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Interchangeability between factor 
analysis, logistic IRT, and normal 
ogive IRT
Eunseong Cho *

Department of Business Administration, Kwangwoon University, Seoul, Republic of Korea

In existing studies, it has been argued that factor analysis (FA) is equivalent to 
item response theory (IRT) and that IRT models that use different functions (i.e., 
logistic and normal ogive) are also interchangeable. However, these arguments 
have weak links. The proof of equivalence between FA and normal ogive IRT 
assumes a normal distribution. The interchangeability between the logistic and 
normal ogive IRT models depends on a scaling constant, but few scholars have 
examined whether the usual values of 1.7 or 1.702 maximize interchangeability. 
This study addresses these issues through Monte Carlo simulations. First, the 
FA model produces almost identical results to those of the normal ogive model 
even under severe nonnormality. Second, no single scaling constant maximizes 
the interchangeability between logistic and normal ogive models. Instead, users 
should choose different scaling constants depending on their purpose in using a 
model and the number of response categories (i.e., dichotomous or polytomous). 
Third, the interchangeability between logistic and normal ogive models is 
determined by several conditions. The interchangeability is high if the data are 
dichotomous or if the latent variables follow a symmetric distribution, and vice 
versa. In summary, the interchangeability between FA and normal ogive models is 
greater than expected, but that between logistic and normal ogive models is not.
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Introduction

When dealing with discrete data (e.g., yes/no or Likert scale data), we can use either factor 
analysis (FA) or item response theory (IRT). Typical FA is for continuous data, but we can use 
FA for discrete data by assuming underlying continuous variables. There are various IRT models, 
most of which use logistic or normal ogive functions. That is, we have three models: FA, logistic 
IRT, and normal ogive IRT. Assume that we use them for two purposes: estimating parameters 
from given data and generating data from given parameters. Interchangeability is the degree to 
which models produce approximate results for each purpose when their apparent differences 
are removed. For example, if a transformation exists that makes the parameters estimated by 
one model identical to those estimated by another model from the same data, the two models 
are fully interchangeable for parameter estimation. If no statistical analysis is better than a 
random guess at distinguishing between the data generated by two models, the two models are 
fully interchangeable for data generation. We  know that these three models are roughly 
interchangeable in some cases (Wirth and Edwards, 2007), but we know little about under what 
conditions and to what extent these models are interchangeable.
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FA and IRT have different traditions and seemingly unrelated 
formulas. Nevertheless, scholars have begun to explain the relationship 
between FA and IRT (Lord and Novick, 1968; Bartholomew, 1983; 
Muthén, 1983). An explicit explanation was provided by Takane and 
de Leeuw (1987), who algebraically proved the equivalence of some 
FA models with some IRT models and presented formulas for 
transforming an FA model to an IRT model. These findings led Takane 
and de Leeuw (1987) to claim “[i]t is clear … that IRT and FA are two 
alternative formulations of a same model” (pp. 396–397). Modern 
scholars explain FA and IRT models within the same framework 
(Wirth and Edwards, 2007). However, few scholars have expressed a 
cautious view, suggesting that the claims of model equivalence are 
overgeneralized to areas outside what is substantiated by proof. The 
algebraic approach found in existing studies requires an assumption 
to obtain a solution. However, real-world data rarely satisfy this 
assumption. This study, through an empirical approach (i.e., Monte 
Carlo simulations), examines 3 weak links in the claim that FA and 
IRT models are interchangeable.

First, Takane and de Leeuw’s proof assumes that latent variables 
(i.e., factors in FA or abilities in IRT) follow a normal distribution. 
There is not yet a proof that assumes another distribution or a general 
proof that does not assume any distribution. This study empirically 
examines whether Takane and de Leeuw’s proof is robust to moderate 
or severe normality violations.

Second, Takane and de Leeuw’s proof applies to the normal ogive 
model instead of the logistic model. The normal ogive function is 
mathematically unwieldy because it does not have a closed form. Users 
typically use logistic models, which have simple formulas and produce 
approximate results to normal ogive models. What makes the 
parameters of the two models interchangeable is a scaling constant, 
often denoted as D . The values that are almost always used are 1.7 
and 1.702 (Haley, 1952; Birnbaum, 1968). These values have been used 
unchallenged for decades, despite the lack of empirical evidence that 
it is the best choice for its original purpose. This study examines which 
value to use to maximize the interchangeability between models.

Third, few scholars have examined whether interchangeability for 
one purpose guarantees interchangeability for another. When existing 
studies have stated that one model is equivalent to or exchangeable 
with another model, they have rarely clarified the purpose of the 
models. For example, if two models are interchangeable when used to 
generate data, can we  be  sure that the two models are also 
interchangeable when used to estimate parameters? Few scholars have 
examined interchangeability from various angles.

This study addresses these issues through Monte Carlo 
simulations. Before explaining the simulations, the basic concepts are 
explained for readers unfamiliar with the topic.

Literature review

Probability distributions

Skewness and kurtosis
When describing a probability distribution, we often use skewness 

and kurtosis (Figure 1) in addition to mean (i.e., µ ) and variance (i.e., 
σ 2 ). Skewness is defined as E X � � �� �� �3 3/ , where E .� �  is the 
expected-value operator. Kurtosis is defined as E X � �� �� �� �4 4 3/ . 

A distribution with negative kurtosis is platykurtic, and a distribution 
with positive kurtosis is leptokurtic.

Normal and logistic distributions
Of particular interest to this study are the normal and logistic 

distributions (Figure 2). Let Φ  denote the standard normal ogive 

function: � �
�

X t dt
X� � � � ���

1
2

22

�
exp / . Here, the ogive function 

is a cumulative density function. Let Ψ  denote the standard logistic 
ogive function: � X X X X� � � � � �� � � � � � � �� �1 1 1/ exp exp / exp� .  
In this case, the word ogive is usually omitted because typical users 
employ the logistic function without associating it with a logistic 
distribution (Savalei, 2006). Both distributions have zero skewness, 
but the logistic distribution has greater kurtosis (i.e., 1.2) than that of 
the normal distribution (i.e., zero).

Statisticians have described distributions with different kurtosis 
values in several ways, and the normal and logistic distributions fit these 
descriptions. The logistic function has a thicker center (i.e., X  near 
zero) and tails (i.e., beyond and around ±2) and less thick shoulders (i.e., 
around ±1) than those of the normal ogive function (Balanda and 
MacGillivray, 1988). The logistic distribution has a greater propensity to 
produce outliers than does the normal distribution (Westfall, 2014). The 
probability density function (PDF) of a normal distribution crosses that 
of a logistic distribution with the same mean and variance four times 
(Dyson, 1943). Since a PDF is the derivative of an ogive function, 
applying Dyson’s description to the ogive function, the logistic function 
minus the normal ogive function has four local minima or maxima with 
the signs +, −, +, and – (Figure 3). The different kurtosis values make 
the two functions different.

