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In models we trust:
preregistration, large samples,
and replication may not su�ce

Martin Spiess* and Pascal Jordan

Institute of Psychology, Department of Psychology and Human Movement Science, University of

Hamburg, Hamburg, Germany

Despite discussions about the replicability of findings in psychological research,

two issues have been largely ignored: selection mechanisms and model

assumptions. Both topics address the same fundamental question: Does the

chosen statistical analysis tool adequately model the data generation process?

In this article, we address both issues and show, in a first step, that in the

face of selective samples and contrary to common practice, the validity of

inferences, even when based on experimental designs, can be claimed without

further justification and adaptation of standard methods only in very specific

situations. We then broaden our perspective to discuss consequences of violated

assumptions in linear models in the context of psychological research in general

and in generalized linear mixed models as used in item response theory. These

types of misspecification are oftentimes ignored in the psychological research

literature. It is emphasized that the above problems cannot be overcome by

strategies such as preregistration, large samples, replications, or a ban on testing

null hypotheses. To avoid biased conclusions, we briefly discuss tools such as

model diagnostics, statistical methods to compensate for selectivity and semi-

or non-parametric estimation. At a more fundamental level, however, a twofold

strategy seems indispensable: (1) iterative, cumulative theory development based

on statistical methods with theoretically justified assumptions, and (2) empirical

research on variables that a�ect (self-) selection into the observed part of the

sample and the use of this information to compensate for selectivity.

KEYWORDS

population, sampling design, non-response, selectivity, misspecification, biased

inference, diagnostics, robust methods

1. Introduction

The debate around the replication crisis is not the only consequence of methodological
deficiencies discussed in the psychological literature, but certainly one that has attracted
a large amount of attention in recent years (e.g., Open Science Collaboration, 2012, 2015;
Klein et al., 2014, 2018; Shrout and Rodgers, 2018). In fact, criticism of the methodological
practice has addressed a wide range of aspects, from science policy and human bias (e.g.,
Sterling, 1959; Rosenthal, 1979; Sterling et al., 1995; Pratkanis, 2017) over rather general
methodological approaches (e.g., Meehl, 1967, 1990; Hahn, 2011; Button et al., 2013; Fiedler,
2017) to more specific topics, like automated null hypothesis testing or underpowered
studies (e.g., Rozeboom, 1960; Cohen, 1962; Sedlmeier and Gigerenzer, 1989; Gigerenzer,
2018).
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The wide range of aspects criticized over a large time span
suggests that most of them may be symptoms of an underlying
disease rather than several isolated problems: A lack of appreciation
for the close interconnection of theory and methods to analyze
empirical data in psychological research. One explicit indication
for an underlying nonchalant attitude is provided by Rozeboom
(1960) according to whom researchers are consumers of statistical
methods with the legitimate demand that the available statistical
techniques meet his or her respective needs. He or she is not
required to have a deeper understanding of the instruments.
Rozeboom (1960) warned however, that this position makes the
researcher vulnerable to misusing the tools. As discussions over
time have shown, it is not enough to have a toolbox of instruments
available; it must be of vital interest to researchers to know
which instrument provides the relevant information under which
conditions and how to interpret the results of those instruments in
order to derive valid conclusions. And althoughmore responsibility
of researchers for the methods they adopt has been demanded (e.g.,
Hahn, 2011), this seems not to have had a strong impact on the
carefulness with which statistical methods are applied and statistical
results are interpreted (e.g., Gigerenzer, 2018; Fricker et al., 2019).

In this paper we consider two methodological aspects and
their possible consequences in more detail that, although their
possible importance has been insinuated from time to time, neither
received much attention nor have been treated in more detail
in the discussion of theoretical and methodological issues in
psychological research: Selection of samples and handling of model
assumptions (e.g., Arnett, 2008; Fernald, 2010; Henrich et al., 2010;
Asendorpf et al., 2013; Falk et al., 2013; Kline, 2015; Scholtz et al.,
2020).

