye gaze behaviors. 
Specifically, eye-tracking data identified where participants were 
looking at the screen, contextualized the location of participants’ 
gaze to the Crystal Island environment, and recorded at what 
time these gazes occurred. Actions captured using eye-tracking 
data included when participants were reading books and research 
articles and when participants edited and completed concept 
matrices. Log files were used to identify when a participant 
started the game, the actions they took while completing the 
game, and the time at which actions were taken. Actions captured 
by log files included movement across pre-defined areas, viewing 
posters, filling out and submitting the worksheet, conversing with 
NPCs, and scanning and hypothesizing about food items. 
Eye-tracking and log-file data were aligned using iMotions 
Attention Tool 6.2 software (iMotions, 2016) which ordered the 
actions according to the timestamps.

5.5. Coding and scoring

5.5.1. SRL operations
Actions that participants could take while playing Crystal Island were 

classified into a SMART Operation, captured using log-file and 
eye-tracking data (see Table 1). We argue that as participants choose to 
engage in these activities within Crystal Island, these activities elicit 
SMART operations that assist participants in using SRL processes to 
achieve their goals. Searching was identified by participants’ movements 
across location boundaries. For example, if participants left the clinic and 
entered another building without taking any other action, this was 
counted as two sequential movements. By completing and submitting 
concept matrices, participants demonstrate a Monitoring operation, 
specifically a judgment of learning. In reading books and research articles, 
viewing posters, filling out worksheets, conversing with NPCs, and 
hypothesizing about diseases, participants are engaging in Assembling/
rehearsing operations as they gather information, rehearse that 
information in working memory, and coordinate multiple sources of 
information to create a full mental model of microbiology from 
instructional materials. When participants submitted their final diagnosis, 
these actions were labeled as Translating operations as the participant took 
learned information from instructional materials and contextually applied 
that information.

FIGURE 4

Experimental setup.
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5.5.2. Transition probabilities
A transition matrix for each participant was calculated based on the 

sequential operations derived from the aligned eye-tracking and log file 
data via timestamps. These transition matrices identified the probability 
of a transition from one SMART operation to another (e.g., Searching to 
Monitoring). A total of 16 data-driven transitions were possible (see 
Figure 5).

5.5.3. Learning gains
Learning gains were calculated using Marx and Cumming (2007) 

normalized change score equations in which participants’ differences 
in their pre- and post-task microbiology quizzes were identified while 
controlling for prior knowledge.

5.6. Data analysis

Several analyses were conducted to fully understand how agency 
as a scaffold relates to how learners deploy SRL SMART operations 

during game-based learning. Table  2 refers to how each research 
question was addressed by the analyses included within this paper and 
the overarching objective of including these analyses in supporting the 
research question.

5.7. Preliminary analyses

We first examine differences in participants’ learning gains between 
agency conditions to holistically understand how scaffolding relates to 
learning outcomes. An independent t-test found significant differences in 
learning gains between agency conditions [t(79.2) = −2.24, p < 0.05] in 
which participants in the Partial Agency condition (M = 0.33, SD = 0.24) 
demonstrated significantly greater learning gains than participants in the 
Full Agency condition (M = 0.22, SD = 0.24). This shows that restricted 
agency is a successful scaffold of learning outcomes in terms of learning 
domain content related to microbiology. This difference establishes a need 
to understand how restricted agency impacts SRL SMART operation 
deployment during game-based learning.

TABLE 1 Crystal Island actions captured and classified into SMART operations.

SMART operation Action Data capture methodology

Searching Movement across pre-defined boundaries Log Files

Monitoring Submission of concept matrices Eye Tracking

Assembling/rehearsing

Viewing posters, books, and research articles Eye Tracking & Log Files

Talking with NPCs Log Files

Filling out the Diagnostic Worksheet Log Files

Scanning food items for diseases Log Files

Translating Submitting a final diagnosis Log Files

FIGURE 5

Possible data-driven transitions across SMART operations.
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TABLE 2 Analyses used to address each research question and their objectives.