To quantify the difference, the logistic function has a maximum 
absolute error of approximately 0.01 from the normal ogive function 
(Haley, 1952); IRT studies describe the value of 0.01 as sufficiently 
small. For example, citing this value, Birnbaum (1968) argued that 
“any graph of a [normal ogive function] would serve equally well to 
illustrate [a logistic function]” (p. 399). Few studies explain this value 
using a numerical example, allowing the possibility that their readers 
misconceive it as a relative error of 1% rather than an absolute error. 
One of the X  values at which the maximum absolute difference 
between the two functions is located is −2.044 if we use Haley’s (1952) 
scale constant: � �� � �2 044 0. .020 and � � �� � �1 702 2 044 0. . .030, 
a relative difference of approximately 50%. Inputting an X  value less 
than −2.044 decreases the absolute difference but increases the relative 
difference. For example, � �� � �3 0 .001 and � � �� � �1 702 3 0. .006. 
Whether this difference is small is debatable.

Let us review another reference point for determining whether 
0.01 is a negligible size. Statisticians have devised dozens of closed-
form functions that approximate the normal ogive function, most of 
which approximate the normal ogive function better than the logistic 
function does. For example, some have a maximum absolute error of 
approximately 0.0000001 (Shore, 2005). Unfortunately, these functions 
are more complex than the logistic function. The better they 
approximate the normal distribution, the more terms they have 
(Dombi and Jónás, 2018). Their complexity makes it difficult for 
humans to remember and understand them, although computers may 
have no problem calculating them. In summary, the logistic distribution 
has the advantage of simplicity, but it is not the best approximation of 
the normal distribution. This property can prevent IRT models that use 
the two functions from being fully interchangeable.
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FA and IRT models

FA models
This study uses a unidimensional FA model. Let us suppose there 

are n  persons and k  items. The continuous score of person 
i n�� �1, ,  for item j  �� �1, , k  (i.e., Xij

∗ ) has zero mean and unit 
variance. Xij

∗  is a linear combination of person i ’s latent variable (i.e., 
θi ) and an error (i.e., ei ): X eij j i i

� � �� � , where � j �� �1  is the factor 
loading. θi  is drawn independently from a normal or nonnormal 
distribution with zero mean and unit variance. ei  is independently 
drawn from a normal distribution with zero mean and variance 
1 2�� j . We can transform the continuous score Xij

∗  into a discrete 
score Xij  by using thresholds. If there are two categories, Xij  is one 
of 0 1,� � . Let τ j  denote the threshold of item j . We obtain Xij = 0  

if Xij j
� ��  and Xij =1 otherwise. If there are C  categories, Xij  is one 

of 0 1 1, , , C �� � . Let τ jc  denote the c th threshold of item j , where 
c  is one of 0 1, , , C� � . The first and last thresholds are trivial: 
� j0 � ��  and � jC �� . We obtain X cij =  if � �jc ij j cX� �� �� �1 .

IRT models

Normal ogive
If there are two categories, the two-parameter model is 

P Xij i j i j�� � � � �1|� � � �� � , where α j  is the slope or 
discrimination parameter of item j  and β j  is the location or 
difficulty parameter of item j . We  automatically obtain 
P X P Xij i ij i�� � � �� �0 1 1| |� �� . If there are C  categories, the 
two-parameter model is P X cij i j i jc�� � � � �|� � � �� � , where β jc  

FIGURE 1

Skewed, normal, platykurtic, and leptokurtic distributions. Left solid line, positively skewed, skewness  =  2; left dashed line, negatively skewed, 
skewness  =  −2; right solid line, normal distribution, kurtosis  =  0; right dashed line, platykurtic distribution (i.e., Wigner semicircle distribution), 
kurtosis  =  −1; right dotted line, leptokurtic distribution (i.e., double exponential or Laplace distribution), kurtosis  =  3. All distributions have zero mean and 
unit variance. The distributions on the left have zero kurtosis, and the distributions on the right have zero skewness.

FIGURE 2

A comparison of normal and logistic distributions. Left, the cumulative density (i.e., ogive) functions; right, probability density functions; solid, the 
standard normal distribution; dotted, the logistic distribution with zero mean and scale constant of 1.702.
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is the c th ( c C� �1 1, , � ) location parameter of item j . 
We obtain P X c P X c P X cij i ij i j i�� � � �� � � �� �| | |� � �� 1 , 
where P X Cj i�� � �|� 0 .

Logistic
Birnbaum’s (1968) two-parameter model describes dichotomous 

item scores as P X Dij i j i j�� � � � �� �1|� � � �� � , where D  is a 
scaling constant. When C  is greater than 2, the two-parameter 
model is P X c Dij i j i jc�� � � � �� �|� � � �� � .

Interchangeability between models

Between logistic and normal ogive models

Scaling constant
The link connecting the logistic and normal ogive models is the 

scaling constant D . The purpose of this constant is to make the 
results of the two models as approximately equal as possible. The first 
to use this constant in logistic models was Birnbaum (1968), who used 
a value of 1.7, citing Haley (1952). Hailey’s original value was 1.702 
(Camilli, 1994), the value used in this study. Three other values (i.e., 
1.6, 1.749, and 1.814) have been proposed as scaling constants. 
Furthermore, further thought reveals that any value between 1.6 and 
1.814 can be used as a scaling constant. This study is interested in 
which is the best but first describes the rationale each value is based 
on and how each approximates the two distributions.

Review of existing rationales
Let us start with the old constants. The easiest rationale for 

approximating the normal and logistic distributions is to equalize 
the variances of the two distributions, which gives 1.814 ( �� / 3 ). 
However, this value creates excessively large nontail errors 
(Figure  3). Haley’s (1952) idea was to minimize the maximum 
absolute error, which makes the maximum tail and nontail error 
have the same value (Camilli, 1994). Therefore, the value 

he  obtained, 1.702, makes the difference between the two 
distributions oscillate between the maximum absolute errors (i.e., 
approximately −0.01 and.01). Amemiya (1981) calculated 13 values 
from normal and logistic distributions: 1.6 is the value he found by 
trial and error to minimize the difference between the two 
distributions. Of the 13 values Amemiya (1981) reviewed, 11 are in 
the nontail region (i.e., X  = 0, 0.1, 0.2, …, 0.9, and 1), and only two 
are in the tail (i.e., X  = 2 and 3). These constants are based on a 
relatively simple rationale.

Few scholars have attempted to find a better value than these older 
values. An exception is Savalei (2006), who suggested a value of 1.749 
that minimizes the Kullback–Leibler (KL) information (Kullback and 
Leibler, 1951). Savalei did not directly demonstrate how minimizing 
the KL information is related to maximizing the interchangeability 
between the logistic and normal ogive models. In any case, her study 
is based on more sophisticated statistical rationales than those of 
existing values, and our best knowledge at this moment expects that 
1.749 maximizes model interchangeability. An interesting point raised 
by Savalei is that the KL divergence when the normal ogive function 
is approximated by the logistic function differs from the KL divergence 
when the logistic function is approximated by the normal ogive 
function (the value that minimizes the latter is 1.814). This asymmetry 
suggests that the departure and arrival models should be clear (i.e., 
from normal ogive to logistic) when discussing interchangeability.