2. The methodological framework

The general steps from a population to the observed sample
(and back) as schematically displayed in Figure 1 are not new but
the graphic highlights the steps considered more closely in the
subsequent sections: Selecting units from the population into the
observed sample and drawing inferences from the observed sample
about the assumed data generating process (DGP).

Alpha and omega of psychological research is a population of
biological subsystems and, more precisely, phenomenons mostly
but not exclusively related to the nervous system located in
humans. The elements of the population, i.e., humans or, more
generally, units, are defined by and reduced to possibly high-
dimensional vector variables. For example, variables characterizing
the subsystems of interest in psychological research can be
indicators like socio-demographic variables, age, gender or
biomarkers but also reactions evoked by some stimuli under (non-)
experimental conditions. In general, however, these variables
neither describe the subsystems exhaustively nor do the subsystems
exist isolated. Furthermore, not the variables themselves but the
process that leads to realizations at least of some of these variables,
i.e., the true DGP of some variables usually given covariates
or explanatory variables, is of scientific interest. However, since
the units are the carriers of—among a huge number of other
variables—the scientifically interesting variables, it is these units
that have to be selected.

Inferences are usually intended about a DGP inevitably linked
to units in a population of humans within a certain time period
1, denoted as DGP1 and P1, respectively, in Figure 1. An
important criterion to evaluate the maturity of a theory is the
precision with which the units and their environments can be
defined. Thus, the set of humans and the time period about
which inferences are intended have to be defined as clear as
possible in each step of the iterative development of a theory.
Are inferences intended about homo sapiens in general or about
homo sapiens living in the first half of the 21st century in western,
educated, industrialized, rich and democratic countries (Arnett,
2008; Henrich et al., 2010)? The answer certainly depends on
the psychological subfield. For example, the intended population
may be wider in general psychology as compared to social
psychology. Often, however, populations are not or only vaguely
defined.

In contrast to, for example, official statistics, the target
population in psychological research is abstract: Inferences are
made about systems linked to units that do not necessarily exist
at the time the research is conducted, either because the carriers
already deceased or did not yet come into existence. However,
units can only be selected from an observed part of P1. It
therefore remains part of the theory to justify that the observable
subpopulation of carriers at time point t, Pt , is not selective with
respect to the true DGP1 of interest.

The gross sample is the set of units selected from Pt by
some mechanism. In official statistics this is straightforward: Select
a sample of units, typically according to a predefined sampling
plan, from the well-defined finite (sub)population of interest,
e.g., from the residents in a given country at a defined time
point. Thus, the sampling mechanism is known and is usually
such that the selected or gross sample is not selective or can
be corrected for its selectivity. Note that in this case P1 is
often assumed to be approximately equal to Pt . If the selection
mechanism is unknown, then it is usually (implicitly) assumed that
the selection step can be ignored in order to proceed with the
analysis.

Unfortunately, there is a further selection step from the
gross sample to the observed or net sample with units dropping
out depending on, in most cases, an underlying unknown
mechanism. For example, people belonging to Pt see a notice
inviting them to participate in an experiment, but decide
(not) to take part. This step is governed by a missing data
mechanism (MDM) which at best is partly known. If enough
information is available for all the units in the gross sample
explaining response behavior, then it is possible to compensate
for missing units. Otherwise, again, this missing information
has to be replaced by the assumption that this process is not
selective.

The assumed DGP1 and, usually to a lesser extent, the
assumed MDM at the item level at time t affect how the
data are collected through the study design and measurement
instruments, resulting in the observed data. This observed data
set is then analyzed with statistical methods, i.e., information
relevant to the research question contained in the observed data
set is summarized in graphics, descriptive statistics, estimates,
confidence intervals or p-values (“condensed information” in
Figure 1).