Research question Analysis Objective

RQ1. Are there differences in the frequency 

proportions of SMART operation deployment 

during game-based learning between agency 

conditions?

2-way ANOVA (with pairwise t-tests)

Between-Subjects: Agency Condition

Within-Subjects: SMART Operation

Dependent Variable: Frequency of SMART Operations

Examine the differences in frequencies of different SMART 

operations between agency conditions

RQ2. Are there differences in the way learners 

transitioned between SMART operations during 

game-based learning across agency conditions?

Four 2-way ANOVAs (with pairwise t-test)

Between-Subjects: Agency Condition

Within-Subjects: SMART Operation

Dependent Variable: Transition Values of SMART 

Operation

Identify differences between agency conditions in learners’ 

transitions across SEARCHING operations

Identify differences between agency conditions in learners’ 

transitions across MONITORING operations

Identify differences between agency conditions in learners’ 

transitions across ASSEMBLING/REHEARSING operations

Identify differences between agency conditions in learners’ 

transitions across TRANSLATING operations

RQ3. To what extent do the probabilities of 

learners’ SRL SMART operation transitions relate 

to learning gains and agency conditions?

Four Multiple Linear Regressions

Predictor Variables:

(1) Transitions into SMART Operations;

(2) Agency Condition

Outcome Variable: Learning Gains

Examine how transitions into SEARCHING operations relate to 

agency conditions and learning gains

Examine how transitions into MONITORING operations relate 

to agency conditions and learning gains

Examine how transitions into ASSEMBLING/REHEARSING 

operations relate to agency conditions and learning gains

Examine how transitions into TRANSLATING operations 

relate to agency conditions and learning gains

On average, the completion time for participants in the Full Agency 
condition is within 82.6 min (SD = 22.8). In contrast, participants assigned 
to the Partial Agency condition took an average of 96.8 min (SD = 18.7) 
minutes to complete the game, a significantly longer amount of time 
[t(88.7) = −3.33, p < 0.05]. While completion times varied across different 
conditions, no temporal constraints were imposed on participants within 
their respective environments. To account for this difference in task 
completion time, we examined the relative proportion of time participants 
spent engaging with each SMART operation to answer Research Question 
1. In other words, we divided the raw frequency in which participants 
used Searching, Monitoring, Assembling/Rehearsing, and Translating 
operations by the total time each participant spent on task to identify the 
frequency proportions of SMART operations relative to how much time 
they spent on task. For Research Questions 2 and 3, in using transition 
probabilities, we  account for this difference in time in which each 
probability is a proportion in which the transition probabilities are in 
relation to frequency of actions and transitions between actions 
across participants.

6. Results

6.1. Research question 1: are there 
differences in the frequency proportions of 
SMART operation deployment during 
game-based learning between agency 
conditions?

A two-way ANOVA (skew and kurtosis < |2|) was conducted to 
examine the differences in the frequencies of SMART operation 
deployment between agency conditions. Frequency proportions 
across all participants (N = 374) ranged from 0 to 0.07 (M = 0.02, 
SD = 0.01). Results revealed significant main effects of condition [F(1, 

368) = 49.2, p < 0.01] and SMART operations [F(3, 368) = 244.4, 
p < 0.01]. Across all SMART operations, participants within the Full 
Agency condition engaged in a significantly greater frequency 
proportion of SMART operations (M = 0.02, SD = 0.01) than those in 
the Partial Agency condition (M = 0.01, SD = 0.01). Pairwise t-tests 
with Bonferroni corrections (p < 0.0083) for six tests found significant 
differences across SMART operations in which participants engaged 
in significantly more Assembling/Rehearsing operations (M = 0.03, 
SD = 0.01) followed by Searching (M = 0.02, SD = 0.01) and Monitoring 
(M = 0.02, SD = 0.01) and significantly less Translating operations 
(M = 0.0, SD = 0.0; see Table 3 for statistics). The two-way ANOVA also 
revealed a significant interaction effect between frequency proportions 
of SMART operations and conditions [F(3, 368) = 22.3, p < 0.01]. 
However, post-hoc analyses with Bonferroni corrections (p < 0.0.125) 
found that the only significant difference between condition across the 
frequency proportions of SMART operations were related to 
participants’ Searching operations in which participants in the Full 
Agency condition deployed significantly more searching operations 
(M = 0.03, SD = 0.01) than participants in the Partial agency condition 
[M = 0.01, SD = 0.0; t(72.2) = 10.6, p < 0.01].