Issues illustrated by graphs
An intuitive understanding can originate from graphs (Figure 3). 

First, choosing a constant involves a trade-off. The difference between 
the two ogive functions has four local minima or maxima (i.e., X ≈  
–2, −0.5, 0.5, and 2). Let the errors near −2 and 2 be the tail errors and 
the errors near −0.5 and 0.5 be the nontail errors. Minimizing one of 
these comes at a sacrifice of the other. A large constant (e.g., 1.814) 
reduces the tail errors at the cost of increasing the nontail errors; a 
small constant (e.g., 1.6) does the opposite. The difference between 
these constants is how much weight to give to the tail and 
nontail errors.

FIGURE 3

Difference between normal and logistic distributions when using three constants. Left, difference between logistic and normal ogive (i.e., cumulative) 
functions; right, difference between logistic and normal probability density functions; horizontal line containing zero: the standard normal distribution; 
solid line, logistic distribution using the scale constant of 1.702; dashed line, logistic distribution using the scale constant of 1.814; dotted line, logistic 
distribution using the scale constant of 1.6.
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The above discussion suggests that using 1.702 makes sense only 
in a special case, i.e., when we give equal weight to the tail and nontail 
errors. Birnbaum’s (1968) explanation that using 1.702 ensures that 
the maximum errors never exceed 0.01 (i.e., an easy number to 
remember) appeals to human intuition but misses the point. 
We should give these two errors optimal weights, not equal weights. 
Nontail regions are more frequent than tail regions in a bell-shaped 
distribution, so if we weight frequencies, the nontail errors outweigh 
the tail errors. However, the tail errors may exert a greater impact than 
the nontail errors do. It is difficult to predict which of these two 
scenarios is correct in the IRT model.

Second, minimizing differences in the ogive functions differs 
from minimizing differences in the PDFs. One might think that both 
questions have the same answer (Cook, 2010). However, a comparison 
of the left and right sides of Figure 3 reveals that a constant that 
performs well in one case may perform poorly in another. In the 
ogive function, 1.702 has smaller maximum errors than those 
obtained with 1.6 or 1.814. However, in the PDF, 1.702 has a larger 
maximum error than that of 1.6. However, that does not mean that 
1.6 is the best. Little is known about which value minimizes the PDF 
difference between the normal and logistic distributions.

Rationales not studied by existing studies
Little research has been done to examine the difference 

between the normal and logistic distributions from various 
angles. Haley (1952) focused on minimizing the maximum 
absolute error for the ogive functions. First, the usual approach 
to error minimization is to minimize the sum of all errors, 
whether absolute or squared. Second, which scaling constant 
minimizes the difference in PDFs has not yet been examined. 
Study 1 addresses these issues.

In existing studies, logistic and normal distributions instead of 
logistic and normal ogive models have been the source of comparison. 
The two problems may have different answers. Probability 
distributions produce continuous outputs, whereas typical IRT models 
produce discrete outputs. Understanding logistic and normal 
distributions is only a means to understanding the difference between 
logistic and normal ogive models. In addition to an indirect 
examination through probability distributions, this study directly 
examines our ultimate concern, that is, the interchangeability between 
logistic and normal ogive models. Studies 2 through 4 address 
this issue.

Between the FA and normal ogive models
Takane and de Leeuw’s (1987) proof suggests that we  can 

transform FA models into two-parameter normal ogive models, and 
vice versa, if the latent variables follow a normal distribution. The 
formulas for transforming the parameters of the FA model to those of 
the normal ogive model are as follows:

 
� � � � � �j j j jc jc j� �/ /1 12 2� �and . (1)

Rearranging these formulas creates the opposite formulas:

  
� � � � � �j j j jc jc j� � � �/ /1 12 2and . (2)

The formulas are proven only when the latent variables follow a 
normal distribution. Latent variables in the real world are not exactly 
normally distributed. If the formulas do not hold even for data that 
slightly violate normality, it is difficult to apply them to parameter 
estimation and data generation for practical purposes. On the other 
hand, if the formulas hold for data that severely violate normality, 
we should use them more aggressively than we do now.

Approaches to model interchangeability

Isolating model interchangeability from others
We can use an FA or IRT model in two directions: to estimate 

parameters from given data and to generate data from given 
parameters. Most users use a model for parameter estimation, so it 
makes sense for academic research to focus on parameter estimation 
as well. However, research focusing on parameter estimation may have 
difficulty isolating whether differences in parameter estimates between 
models are due to differences in models or other causes. The FA, 
logistic, and normal ogive models have their own estimation 
techniques and, in many cases, dedicated software. For example, 
Wirth and Edwards (2007) used weighted least squares for categorical 
data (WLS) and modified WLS for categorical data (MWLS) for the 
FA model, the expectation–maximization (EM) technique for the 
logistic model, and the Markov chain Monte Carlo estimation 
technique for the normal ogive model. In this case, it is challenging to 
isolate whether the differences in the parameter estimates are due to 
different models or different estimation techniques. Their work also 
suggests that the effect of different estimation techniques overpowers 
that of different models. Parameter estimates of the FA model by 
MWLS were approximate to those of the logistic and normal ogive 
models but were meaningfully different from those of the FA model 
via WLS. In summary, the above discussion suggests that isolating 
model interchangeability from other causes requires using only one 
model for parameter estimation or omitting it.

Overview of this study

Each study
This study examines model interchangeability from various 

angles through six studies (Table 1). First, Study 1 examines only 

TABLE 1 Summary of each study.

Data 
generation

Parameter 
estimation

Focus

Study 1 None None Probability distribution

Study 2 Normal ogive Logistic Scaling constant

Study 3 FA, logistic, normal 

ogive

None Kolmogorov–Smirnov 

test

Study 4 FA, logistic, normal 

ogive

None Graphical analysis

FA, factor analysis.
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probability distributions instead of using IRT models, as previous 
studies did (Haley, 1952; Amemiya, 1981; Savalei, 2006). Second, 
Study 2 examine model interchangeability in parameter estimation 
and use a logistic model for parameter estimation. Third, Studies 3 
and 4 examine model interchangeability in data generation and use 
all three models for data generation. Among these, additional 
explanation is needed for the Kolmogorov–Smirnov (KS) test to 
be performed in Study 3.

KS test
Study 3 performs the KS test, which tests whether two pieces of 

sample data are generated from the same probability distribution. This 
study proposes a weak criterion and a strong criterion for 
interchangeability by using the KS test. The weak criterion directly 
uses the KS test. First, one dataset is generated from each of the two 
models. Second, the KS test is performed on the two datasets. If there 
is no statistically significant difference, the two models pass the weak 
criterion for interchangeability. The original KS test targets continuous 
data and produces conservative results when applied to discrete data 
(Conover, 1972). To address this issue, R’s dgof package (Arnold and 
Emerson, 2011) provides p values calculated by using Monte 
Carlo simulations.