Frontiers in Psychology 02 frontiersin.org

https://doi.org/10.3389/fpsyg.2023.1266447
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Spiess and Jordan 10.3389/fpsyg.2023.1266447

FIGURE 1

Population (P1), sample and inference. DGP, Data generating process; MDM, missing data mechanism; t, time point; 1, time interval.

Estimates of parameters and variances of parameters,
confidence intervals or p-values are used to draw inferences about
Pt and finally P1. These inferences will be valid if the assumed
DGP1 (approximately) correctly models how the observed data
values have been generated. This requires modeling not only the
true DGP1 in P1 but also all (selection) processes from P1 to the
observed data. Ignoring any of these processes is equivalent to
(implicitly) assuming that they can be ignored for valid inferences

in subsequent analyses and thus, statistical methods for valid
inferences in simple random samples can be applied. Hence this is
a modeling assumption, as is, e.g., the assumption that variables
are independent from each other, that relationships are linear or
that variables are normally distributed. And, of course, unjustified
assumptions can easily be wrong.

Our subsequent analysis can be embedded in the different
stages depicted in Figure 1. The following section will concentrate
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on the selection part and the missing data mechanism (MDMt)
at the unit level, whereas Section 4 will predominantly deal with
misspecifications of the (assumed) DGP. For technical details on
the examples used in the text (see the Supplementary material).

3. Sample selection and unit response

In psychological research, samples are often selected in such
a way that both, the sample selection and the unit response
process are unknown and cannot be separated. An example is a
convenience sample where there is no information on units that
chose not to participate. Therefore, we integrate both processes
into one selection mechanism. Note that the selection process
can easily be generalized to cover other selection phenomena
such as the file drawer problem, outlier deletion, or item
non-response.

3.1. The general framework

Prominent examples of estimated models at the analysis stage
are regression and analysis of variance models. Estimation of
these models amounts to assuming a distributional model for the
outcome y given covariates, including a 1 for the constant, collected
in a vector x. Throughout Section 3 we presuppose that the assumed
model including the required assumptions approximates the true
DGP1 sufficiently well for valid inferences.

After having selected a sample of units, it is common practice
to estimate the model of DGP1 adopting a classical model
based frequentist statistical approach, using only those units
whose values have been observed, with the number of observed
units, nobs, and x fixed at their observed values. What actually
should be modeled, however, is the distribution of the y-variables
whose values have been observed given the x-values and the
pattern of observed and not observed units from Pt (cf., Rubin,
1976, 1987). By conditioning on the pattern of observed and
unobserved units, the selection mechanism is explicitly taken into
account. Common practice is to ignore the selection mechanism,
thereby implicitly assuming that it is not informative for y

given x.
In regression models with independent units, it can be shown

that inferences based on a model that ignores the selection
mechanism will be valid if the probability of observing the actually
observed units given the observed x-values is the same for all
possible values of the observed y variables. See Rubin (1976)
for the corresponding theory in the case of missing items. For
specific models, it has also been shown that inferences about
effects of covariates on the outcome ignoring the selection process
are valid if the probability of the observed pattern of observed
and unobserved units changes with unobserved components in
y which are independent of x, but is the same for all possible
values of x (e.g., Heckman, 1979; Terza, 1998; McCulloch et al.,
2016).

On the other hand, the selection process cannot be ignored in
general if for a given pattern of observed and unobserved units,
the probability of observing this pattern changes with x and y

even if the model correctly specifies the true DGP1. In this case,

inferences will systematically be biased. Similar arguments hold if a
non-frequentist Bayesian approach is adopted.

Given that the selection mechanism can be ignored in certain
cases without biasing inferences, the question arises whether this is
also true in experimental contexts, which are considered the silver
bullet for unbiased causal inference.