TABLE 3 Differences in participants’ SMART operations use during 
learning.

SMART 
operation

M SD 1 2 3

 1. Searching 0.02 0.01

 2. Monitoring 0.02 0.01 1.37

 3. Assembling/

rehearsing

0.03 0.01 −4.57* −7.11*

 4. Translating 0.0 0.0 17.4* 21.9* 30.4*

* indicates significant t-value at p < 0.0083.
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FIGURE 6

Differences between conditions across SMART operation transitions. Bold green transition line indicates significant difference between agency conditions.

6.2. Research question 2: are there 
differences in the way learners transitioned 
between SMART operations during 
game-based learning across agency 
conditions?

For this research question, we calculated a transition matrix for 
each participant to examine how participants sequentially deployed 

SMART operations during game-based learning. To do so, we used all 
participants’ log-file and eye-tracking data to identify which SMART 
operation was deployed at what time. Participants received probability 
scores for 16 possible transition states (e.g., searching to searching, 
searching to monitoring). Figure 6 represents the average probability 
that the transition occurred between each agency condition. 
Transitions marked in green highlight transitions that had significant 
differences between conditions.
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Four two-way ANOVAs were conducted to identify the differences 
between conditions in learners’ transitions to: (1) Searching (e.g., 
monitoring to searching); (2) Monitoring (e.g., translating to 
monitoring); (3) Assembling/Rehearsing (e.g., searching to 
assembling/rehearsing); and (4) Translating (e.g., searching to 
translating). Given repeated tests (N = 4), significance was corrected 
using Bonferroni such that significant effects were p < 0.0125.

Searching. The first two-way ANOVA (see Table  4) examined 
differences in the deployment of SMART operations to Searching 
operations between agency conditions. There were main effects of 
both SMART operations [F(3,368) = 724.0, p < 0.0125] and condition 
[F(1,368) = 17.5, p < 0.0125] as well as a significant interaction effect in 
which the transition probabilities significantly differed between 
agency conditions and across SMART operations [F(3,368) = 21.6, 
p < 0.0125]. Comparisons between conditions found that participants 
had significantly greater transitions to Searching operations when they 
were in the Full Agency condition (M = 0.31, SD = 0.3) than 
participants in the Partial Agency condition (M = 0.26, SD = 0.23) with 
a statistically significant difference in participants’ recursive Searching 
transitions (i.e., Searching to Searching; t = −5.86, p < 0.0125) between 
the Full (M = 0.79, SD = 0.05) and Partial (M = 0.59, SD = 0.06) 
Agency conditions.

Monitoring. The next two-way ANOVA (see Table 5) examined 
differences in the deployment of SMART operations to Monitoring 
operations between agency conditions. While the model revealed 
significant main effects of SMART operations [F(2,276) = 1952.2, 
p < 0.0125] and condition [F(1,276) = 4.68, p < 0.05] in which participants 
in the Full Agency condition (M = 0.18, SD = 0.05) had lower probabilities 
of transitioning into Monitoring operations from other SMART 
operations than those in the Partial Agency condition (M = 0.33, 
SD = 0.07), there was no significant interaction effect (p > 0.05).