The strong criterion involves a blind test. For example, suppose 
that three sets of data are generated from two models, and two 
persons bet on which are generated from the same model. One makes 
random guesses, and the other uses statistical information (i.e., 
statistical guess). This person realizes that the KS statistic contains 
information even if there is no significant difference in the statistics 
of the three datasets. After comparing the KS statistics of the three 
datasets, this person guesses that the datasets with the smallest 
statistic were generated from the same model. If this statistical guess 
cannot outperform random guessing, the two models are considered 
fully interchangeable; otherwise, model interchangeability is 
measured by how much the statistical guess outperforms 
random guessing.

Study 1: Finding scaling constants 
from probability distributions

Study 1 addresses which scaling constant minimizes the difference 
between logistic and normal distributions. Current knowledge on this 
issue is limited in two ways: First, it covers only the ogive functions of 
the two distributions, not their PDFs; second, the knowledge is 
derived by minimizing the maximum error (Haley, 1952), not the total 
error (i.e., the sum of absolute or squared errors), which is a typical 
concern in error minimization.

Haley’s choice may have been due to the computational advantage 
of the former over the latter. A human can find D that minimizes the 
maximum error (i.e., minmax

D
D

�
� �| |�� �� � �� ) without a 

computer. Differential calculus simplifies the calculation, and the 
known approximate value of 1.814 enables us to obtain a convergent 
solution in only three iterations (Camilli, 1994). However, minimizing 

the total error requires integration [e.g., min
D

D d
�

�
�

�
� � � � � �� �� � � �

2

]; its formula is not in a closed form and is challenging for a human to 
compute without a computer. Haley’s (1952) solution of D = 1.702 may 
be due to his limited access to a computer.

This study takes a computational approach. First, the scaling 
constants that minimize the maximum absolute error of the two ogive 
functions and PDFs [i.e., minmax

D
D

�
� �| |� � � � ��� ] are obtained, 

where ψ  is the PDF of the logistic distribution and φ  is the PDF of 
the standard normal distribution. Second, the scaling constants that 

minimize the sum of the absolute [i.e., 
�

�
�

�
� � � � � �|� D d� � �|  and 

��

�
� � � � � �| |� � � � �D d ] and squared (i.e., 

�
�

�

�
� � � � � �� �� D d� � �

2
 

and �
�

�

�
� � � � �� �� � � � �D d2 ) errors are obtained.

Methods

Obtaining the value that minimizes the maximum absolute error 
is a double optimization problem (i.e., min

D
 and max

θ
). First, this 

study obtains the maximum absolute error (i.e., max
θ

) by using R’s (R 
Core Team, 2023) optimize function. Second, the D value that 
minimizes (i.e., min

D
) these maximum absolute errors is obtained by 

a brute-force approach. This study obtains the maximum absolute 
errors of each using D’s in the 0.0001 interval between 1.6 and 1.8 and 
then reports the value that minimizes the maximum absolute errors.

Obtaining the value that minimizes the sum of the absolute or 
squared errors involves brute-force optimization. To obtain the 
integral, this study uses R’s integrate function, which relies on the 
Quadpack package (Piessens et al., 2011). All code used in this study 
is publicly.1

Results and discussion

Results
Table  2 shows the results: 1.7017 represents Haley’s (1952) 

constant to four decimal places (Camilli, 1994).

Explanation of unexpected results
The values of the constants from the ogive functions are 

approximate, but the constants from the PDFs are not. The ogive 
function difference essentially has only two components, the tails and 
nontails, and minimizing the maximum error is equivalent to 
equalizing the maximum tail error and the maximum nontail error. 
The PDF difference has three components: the tails, shoulders, and 
center (Figure 3). Minimizing the maximum error simply involves 

1  https://github.com/eunscho/FAIRT

TABLE 2 Constants that minimize the difference between the two 
distributions (Study 1).

Maximum 
absolute 

error

Sum of errors

Absolute Squared

Ogive function 1.7017 1.7062 1.7010

Probability density function 1.6034 1.6294 1.6267
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minimizing the error in the area where the maximum error is located. 
According to further analysis, the maximum error is not in the tails 
for D values ranging between 1.6 and 1.8. If D is less than 1.677, the 
shoulders have the maximum error; otherwise, the center has the 
maximum error. Therefore, minimizing the maximum error between 
D = 1.6 and 1.677 minimizes the errors in the shoulders; the errors 
in the tails and center are irrelevant.

However, minimizing the sum of errors considers all areas. For 
example, minimizing the sum of the absolute errors involves 
minimizing the area between the curve and the line at y = 0 in the 
right graph of Figure 3. This minimization requires that each area 
be of a similar size. D = 1.6 creates an excessively small center area and 
excessively large tail areas; a constant greater than 1.6 increases the 
center area and decreases the tail areas.

Need for additional simulations
One may question the generalizability of Study 1. Study 1 

considered only probability distributions and did not examine IRT 
models by using these distributions. Although the probability 
distributions are continuous, IRT models use them to generate or 
explain discrete item scores. In the process, a new factor that we are 
unaware of may intervene. Study 2 addresses this issue.

Study 2: Finding scaling constants 
from IRT models

In existing studies (Haley, 1952; Amemiya, 1981; Savalei, 2006) 
and in Study 1, only normal and logistic distributions have been 
examined. This approach is indirect because IRT users are interested 
in models, and probability distributions are merely a means of 
describing models. There is no self-evident criterion as to which of 
these studies’ rationales, such as the maximum error, equal variances, 
or the KL information, are best applied to the interchangeability of 
IRT models. Study 2 addresses this issue by directly examining normal 
ogive and logistic models.

Methods

The simulation has 2 conditions. Namely:
 • Number of categories (C): dichotomous = 2 and polytomous = 5.

Each condition has 100,000 iterations. For each iteration, 
unidimensional data with a sample size of 10,000 and 10 items are 
generated by using the two-parameter normal ogive model. To 
increase the reality of the simulation, this study randomizes parameter 
values by drawing them independently for every item in every 
iteration. The discrimination parameter of each item (i.e., α j ) is 
drawn from a uniform distribution between 0.6 and 1.4. These values 
correspond to factor loadings (i.e., λ j ) of 0.514 and 0.814 (Equation 
2), respectively. These values are approximately 0.5 and 0.8, 
respectively, which Yang and Green (2015) claim to be typical factor 
loadings in FA.

In the dichotomous condition, the location parameter of each 
item (i.e., β j ) is drawn from a uniform distribution between-1.3 and 
1.3. Using these values makes the expected proportion of each 
response category (i.e., 0 and 1) range between 0.179 and 0.821 in the 

normal distribution. In the polytomous condition, this study creates 
four parameters of each item (i.e., β j1 , β j2 , β j3  and β j4 ) in two 
steps. First, four values are drawn from a uniform distribution 
between-2 and 2 and then sorted in ascending order. Second, this 
study subtracts 0.2 from the first, subtracts 0.1 from the second, adds 
0.1 to the third, and adds 0.2 to the fourth. These values make the 
average proportion of each category (i.e., 0, 1, 2, 3, and 4) 0.184, 0.193, 
0.245, 0.193, and 0.184, respectively, in the normal distribution. 
However, these numbers are only averages, and the proportions of 
each dataset vary.