3.2. Selectivity in experimental designs

One way to model the selection process is through a threshold
model,

v∗i = z
T
i γ + wi , wi ∼ N(0, σ 2

w) and vi =

{

1 if v∗i ≤ c

0 otherwise,

(1)

wherein zi is a vector of covariates including a 1 for the constant
and possibly (elements of) xi or xi′ (i 6= i′), zTi γ = γ0 + zi,1γ1 +

zi,2γ2 + · · · , and v∗i is an unobserved tendency to observe unit
i, such that yi and xi are only completely observed if v∗i ≤ c,
i = 1, . . . ,N, in which case the response indicator vi takes on the
value one. Otherwise, if the unit is not observed, vi = 0. Large
values of γ model strong impacts of the covariates in zi on the
probability of (not) observing unit i in the sample. The unknown
threshold c regulates the fraction of observed units: High values of
c lead to high percentages of observed units and low values to small
fractions. For simplicity, we assume wi ∼ N(0, σ 2

w), i.e., that the
error term wi is normally distributed with mean zero and variance
σ 2
w, not depending on zi or zi′ .

Based on these assumptions, let

ψi =
c− z

T
i γ

σw
and λi =

φ(ψi)

8(ψi)
,

wherein φ(·) and 8(·) are the density and standard normal
distribution function, respectively. The term ψi can be interpreted
as the expected tendency to be selected into the sample and to
respond, 8(ψi) models the probability that unit i is observed and
λi is a term that corrects for the selection mechanism in the model
of scientific interest (cf. Heckman, 1979; Amemiya, 1985). Figure 2
illustrates the effect of ψ on φ(·),8(·), and λ.

To illustrate the consequences of ignoring the selection
mechanism for inference in experimental settings, we consider
three examples in two scenarios that amount to a comparison of
means in two groups.

3.2.1. Scenario 1: one measurement per unit
Assume that the correctly specified model for the true DGP1 is

yi = x
T
i β + ǫi , ǫi ∼ N(0, σ 2

ǫ ) , i = 1, . . . ,N , (2)

wherein β is the parameter of interest, the errors ǫi are independent
across all units and all assumptions for valid inferences are met in
Pt , and let ǫi and wi follow a bivariate normal distribution with
correlation 0 ≤ ρǫ,w < 1. Hence, wemay write ǫi = ρǫ,wσǫσ

−1
w wi+
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FIGURE 2

Illustration of e�ects of ψ = (c− z
Tγ )/σw , wherein c = 0, z, and γ are both scalars and γ = σw = 1, on φ(ψ ), 8(ψ ), and λ = φ(ψ )/8(ψ ).

ζi, wherein ζi is normally distributed with mean zero and variance
σ 2
ǫ (1− ρ

2
ǫ,w) (e.g., Mardia et al., 1979).

Taking the selection process into account, the model of
scientific interest that would have to be estimated based on the
observed sample is a model for yi conditional on xi as a function of
wi which, in the observed sample, i.e., for units with wi ≤ c− z

T
i γ ,

is truncated above at c − z
T
i γ and thus follows a truncated normal

distribution. Let i = 1, . . . , nobs index the units in this subsample.
Following Heckman (1979), for i = 1, . . . , nobs, the model to be
estimated is

yi = x
T
i β − ρǫ,wσǫλi + ǫ̃i , (3)

wherein E(ǫ̃i|xi, zi, vi = 1) = 0 and the term ρǫ,wσǫλi corrects for
a possible bias due to the selection process.

Let xi = (1 xi)T where xi is a binary variable, resulting in a
comparison of the means of two independent groups defined by
xi = 0 and xi = 1, respectively. Ignoring the selection mechanism,
which is equivalent to ignoring the term ρǫ,wσǫλi, leads to the
estimator of the difference in the means of the two groups,

β̂µ1−µ0
= ȳ1 − ȳ0 and

E(β̂µ1−µ0
|xobs, vobs) = (µ1 − µ0)− ρǫ,wσǫ(λ̄1 − λ̄0) , (4)

wherein ȳ0 and ȳ1 are the sample means and µ0 and µ1 are the
true population means of y-values for which xi = 0 and xi = 1,
respectively, λ̄0 is the sample mean of λi values if xi = 0 and λ̄1
is the sample mean of λi values if xi = 1. Thus, the bias of the
estimator for the difference between the two groups, µ1 − µ0, is
−ρǫ,wσǫ(λ̄1 − λ̄0).