Assembling/Rehearsing. The third two-way ANOVA (see Table 6) 
aimed to identify differences in the deployment of SMART operations 
to Assembling/Rehearsal operations between agency conditions. 
Results from this ANOVA showed a significant main effect of SMART 
operations [F(3,368) = 1099.6, p < 0.0125] and a significant interaction 
effect [F(3,368) = 14.0, p < 0.0125] where, although there was no main 
effect of condition, participants in the Full and Partial Agency 
conditions differed in their transitions to Assembling/Rehearsing 
operations across SMART operations. Specifically, comparisons 
between conditions across these transition probabilities found that 
participants in the Full Agency condition demonstrated significantly 
lower probabilities of transitions from Searching to Assembling/
Rehearsing (M = 0.18, SD = 0.05) than participants in the Partial 
Agency condition (M = 0.33, SD = 0.07; t = 5.00, p < 0.0125).

Translating. The last two-way ANOVA (see Table 7) examined 
differences in the deployment of SMART operations to Translating 
operations between agency conditions. Results found a significant 
main effect of SMART operation [F(2,276) = 1049.4, p < 0.01] with a 
significant interaction effect [F(2,276) = 115.3, p < 0.0125] in which 
participants in the Full Agency condition demonstrate significantly 
lower probabilities in their transitions to Translating operations from 
Searching operations (M = 0.18, SD = 0.05) than participants in the 
Partial Agency condition (M = 0.33, SD = 0.07; t = 13.3, p < 0.0125).

In sum, across all transition probabilities, participants in the Full 
Agency condition demonstrated greater recursive Searching 
operations than those in the Partial Agency condition. This indicates 
an inefficiency of action use in which participants without scaffolding 
were searching for information rather than reading information, 
engaging in monitoring strategies, etc. This also indicates that 
participants without scaffolding needed more instruction on how to 
navigate the environment to engage in efficient use of (game-based) 
environment features. Further, participants in the Partial Agency 
condition demonstrated significantly greater transitions from 
Searching to both Assembling/Rehearsing and Translating operations. 

TABLE 4 Searching two-way ANOVA summary table.

Variable df SS MS F value Value of 
p

to Monitoring 

transition
3 23.8 7.92 724.0 p < 0.0125*

Agency 

condition
1 0.19 0.19 17.5 p < 0.0125*

Interaction 3 0.71 0.24 21.6 p < 0.0125*

Residuals 368 4.02 0.01

* indicates significant F-value at p < 0.0125.

TABLE 5 Monitoring two-way ANOVA summary table.

Variable df SS MS F value Value of 
p

to Monitoring 

transition
2 27.1 13.6 1952.17 p < 0.0125*

Agency 

condition
1 0.03 0.03 4.679 p < 0.0125*

Interaction 2 0.003 0.001 0.197 p > 0.0125

Residuals 276 1.92 0.01

* indicates significant F-value at p < 0.0125.

TABLE 6 Assembling/rehearsing two-way ANOVA summary table.

Variable df SS MS F value Value of 
p

to Monitoring 

transition
3 40.2 13.4 1099.6 p < 0.0125*

Agency 

condition
1 0.05 0.05 3.80 p > 0.0125

Interaction 3 0.51 0.17 14.0 p < 0.0125*

Residuals 368 4.48 0.01

* indicates significant F-value at p < 0.0125.

TABLE 7 Translating two-way ANOVA summary table.

Variable df SS MS F value Value of 
p

to Monitoring 

transition
2 3.09 1.54 1049.4 p < 0.0125*

Agency 

condition
1 0.17 0.17 115.3 p < 0.0125*

Interaction 2 0.34 0.17 115.6 p < 0.0125*

Residuals 276 0.41 0.002

* indicates significant F-value at p < 0.0125.
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This demonstrates a greater adaptivity of SRL SMART operations 
when participants were scaffolded via restricted agency.

Research Question 3: To what extent do the probabilities of 
learners’ SRL SMART operation transitions relate to learning gains 
and agency conditions?