The latent variable of each person (i.e., θi ) is independently 
drawn from a standard normal distribution. The θi  values are then 
substituted into the normal ogive model using the preceding 
parameters to generate data. The data are used to estimate the 
parameters of the logistic model by using the EM technique and the 
mirt package (Chalmers, 2012). Then, in a similar method to that used 
in Study 1, the value that minimizes the difference between the 
parameter used to generate the data and the estimated parameter 
is determined.

Results and discussion

Results
Table 3 shows the results.

Explanation of unexpected results

Values greater than 1.702
A reasonable expectation is that the nontails are more important 

in parameter estimation than are the tails because the nontails are 
more frequent than are the tails. Study 1 also suggested that the 
scaling constant that minimizes the PDF difference between the 
normal and logistic distributions (i.e., 1.627 and 1.629) is less than 
1.702. However, Study 2 produced results in the opposite direction. 
The scaling constants that make the parameter estimates of the 
logistic model most approximate to those of the normal ogive 
model are greater than 1.702: the values are 1.739  in the 
dichotomous condition and 1.753  in the polytomous condition 
according to the squared error criterion. A possible explanation is 
that the tails have a sufficiently large impact on the parameter 
estimates to offset their low frequency. The tails contain outliers, 
“which usually exert disproportionate influence” (Aguinis et al., 
2013, p. 2) on parameter estimates. For example, adding an outlier 
to randomly generated two-variable data can turn a near-zero 
correlation into a near-perfect correlation (Trauth, 2017). As 
reviewed earlier (Figure 3), a large scaling constant reduces the tail 
errors rather than the nontail errors.

TABLE 3 Optimal scaling constant when the data generated by a normal 
ogive model are estimated by a logistic model (Study 2).

Absolute error Squared error

Dichotomous (C= 2) 1.7343 1.7387

Polytomous (C= 5) 1.7462 1.7525

C: the number of categories.
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Number of categories
IRT users have been using the same scaling constant regardless of 

the number of categories of items (i.e., dichotomous or polytomous). 
However, the results suggest that the scaling constant that produces 
the most approximate parameter estimates to the normal ogive model 
differs between dichotomous and polytomous data. A possible 
explanation is that categories of dichotomous data do not specialize in 
either the tails or nontails, but those of polytomous data do. For 
example, in data with response categories of 0 and 1, both categories 
have one tail and share the nontail. Therefore, low weights for the tails 
do not severely increase the estimation error for 0 and 1. However, in 
data with response categories of 0, 1, 2, 3, and 4, only categories at 
both ends (i.e., 0 and 4) have tails, and the rest (i.e., 1, 2, and 3) focus 
on the nontails. Therefore, low weights for the tails can increase the 
estimation error for 0 and 4.

Need for additional simulations
Studies 1 and 2 focused only on the scaling constant. Study 3 

compares the three models, including the FA model.

Study 3: Model interchangeability in 
terms of the KS test

Study 3 answers three questions. First, it examines whether Takane 
and de Leeuw’s (1987) proof that the FA model is equivalent to the 
normal ogive model holds even if the data moderately or severely 
violate normality. Second, Study 3 examines which scaling constants 
make the logistic model produce results that best approximate those of 
the normal ogive model. Third, Study 3 examines how well the results 
of the logistic model approximate those of the FA and normal ogive 
models when using the best-performing scaling constant.

Methods

Simulation design and data generation
The simulation has a 2 * 5 full factorial design with 10 

conditions. Namely:

 • Number of categories (C): dichotomous = 2 and 
polytomous = 5, and

 • Distribution of latent variables: normal, skewed, platykurtic, 
leptokurtic and severe.

Each of the five distributions has the following skewness (front) 
and kurtosis (back): normal (0, 0), skewed (2, 0), platykurtic (0, −1.2), 
leptokurtic (0, 7), and severe (3, 21). Existing studies (Lee et al., 2020) 
used values of (2, 7) for moderate normality violation and values of (3, 
21) for extreme violation. This study divides the first values into values 
for the skewed and leptokurtic conditions and uses the second values 
as they are. Moreover, the platykurtic condition is added by using the 
values of the uniform distribution. However, this distribution differs 
from the uniform distribution because this study creates nonnormal 
distributions by transforming the normal distribution 
(Fleishman, 1978).

The sample size (i.e., n) is 10,000. This study focuses on large 
samples because preliminary research suggests that small samples 

produce irregular results, probably due to sampling errors. This 
study performs 20,000 iterations for each condition. Each iteration 
uses the parameter values described in Study 2. Each person’s latent 
variable is independently drawn from a distribution with zero mean 
and unit variance and a predetermined skew and kurtosis. Each 
model produces two item scores. Item scores generated from the 
same model are identical except for randomness. For example, two 
item scores from the FA model are generated by using the same 
factor loading, thresholds, and latent values; the only difference is 
the errors.

Determining interchangeability
Only the first of the two item scores of each model is used for 

comparison between models. The KS statistic and p value are recorded 
for each of the 13 models (i.e., 1 FA, 1 normal ogive, and 11 logistic). 
If the p value between any models is less than 0.05, those models fail 
to satisfy the weak criterion for interchangeability.

An index, denoted as b, quantifies how much better a statistical 
guess is than a random guess in a blind test. b ranges between −1 (i.e., 
always incorrect) and 1 (i.e., always correct), where 0 is the expected 
value of random guessing. The blind test consists of two comparisons. 
For example, suppose we compare Model A and Model B. Each model 
has two parallel item scores: Model A has A1 and A2, and Model B has 
B1 and B2. The first comparison focuses on A1. The KS statistic 
between A1 and A2 is subtracted from the KS statistic between A1 and 
B1. If the subtracted value is negative, the statistical guess is correct, 
and b is 0.5. If the value is positive, the statistical guess is incorrect, 
and b is −0.5. If the value is zero, no statistical guess is made, and b is 
0. The second comparison focuses on B1. The KS statistic between B1 
and B2 is subtracted from the KS statistic between B1 and A1. If the 
subtracted value is negative, b is 0.5; if it is zero, b is 0; and if it is 
positive, b is −0.5.

Results and discussion

Results
There was no case showing a statistically significant difference in 

the KS test. The KS statistics between scores generated by using the 
same model (i.e., parallel scores) were 0.0054 or 0.0055 on average. 
The KS statistic between the FA and normal ogive models was 0.0055. 
The KS statistic between the FA and logistic models ranged from 
0.0062 to 0.0073, depending on the scaling constant used, and the KS 
statistic between the normal ogive and logistic models also ranged 
from 0.0062 to 0.0073. In summary, all models pass the weak criterion 
for exchangeability.