The estimator of µ1 −µ0 will be biased if ρǫ,w 6= 0, i.e., if there
is at least one variable, independent from xi and zi, that has an effect
on the selection process and is linearly related to the outcome in the
model of scientific interest, and if the difference λ̄1− λ̄0 is not zero.
This latter difference is not zero if the tendencies to be observed
in the sample differ systematically between the subsamples defined
by xi = 0 and xi = 1, respectively. Any bias will be amplified by
a decreasing fit of the model of scientific interest. Note that even

if the two population means µ0 and µ1 are equal, the estimator of
their difference may systematically be different from zero.

If the assignment of each unit to one and only one condition
is random and independent from xi, λ̄1 − λ̄0 will usually
(approximately) be zero and thus the estimator of the mean
difference between the groups will (approximately) be unbiased. In
this case, the selection mechanism can be ignored even if selection
into the observed part of the sample depends on variables that have
an effect on the outcome.

However, if the selection mechanism depends on xi, then λ̄1 −
λ̄0 will not (approximately) be zero because the bounds c − z

T
i γ

will systematically be different in the two groups. For example,
suppose that the two levels of xi represent two clinical groups that
differ in their willingness to participate in a study, e.g., because
of a decreased level of physical activity in one of the two groups,
that affects the outcome only through xi. If in addition there are
variables, like general openness, independent from xi and zi that
affect both, the outcome of interest and the tendency to be observed
in the sample, so that ρǫ,w 6= 0, then the estimator for the difference
in the means in Pt will be biased and inferences will be invalid.
Ignoring the ρǫ,wσǫλi part is equivalent to estimating amisspecified
model, although the model would be correctly specified in Pt .

Figure 3 illustrates the effect of ρǫ,w on the coverage rate of the
true values µ1 − µ0 = 0 based on 0.95-confidence intervals if
σ 2
ǫ = 1, xi and a scalar binary zi are correlated with ρz,x = 0.5,

and for different values of δλ = λ̄1 − λ̄0. If the correlation ρǫ,w
or the difference of the means of λ̄1 and λ̄0 is close to zero, then
the actual coverage rate of the true difference of the two means is
close to the nominal level 0.95. The actual coverage rate decreases,
however, with increasing values of δλ or ρǫ,w if both are not zero.
The actual coverage rate of the 0.95-confidence interval can drop
even below 0.5, leading to rejection rates of the true null hypothesis
that are far too high. Thus, a non-existing effect may be “found" far
too often.

For the second example, we introduce a minor change: Assume
possibly different error variances under the two conditions in
DGP1, i.e., σ 2

ǫ0
if xi = 0 and σ 2

ǫ1
if xi = 1. For simplicity we assume

ρǫ0 ,w = ρǫ1 ,w. Then, the expected value of β̂µ1−µ0
ignoring the
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FIGURE 3

One measurement per unit. Coverage rate (coverage) of true value µ1 − µ0 = 0 by 0.95-confidence intervals as a function of, (A) ρǫ,w and di�erent

values of δλ = λ̄1 − λ̄0 if ρz,x = 0.5 and σǫ = 1, and, (B) σ 2
ǫ1

and di�erent values of σ 2
ǫ0

if ρǫ,w = 0.4, γ = 0 and δλ = 0 (see text for details). In both

scenarios σ 2
w = 1.

selection mechanism is

E(β̂µ1−µ0
|xobs, vobs) = (µ1 − µ0)− ρǫ,w(σǫ1 λ̄1 − σǫ0 λ̄0) . (5)

Thus, the estimator for the difference µ1 − µ0 will generally be
biased if there is any variable independent of zi and xi that has an
effect on selection and yi, and if σ 2

ǫ0
6= σ 2

ǫ1
even if assignment to the

two conditions is random and does not depend on xi.
Figure 3 illustrates the coverage rates of true value µ1−µ0 = 0

by 0.95-confidence intervals under this more general scenario. Now
ρǫ,w = 0.4, δλ = 0 and selection does not depend on zi = zi
because γ = 0. What varies are the error variances σ 2

ǫ0
and σ 2

ǫ1
.