Searching. Correlations were identified between learning gains 
and SMART operation transitions to Searching operations to identify 
how transition probabilities relate to learning gains. Searching to 
Searching [r(92) = −0.25, p < 0.05] as well as Assembling/Rehearsing 
to Searching [r(92) = −0.20, p < 0.05] transition probabilities were 
found to be significantly and negatively related to learning gains. A 
multiple linear regression was then conducted to identify how these 
transition probabilities and agency conditions interact with each other 
to predict learning gains. The regression was not significant (p > 0.05), 
indicating that transitions from SMART operations to Searching 
operations are not significant predictors of learning gains.

Monitoring. Correlations between learning gains and SMART 
operation transition probabilities to Monitoring operations. Results 
found a significant, positive relationship between the transition 
probability from Assembling/Rehearsing to Monitoring operations 
and learning gains [r(92) = 0.21, p < 0.05]. A multiple linear regression 
examined how agency conditions and Assembling/Rehearsing to 
Monitoring operation transition probabilities related to learning gains. 
Overall, the linear regression was significant [F(2,91) = 4.31, p < 0.05; 
R2 = 0.12]. While results from this model did not find a significant 
main effect of the transition probability (p > 0.05), results did find a 
significant interaction effect between this transition probability and 
learning gains (t = 2.03, p < 0.05) where as participants in the Partial 
Agency condition demonstrated greater transition probabilities from 
Assembling/Rehearsing operations to Monitoring operations, learning 
gains increased at a greater rate than when participants were in the 
Full Agency condition. In sum, scaffolding via agency promotes 
participants’ transitions from Assembling/Rehearsing to Monitoring 
which further increases learning gains.

Assembling/Rehearsing. Correlations were conducted to examine 
the relationship between learning gains and SMART operation 
transition probabilities to Assembling/Rehearsing operations. While 
correlations found a significant positive relationship between learning 
gains and the transition probability from Searching to Assembling/
Rehearsing operations [r(92) = 0.25, p < 0.05], a multiple linear 
regression using this transition probability and agency as predictor 
variables did not reveal significant effects on learning gains (p > 0.05).

Translating. Correlations between learning gains and the 
probability that participants transitioned from a SMART operation to 
a Translating operation found significant relationships between 
learning gains and when learners transition from Assembling/
Rehearsing [r(92) = −0.21, p < 0.05] and Searching [r(92) = 0.25, 
p < 0.05] operations to Translating operations. These two transition 
probabilities were used as predictor variables along with agency 
conditions to examine their effect on participants’ learning gains 
within a multiple linear regression. Overall, the model was significant 
[F(4,89) = 2.88, p < 0.05; R2 = 0.11] where results showed a significant 
interaction effect of Assembling/Rehearsing to Translating 
probabilities and condition (t = −2.15, p < 0.05). As participants in the 
Full Agency condition demonstrated greater transition probabilities 
from Assembling/Rehearsing to Translating operations, learning gains 
decreased at a greater rate compared to learners in the Partial 
Agency condition.

In sum, results from this research question showed that learning 
gains increased when participants in the Partial Agency condition 
demonstrated greater transition probabilities from Assembling/
Rehearsing operations to Monitoring operations. Additionally, when 
participants in the Full Agency condition demonstrated greater 
transition probabilities from Assembling/Rehearsing to Translating 
operations, learning gains decreased. This may be due to either the 
pre-mature application of information that has been found during 
Assembling/Rehearsing to other contexts or due to the lack of other 
processes that facilitate a successful transition between these 
operations (e.g., Monitoring operation).