Table 4 shows the blind test results, i.e., the strong criterion of 
interchangeability. The comparison between the FA and logistic 
models is omitted except for the case of D = 1.70 because it has a 
pattern similar to that between the normal ogive model and the 
logistic model. Even in the latter comparison, the results for D = 1.65 
and 1.66 are omitted to save space. First, the results of the FA and 
normal ogive models have near-zero values, suggesting that the data 
generated by the two models are indistinguishable. Second, the results 
of the normal ogive and logistic models vary depending on the 
conditions and scaling constants used. This study considers 0.05 as the 
criterion for passing the blind test. In dichotomous data, the logistic 
models using the optimal scaling constant under the normal, 
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platykurtic, and leptokurtic conditions meet this criterion, but none 
of the logistic models meet the criterion under the skewed and severe 
conditions. In polytomous data, none of the logistic models meet 
this criterion.

Explanation of unexpected results

Equivalence of the FA and normal ogive models
A reasonable expectation is that the FA and normal ogive models 

will produce distinguishable data, at least for severe violations of 
normality. However, even under the severe violation condition, the 
blind test results produced negative values (i.e., −0.005 and − 0.001), 
indicating that the data generated by the two models cannot 
be distinguished via the KS statistic. This result provides empirical 
evidence that the two models are equivalent regardless of 
normality violations.

Asymmetric use of scaling constants
For decades, IRT users have applied the same constant for parameter 

estimation and data generation. Therefore, a reasonable expectation is 
that the scaling constant performed best in Study 2 and in Study 3. 
However, except for the dichotomous platykurtic condition, the models 
that produced the best results in the blind test were those that used a 
scaling constant (i.e., between 1.68 and 1.74) smaller than the optimal 
constant (i.e., 1.734 to 1.753 depending on the condition) in Study 2. A 
possible explanation is that the tails in data generation are less important 
than those in parameter estimation. Suppose two persons A and B each 
have �A � �2  and �B � �4 . Both A and B belong to the tail, but B is 
more extreme than A. In parameter estimation, B has a greater influence 
than A. However, in data generation, if the location parameter is not 
extreme, A and B generate the same data. Existing studies have 
emphasized the disproportionate influence of outliers on parameter 
estimation but have rarely mentioned their influence on data generation 
(Aguinis et  al., 2013). Different mechanisms operate for parameter 
estimation and data generation.

Need for an additional simulation
Study 3 suggests that the distribution of latent variables affects the 

optimal scaling constant but rarely answers why. Study 3 analyzes only 
the output of data generation instead of its process, thereby providing 
no clue as to why different distributions (e.g., normal vs. skewed) 
perform differently. Study 4 addresses this issue.

Study 4: How parameters affect the 
data generated by each model

Study 4 addresses the unanswered questions raised by Study 3. First, 
Study 4 compares data generated by the FA, normal ogive, and logistic 
models for given parameters. To simplify the comparison, Study 4 uses 
the data generated by the normal ogive model as reference data and 
assesses the difference between the data generated by other models and 
the reference data. Study 3 had randomized parameters, but Study 4 uses 
predetermined parameters. This design enables us to observe how 
changes in parameters affect the data generated by each model.

Second, Study 4 compares data generated by the logistic models 
using different scaling constants under various distributions. To 
simplify the comparison, Study 4 uses only the largest (i.e., 1.74), the 
smallest (i.e., 1.68), and the middle (i.e., 1.71) scaling constants that 
produced good performance in Study 3. Moreover, Study 4 focuses on 
dichotomous data to save space.

Methods

The simulation has 5 * 2 * 5 = 50 conditions. Namely:

 • Distribution of latent variables: normal, skewed, platykurtic, 
leptokurtic and severe;

 • Discrimination parameter (α ) values: 0.6 and 1.4;
 • Location parameter ( β ) values: −1, −0.5, 0, 0.5, and 1.

TABLE 4 Statistical guessing vs. random guessing (Study 3).

FA-NO FA-
LO*

NO-LO using different scaling constants

1.67 1.68 1.69 1.70 1.71 1.72 1.73 1.74 1.75

Dichotomous (number of categories = 2)

Normal −0.007 0.017 0.056 0.036 0.022 0.015 0.002 0.021 0.027 0.046 0.065

Skewed 0.000 0.085 0.113 0.107 0.085 0.081 0.080 0.075 0.096 0.094 0.096

Platykurtic −0.001 0.043 0.102 0.080 0.060 0.034 0.035 0.035 0.037 0.023 0.035

Leptokurtic 0.008 0.030 0.047 0.027 0.023 0.030 0.049 0.080 0.105 0.146 0.182

Severe −0.005 0.098 0.084 0.077 0.083 0.104 0.130 0.167 0.203 0.252 0.307

Polytomous (number of categories = 5)

Normal 0.011 0.177 0.355 0.284 0.232 0.171 0.144 0.110 0.096 0.099 0.124

Skewed −0.006 0.238 0.332 0.294 0.253 0.229 0.208 0.196 0.207 0.224 0.255

Platykurtic 0.004 0.160 0.331 0.274 0.208 0.158 0.116 0.075 0.065 0.062 0.075

Leptokurtic 0.003 0.289 0.435 0.379 0.327 0.283 0.264 0.255 0.264 0.282 0.299

Severe −0.001 0.423 0.523 0.480 0.447 0.436 0.414 0.433 0.440 0.485 0.519

FA, the factor analysis model; NO, the normal ogive model; LO, the logistic model; *, the logistic model using 1.7 as the scaling constant. The blind test result can have a value between −1 and 
1, and the higher the value is, the greater the difference between the two data generation models. A near-zero value means that the data generated by the two models are indistinguishable. The 
underlined values are the scaling constants that perform the best among the different scaling constants in each condition.
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Each condition is used to generate one million latent variables 
with zero mean, unit variance and predetermined skewness and 
kurtosis. These latent variables are inputted into the FA, normal ogive, 
and logistic models with scaling constants of 1.68, 1.71, and 1.74 to 
generate single-item dichotomous data. To simplify the comparison, 
the value obtained by subtracting the proportion of response category 
1 generated by the normal ogive model from the proportion of 
response category 1 generated by the FA and logistic models 
is reported.

Results and discussion

Results
Figure 4 summarizes the results. The FA model produces data that 

are almost indistinguishable from those of the normal ogive model 
across all distributions and parameter values. However, logistic models 
produce distinguishable data according to scaling constants, 
distributions, and parameter values.

Explanation of unexpected results

Differences between the FA and logistic models
The way the FA model approximates the normal ogive model 

differs from the way the logistic model approximates the normal 
ogive model. The FA model generates data approximate to those of 
the normal ogive model for any combination of parameters. The 
logistic model exploits the symmetry of the distribution. For 
example, consider the model with D = 1.71 under the normal 
condition at the top of Figure 4. If the location parameters are −1 
and − 0.5, this model generates more responses in category 1 than 
does the normal ogive model. However, if the location parameters 
are 0.5 and 1, this model generates fewer responses in category 1 
than does the normal ogive model by approximately the same 
amount. That is, the logistic model approximates the normal ogive 
model by making the excess on one side offset the shortage on the 
other side. However, the excess does not exactly match the shortage. 
For example, if we  look at the model with D = 1.68 under the 
platykurtic condition at the top of Figure 4, there are four excesses 
and one shortage.