The actual coverage rates are equal to the nominal 0.95-level if
both error variances are equal but differ greatly for large differences
between the two. Again, effectsmay be “found"much too often even
if µ1 = µ0.

3.2.2. Scenario 2: two measurements per unit
Consider a repeated measurement design, where each unit is

observed under each of two conditions, xi = 0 and xi = 1,
but the selection mechanism is given by Equation (1). We further
assume that there are no systematic position effects. Using the same

notation and estimator for the difference µ1 − µ0 as in the last
section, its expected value ignoring the selection process is

E(β̂µ1−µ0
|xobs, vobs) = (µ1 − µ0)− λ̄(ρǫ1 ,wσǫ1 − ρǫ0 ,wσǫ0 ) ,

wherein ρǫ0 ,w and ρǫ1 ,w are the correlations of the errors in the
model of scientific interest withwi in Equation (1), respectively, and
σǫ0 and σǫ1 are the corresponding variances. Because λ̄ is not zero
if there are unobserved units, the estimator of µ1 − µ0 is biased if
ρǫ0 ,wσǫ0 6= ρǫ1 ,wσǫ1 . Hence, if there is any variable independent
from x and z which is not included into the model of scientific
interest but has different effects on y0 and y1 and is relevant in
the selection and response mechanism, then the estimator of the
difference µ1−µ0 will be biased and corresponding inferences will
not be valid. The amount of bias will be amplified by decreasing
values of c or, for positive γ , by increasing values of z and thus by
larger values of λ̄.

Figure 4 shows, for different values of σ 2
ǫ1
, the effect of ρǫ1 ,w on

the actual coverage rate of 0.95-confidence intervals. Again, there
is only one zi-variable the corresponding parameter of which is
zero, i.e., γ = 0. For simplicity, ρǫ0 ,w is zero and σǫ0 = 1. The
mean over all λi-values in the observed sample is λ̄ = 0.9294
and the covariance of ǫ0 and ǫ1, σ 2

ǫ0ǫ1
, is 0.2. Thus, the bias is

not zero and increases with increasing (absolute) values of ρǫ1 ,w
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FIGURE 4

Two measurements per unit. Coverage rate (coverage) of true value µ1 − µ0 = 0 by 0.95-confidence intervals as a function of ρǫ1 ,w and di�erent

values of σ 2
ǫ1
. Covariance of ǫ0 and ǫ1 is σ 2

ǫ0ǫ1
= 0.2 (see text for details).

and σ 2
ǫ1
. Consequently, the actual coverage rate may dramatically

decline with increasing (absolute) values of ρǫ1 ,w and σ 2
ǫ1
. If ρǫ1 ,w

is zero, then the actual coverage rates are equal to the nominal
95%-coverage rate.

As an example, consider a simple reaction time experiment with
two conditions, and suppose students at a university are invited
to participate. If age is an indicator of the developmental stage of
a subsystem related to reaction time, and if the disregarded age
affects the outcome variable reaction time differently under the two
conditions via the corresponding subsystem (e.g., Dykiert et al.,
2012), then ignoring the selection mechanism will lead to biased
inferences. In this simplified example disregarded age would be part
of w, which would be correlated with ǫ0 and ǫ1.

4. Violations of model assumptions

In this section we assume that the selection of units can
be ignored. Instead, we discuss the consequences of model
misspecifications in more general models commonly used in
applications, but without further detailed examples.