7. Discussion

The goal of this study was to use multimodal data to understand 
how learners’ sequential transitions across SMART operations were 
related to the level of scaffolding received during game-based learning 
and how this contributed to learners’ overall learning gains. The first 
research question examined the differences between conditions in the 
proportion in which each SMART operation was deployed during 
learning. Results found that learners engaged in Assembling/
Rehearsing operations more often, followed by Searching and 
Monitoring operations, and lastly followed by Translating operations 
and that generally, learners who received scaffolding engaged in 
significantly less SMART operations than learners in the full agency 
condition. While this may seem to indicate that agency as a scaffold 
discourages learners’ deployment of SRL SMART operations and is 
not consistent with hypotheses and prior literature (Dever et al., 2021, 
2022; Hutt et al., 2021; Zhang et al., 2022), results further found that 
only the Searching operation significantly differed between conditions 
where learners in the Full Agency condition had a significantly greater 
proportion of Searching operations than those in the Partial Agency 
condition. As Searching was identified as the movement across 
pre-defined boundaries within the game environment, we interpret 
this finding to mean that scaffolding learners by limiting their agency 
supports learners’ exploration and navigation of the GBLE, leading to 
more efficient interactions with GBLE elements. This interpretation of 
findings is an important first step to understanding that the 
deployment of SMART operations is not, in and of itself, an ideal use 
of SRL, rather the balance of using SMART operations in accordance 
with the amount of time spent in the environment and in relation to 
other operations is a key component of understanding efficient and 
accurate SRL.

The second research question utilized learners’ transition 
probabilities across SMART operations to examine differences 
between agency conditions in how SMART operations were 
sequentially deployed. Results were partially consistent with 
hypotheses in which learners across both agency conditions 
demonstrated differences in their transition probabilities across 
SMART operations but were mixed in which group demonstrated 
greater or lower transition probabilities across specific SMART 
operations. Across all results within this research question, 
non-scaffolded learners compared to scaffolded learners had: (1) more 
recursive Searching transitions, consistent with findings from the first 
research question; (2) lower probabilities of transitioning into 
Monitoring operations from other SMART operations; (3) lower 
probabilities of transitions from Searching to Assembling/Rehearsing; 
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and (4) lower probabilities in transitioning to Translating from 
Searching. These findings show that learners who are supported via 
restricted agency use a greater variety of SMART operations and 
transition more often between SMART operations than learners who 
were not scaffolded, demonstrating greater SRL balance and efficiency. 
This extends the SMART theoretical framework (Winne, 2018) as well 
as prior literature on promoting SRL to increase learning outcomes 
(Hutt et al., 2021; Zhang et al., 2022; Dever et al., 2023) to include a 
temporal understanding of how scaffolding can support learners’ 
transitions across SRL SMART operations.

The third research question was examined to further understand 
how learners deployed SMART operations relate to the scaffolding 
present within the GBLE and learning outcomes, building on the 
second research question. Results from this research question 
showed that while transitions from SMART operations to Search 
and Assembling/Rehearsing did not significantly relate to learning 
gains, there were significant relationships in the transitions to 
Monitoring and Translating operations. Specifically, learners who 
were scaffolded demonstrated greater transitions between 
Assembling/Rehearsing to Monitoring which were related to greater 
learning outcomes. Conversely, non-scaffolded learners who 
demonstrated greater transitions from Assembling/Rehearsing to 
Translating had significantly lower learning gains than learners who 
were scaffolded. This supports our hypotheses in which restricted 
agency as a scaffold aids learners in engaging in Monitoring 
operations after Assembling information throughout the 
environment and Rehearsing information in working memory. In 
comparing groups who received scaffolding and those who did not 
receive scaffolding, analyses also revealed that scaffolding learners 
during game-based learning mitigates the negative impacts of 
certain SMART operation transitions (i.e., Assembling/Rehearsing 
to Translating) on learning outcomes that otherwise would have 
been present. As such, this study reveals that the sequential 
transitions between certain SMART operations should be either 
encouraged or discouraged based on their relationships to learning 
operations, furthering our understanding of how learners should 
be  optimally engaging in SRL SMART operations to increase 
learning outcomes.