Skewness and polytomous data
The excess-offsets-shortage approach works well if the following 

conditions are met: (1) the distribution has zero skewness (i.e., 
symmetric) and (2) the data are dichotomous. The nonzero skewness 
of a distribution causes an excess and shortage mismatch. Figure 4 
shows that a skewed distribution makes the data difference between 
the logistic and normal ogive models asymmetric and irregular. Study 
4 also provides clues as to why the blind test results of polytomous 
data in Study 3 were worse than those of dichotomous data. If there 
are only two response categories, excess on one side offsets shortage 
on the other, but if there are multiple response types, it is difficult for 
this mechanism to work.

Effects of parameters
Figure 4 suggests that the location and discrimination parameters 

can affect the optimal D. There can be  main effects as well as 
interactions between them.

Overall discussion

Summary of the results

This study examined the interchangeability between the FA model 
and two IRT models (i.e., logistic and normal ogive). First, the 
equivalence of the FA and normal ogive models proved under the 
assumption of normality (Takane and de Leeuw, 1987) is extremely 
robust, even to severe normality violations. This study compared the 
results of the two models from various angles but could not find a 
difference beyond the level attributable to sampling error. Second, the 
interchangeability of the logistic and normal ogive models is complex 
and depends on several variables. No single scaling constant 
maximizes the interchangeability of the two models. The best-
performing scaling constant depends on the purpose of using the 
model (e.g., parameter estimation or data generation), the number of 
response categories (i.e., dichotomous or polytomous), and the 
distribution of latent variables (e.g., normal or severely nonnormal).

Interchangeability between FA and normal 
ogive models

Exploiting the transformation formula
The results suggest that we should exploit Takane and de Leeuw’s 

(1987) transformation formulas more aggressively than we currently 
do. If we have two models that give us the same result, we can cherry-
pick them as needed. For example, one (e.g., FA) may be faster to 
compute than the other (e.g., normal ogive), or it may be easier to 
obtain the necessary software. For example, for parameter estimation, 
the FA model is likely to be much faster than the normal ogive model 
due to the functional complexity of the normal distribution. In this 
case, we can use the easier or faster model to obtain the result and then 
transform it to the other’s result. The interchangeability between the 
two models can also be used to improve pedagogical effectiveness. For 
example, some students are more familiar with the FA model than the 
IRT model, and others are not. Illustrating an unfamiliar model with 
a familiar one helps students learn a new model easily. We  have 
underused Takane and de Leeuw’s formulas relative to their potential.

Renaissance of the normal ogive model
The first IRTs used the normal ogive function (Thurstone, 1928; 

Lord, 1952; van der Linden, 2016). The late-discovered logistic model 
has become more popular than the established normal ogive model 
because the former is much easier and faster to compute than the 
latter. For example, two decades ago, computing the normal ogive 
model was “time-consuming” (Baker and Kim, 2004, p. 16) even on a 
modern computer of the time, whereas the logistic model could 
be  computed on a pocket calculator. Similar differences are still 
reported today. For example, a comparison of commonly used R 
packages showed that estimating the normal ogive model by using the 
MCMCirtKD package was 19 to 512 times more time consuming than 
estimating the logistic model using the mirt package (Chalmers, 
2012). However, the results suggest that the normal ogive model is no 
longer more time-consuming than the logistic model. As described 
earlier, after obtaining the results from the FA model, we can use 
Takane and de Leeuw’s formulas (Equation 1) to transform them to 
those of the normal ogive model, which is likely to take a similar 
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FIGURE 4

How parameters affect the data generated by each model (Study 4). Top, discrimination parameter (alpha) =0.6; bottom, discrimination 
parameter  =  1.4.
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amount of time as estimating the logistic model. The irt.fa and fa2irt 
functions in the psych package (Revelle, 2022) can be used to facilitate 
this transformation.

Even without this transformation, some software computes the 
normal ogive model in a fraction of the time, especially for Bayesian 
IRT (Albert, 1992; Fox, 2010). Furthermore, advances in hardware and 
software will further narrow the computation time between the two 
models to a negligible level. As the mutable issue diminishes, an 
immutability issue arises. The results suggest an advantage of the 
normal ogive model over the logistic model; the former is fully 
interchangeable with the FA model, while the latter is not. Therefore, 
it is easier for the FA and normal ogive models to constitute a 
generalized model than it is for the FA and logistic models. We also 
need to be  consistent. Statistical models conventionally assume a 
normal distribution, so describing item responses by using a normal 
distribution is consistent with this convention (Savalei, 2006). The 
results suggest that the normal ogive model should be more highly 
regarded and used more often than it currently is.

Notably, this study did not examine the performance of the three 
models, so it is inappropriate to conclude that one is better than the other. 
The results have little to say about which model should be chosen by 
users who use the models in isolation. However, the results do suggest 
that users who value interchangeability between models have reason to 
prefer FA and normal ogive IRT models over logistic IRT models.

Interchangeability between the normal 
ogive and logistic models

Repositioning the scaling constant

From constant to variable
A constant is fixed and unchanging. For example, π  is 3.1416 

anytime and anywhere. Scholars have used the constant D = 1.702 in 
this sense. Just as no one challenges π = 3.1416, few scholars have 
proposed that D should be a different value. An exception is Savalei 
(2006), who argued that the scaling constant she obtained, 1.749, 
should replace the existing constant, not that these constants should 
be chosen on a case-by-case basis. In other words, existing studies 
have assumed that one constant fits all. The results present a new 
perspective. The optimal scaling constant depends on the purpose 
of using the model and the number of response categories, and 
users should choose a suitable scaling constant based on these 
variables. The scaling ‘constant’ is a variable, not a constant.

Omitting D from the model
Redefining the nature of the scaling constant raises the need to 

reconsider its role in the logistic model. A model exists to explain the 
most with the least, so it should not include an element that does not 
contribute to explanatory power. From this perspective, the scaling 
constant D is unnecessary in a logistic model because including or 
omitting D does not affect the model’s explanatory power. Today, some 
scholars omit D from their logistic models, and others include it. Even 
the latter scholars seem to do so reluctantly to maintain historical 
consistency. For example, Wirth and Edwards (2007) argued that “[i]
t is important to note that D is something of a historical artifact” 
(p. 61). Baker and Kim (2004) also stated that “[t]he use of the 1.702 
multiplier is a carry over from an earlier time when the normal ogive 
was the standard” (p. 16). In any case, the mixed use of the two styles 

creates inconvenience and confusion for users, e.g., by causing users 
to make mistakes when comparing studies. We should have a clear 
answer as to whether it is desirable to include D in the logistic model 
and unify the two styles accordingly.