8. Limitations

There are a few limitations with this study that reflect the pervasive 
limitations within game-based learning and SRL literature. 
Methodologically, while this paper classified SMART operations 
according to the direct actions that the participants took, we did not 
separate Assembling and Rehearsing operations but rather considered 
them as one action. Theoretically, these operations should 
be considered separate but with the data that was collected, log files 
and eye tracking methodologies cannot separate these processes. 
Specifically, these data cannot identify when a participant assembles 
information vs. rehearses information within working memory. This 
is a limitation seen in prior work by Hutt et al. (2021) in which the 
rehearsing operation could not be  identified through the data 
collected. As such, this paper combined these processes in which an 
assembling action can reflect learners’ rehearsal of this information. 
To mitigate the impact of this limitation on generalizability and 

theoretical applications, we  suggest future studies should collect 
concurrent verbalizations to capture these processes separately (see 
Azevedo et al., 2019).

Further, the transition probabilities within this paper were used 
to identify the probability that a transition between two states 
occurred. While further analyses can be conducted to identify the 
probability a transition occurred given the status of a previous state 
(e.g., the probability that the transition from A to B occurred given 
that action C preceded A), there stands the limitation that this analysis 
does not take the history of leaners’ prior use of SRL processes or time 
of session (and other potentially relevant instructional conditions) 
into account. In other words, these transition probabilities apply the 
same weight to transitions regardless of when the transition was 
deployed and what the learner has previously done within the 
GBLE. As such, future studies should attempt to understand how the 
history (i.e., temporal deployment of SRL processes) and prior actions 
completed by a learner may influence the transition probabilities 
over time.

9. Applications of findings

While the goal of this study was to use multimodal data to 
understand how learners transition across SRL SMART operations 
depending on the scaffolding provided to learners, there are several 
applications of the findings from this study to other methodologies 
and domains. For example, identifying transitions and its 
relationship to outcomes can support current literature on brain-
computer interfaces (BCIs) and the effectiveness of such systems 
compared to their cost (Vourvopoulos and Badia, 2016) and the 
evaluation of newly emerging immersive virtual reality and 
augmented reality systems in their value for education and 
training. Further, by understanding and examining how eye 
tracking can be used to identify and predict learners’ interactions 
with computer-based systems, the methodologies and findings 
from this paper can further improve human-computer interaction 
literature. Eye-tracking methodologies used within this paper, such 
as the identification of actions and the order in which they occur, 
can be used to improve how studies validate their systems and 
identify human-computer interactions that can be scaffolded and 
improved. For example, eye movements can be  used to detect 
cognitive load during programming tasks (Katona, 2022), 
identifying source code defects (Sharif et al., 2012), implementing 
scaffolds within immersive virtual reality environments (Bacca-
Acosta et al., 2022).

10. Conclusion and future directions

The goal of this study was to examine, using multimodal data, how 
restricting agency during game-based learning supports learners SRL 
SMART operations and how the temporal deployment of these 
operations relate to learning outcomes. This paper established that it is 
important to consider how learners sequentially transition across these 
operations and how scaffolds within GBLEs can be used to support the 
adequate use of SRL SMART operations. From the findings of this study, 
we conclude that restricted agency is a sufficient scaffold of SMART 
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operations in which learners who were scaffolded demonstrated 
increased learning outcomes and adequate deployment of SMART 
operations compared to learners who were not scaffolded during game-
based learning. As such, this study expands the field of SRL in suggesting 
a temporal relationship between SMART operations and carving a path 
for future research in understanding how scaffolds should 
be implemented within GBLEs to support learners’ accurate and efficient 
use of SRL SMART operations. Future directions should aim to 
understand how SMART operations are deployed as time progresses, not 
just in relation to the previous operation that was deployed. Further, 
more studies are needed to further understand the following questions: 
Why are some transitions between SMART operations detrimental to 
learning outcomes? How can adaptive scaffolding support learners’ 
developing expertise of SRL SMART operation use? Are the results of 
this study generalizable to other GBLEs and learning technologies (e.g., 
intelligent tutoring systems, simulations, immersive environments)? 
How can other multimodal data unveil how SMART operations are 
operationalized and captured during game-based learning?
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