The results answer this question by showing that D is not only 
unnecessary but also changing. Let us suppose some textbook authors 
choose to describe the logistic model in the traditional Birnbaum style 
of including D. Perhaps their plan is to simply state that D is 1.7 or 
1.702, which takes up very little space. However, textbooks that 
maintain this style may be criticized for holding an outdated view 
whenever new research suggests that D should be something other 
than 1.702. That said, a lengthy discussion of D in the first introduction 
to a model can be disruptive to the flow. An easy solution to this 
dilemma is to omit D from the model.

Segmenting users
Even if we omit D from the logistic model, we should not ignore 

the original intent of its inclusion. Whereas users who use the logistic 
model alone may be uninterested in its interchangeability with other 
models (i.e., FA or normal ogive), others (e.g., meta-analysts) may 
be  interested in accurately comparing the results obtained from 
different models. This study argues for segmenting users based on 
these different needs. Most users find it convenient to use a model 
with D omitted. Those who do care about interchangeability should 
care about it in a more sophisticated way than today’s approach of 
relying on “a historical artifact” (Wirth and Edwards, 2007, p. 61). 
Therefore, we need to know what factors influence the optimal scaling 
constant, regardless of whether we include it in the model itself or 
perform a separate transformation.

Factors affecting interchangeability
As is often the case with distributions with different kurtosis 

(Dyson, 1943), the logistic function deviates four times from the 
normal ogive function (i.e., at X ≈  –2, −0.5, 0.5, and 2). Since these 
two functions are bilaterally symmetric, we  can simplify the four 
errors into two types, the tails (i.e., X ≈  –2 and 2) and nontails (i.e., 
X ≈  –0.5 and 0.5). No scaling constant can decrease both errors; 

decreasing one increases the other. The best approach is to weight the 
two in proportion to their importance. However, the fact that their 
relative importance depends on several conditions complicates matters.

The conditions that increase the relative importance of the tail 
errors compared to the nontail errors are (1) if the model is used for 
parameter estimation and (2) if the data are polytomous. The 
condition that decreases the relative importance of the tail errors is (3) 
if the model is used for data generation and (4) if the data are 
dichotomous. The more important the tail errors are, the larger the 
scaling constant that should be used, and vice versa.

The conditions increasing the interchangeability between the 
logistic and normal ogive models are (A) dichotomous data, (B) zero 
skewness of the latent variables, and (C) nonpositive kurtosis of the 
latent variables. The conditions decreasing the interchangeability 
between the two models are (D) polytomous data, (E) nonzero 
skewness of the latent variables, and (F) positive kurtosis of the 
latent variables.

Purpose of using a model
Users typically implement a model for parameter estimation. 

Parameter estimation is sensitive to the tails, and the logistic model 
assumes heavier tails than the normal ogive model does. Therefore, 
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the logistic model produces parameter estimates with larger absolute 
values than those of the normal ogive model. Using a scaling constant 
greater than 1.702 (e.g., 1.739 or 1.753) counterbalances the logistic 
model’s tendency to overinterpret the tails.

If a model is used to generate data, the optimal scaling constant 
depends on what the data are to be used for. First, if users plan to use the 
data for parameter estimation, they should choose a scaling constant 
greater than 1.702 (e.g., 1.739 or 1.753), just as they did for parameter 
estimation. Using these scaling constants undergenerates extreme data, 
which offsets the tendency to overinterpret extreme data in parameter 
estimation. Second, if users generate data for purposes other than 
parameter estimation, they should use smaller scaling constants than 
those just mentioned. The goal is not to undergenerate extreme data but 
to generate data approximate to those of a normal ogive model.

Dichotomous or polytomous data
Birnbaum (1968) originally proposed the scaling constant for 

dichotomous data. Subsequent scholars have used the same scaling 
constant (De Ayala, 1994) when proposing logistic models for 
polytomous data (i.e., graded response models), but few scholars have 
suggested that a different scaling constant should be used. The results 
suggest that the optimal scaling constant for dichotomous data is not 
optimal for polytomous data. A larger scaling constant should be used 
for polytomous data than for dichotomous data. The difference 
between the optimal scaling constants of the two data types differs 
from study to study: a difference of 0.014 in Study 2 and a difference 
of 0.02 in Study 3 (in the case of a normal distribution).

The importance of the tails differs between dichotomous and 
polytomous data. In dichotomous data, every response category has 
its own tail. For example, response category 0 has a left tail, and 
response category 1 has a right tail. An overgeneration of response 
category 0 on the left tail can fully cancel out an undergeneration of 
that response category on the right tail. Therefore, in dichotomous 
data, nontail errors are relatively more important than tail errors. 
Moreover, having overgeneration offset undergeneration helps logistic 
models to be interchangeable with normal ogive models.

However, response categories in polytomous data specialize in the 
tails or nontails. For example, response categories 0 and 4 have tails, 
but response categories 1, 2, and 3 do not. An overgeneration of the 
response category 0 on the left tail cannot fully cancel out an 
undergeneration of that response category on the right tail. Therefore, 
there is a strong need to reduce errors in the tails to which response 
categories 0 and 4 belong. Moreover, since it is difficult for 
overgeneration to offset undergeneration, the logistic model is less 
interchangeable with the normal ogive model in polytomous data than 
it is in dichotomous data.

Distribution of latent variables
Latent variables are often assumed to follow a normal distribution. 

Few scholars have suggested that a violation of the normality 
assumption can affect the interchangeability between the logistic and 
normal ogive models or the optimal scaling constant. This study 
examined the effect of nonnormality by dividing it into skewness and 
kurtosis. First, a normality violation decreases the interchangeability 
between the logistic and normal ogive models (Study 3). An exception 
is the platykurtic distribution, in which case the results are mixed. 
Among normality violations, violations of skewness have a greater 
effect than violations of kurtosis. The logistic and normal distributions 
have different kurtosis, but both distributions have zero skewness (i.e., 

symmetric). Symmetry helps the logistic model produce approximate 
results to those of the normal ogive model, i.e., a surplus in one tail 
cancels out a shortage in the other tail. Asymmetry creates a surplus 
and shortage mismatch.

Second, latent variables that follow a nonnormal distribution 
require different scaling constants than those that follow a normal 
distribution. In the case of a platykurtic distribution, scaling constants 
larger than those of the normal distribution, and in the case of the 
severely nonnormal distribution, scaling constants smaller than those 
of the normal distribution produced good results. In the case of 
skewed and leptokurtic distributions, the results are mixed.

Concluding remarks

What we see may not be what we get. At first glance, the FA model 
is different from the two IRT models (i.e., logistic and normal ogive), 
and the two IRT models are similar. However, the FA and normal 
ogive models are more interchangeable than expected, whereas the 
normal ogive and logistic models are not. When a probability 
distribution is graphed (e.g., Figure 2), the tails are less visible than the 
nontails, so we are likely to perceive the tails as less important than the 
nontails. Sometimes the tails are much more important than the 
nontails, but other times they are not. Larger scaling constants have 
advantages in the tails, and smaller constants have advantages in the 
nontails. Therefore, no single constant can provide maximum 
interchangeability between the logistic and normal ogive models in all 
situations. Choosing a scaling constant is thus a more complex process 
than scholars have assumed.
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