4.1. Ordinary linear regression models

Suppose that different studies addressing the same research
topic possibly differ in the (implicit) subpopulation they are
referring to and that our (perhaps meta analytical) aim might be
to infer effects in an appropriately defined mixture population.
To sketch the possible inconsistency issues that might result, we
assume the following: The aim is to infer the effect of some
predictor variable x on some outcome y in Pt , which can, for
the sake of simplicity, be subdivided into two subpopulations,
k = 1, 2. Assuming that the modeling assumptions hold in

each subpopulation, we will analyze under what conditions these
modeling assumptions hold in the mixture.

We thus take a sample (yi, xi), i = 1, . . . n, from
Pt and ask whether the standard assumptions (see the
Supplementary material) along with the normality assumption also
hold within the mixture. To this end, abbreviate by zi now the
random variable which denotes the subpopulation to which the
i-th unit belongs. According to our assumptions, we have

E(y|x, z) = β0(z)+ x β1(z) , (6)

wherein the intercept β0(z) and slope β1(z) may depend on the
subpopulation z. Equation (6) entails a linear regression of y on
x within each subpopulation whereby the regression lines might
differ across the subpopulations. If they differ, then there is an
interaction between z and x with respect to the outcome.

According to the law of iterated expectation, it follows that our
key term of interest—the conditional expectation in the mixture
population—is given by

E(y|x) = Ez|x(E(y|x, z)|x) = Ez|x(β0(z)+ x β1(z)|x)

= Ez|x(β0(z)|x)+ xEz|x(β1(z)|x) = g0(x)+ x g1(x) ,(7)

wherein we use Ez|x as a shorthand notation to indicate the
conditional distribution of z given x with respect to which the
expectation has to be taken.

We may now distinguish between three cases: Firstly,
independence of x and z. Here, the conditional expectations with
respect to Ez|x resolve to unconditional expectations and we arrive
at

Ez|x(β0(z)|x)+ xEz|x(β1(z)|x) = β̄0 + x β̄1 ,

wherein both β̄ parameters are weighted averages of the
subpopulation specific intercept and slope terms. Therefore,
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although the regression parameters differ from those in the
subpopulations, the presumed functional form in the modeling of
E(y|x) remains identical to the form which was assumed within
each subpopulation.

Secondly, lack of interaction. In this case, the intercept and
slope terms do not depend on z and Equation (7) reduces to:

Ez|x(β0(z)|x)+ xEz|x(β1(z)|x) = β0 + x β1 .

Again, the functional form is preserved and in this case also the
parameters.

Thirdly, interaction or dependency. Then the conditional
expectation is a function of x and we may conclude that
the conditional expectation is furthermore likely to include
nonlinear terms despite the fact that within each subpopulation
we have linearity. Or stated differently: Suppose we are given two
publications on the impact of the predictor x on the outcome
y. Assuming the validity of the assumptions in each study, we
infer the impact of the predictor via the regression coefficient β1.
However, if a third researcher conducts a study in the mixture
population, which would be a natural setup to draw meta analytical
conclusions, then to ensure the validity of a linear regressionmodel,
the researcher would have to deviate from the model used in the
publications. In addition, the report of the impact of the predictor
would have to focus on different coefficients.

The described dependencies of the modeling assumptions on
the population as well as on the sampling scheme were highlighted
in terms of the ordinary linear regression model which just served
as a mathematical convenient example to demonstrate these effects.
The described phenomena occur in more complicated modeling
classes as well, as illustrated in the following section.

4.2. Generalized linear mixed model
(GLMM)

The class of GLMMs hasmany applications in psychology, most
notably in Item Response Theory (IRT). As literally every construct
of interest in psychology requires an adequate measurement device,
it is hardly an overstatement to say that IRT models, alongside with
their older classical test theory counterparts,1 are omnipresent in
applied research. For the sake of clarity, we will therefore limit the
statement of the model to the most relevant case of IRT and refer
for general formulation of the GLMM to Jiang (2007). We will also
exclude any covariates in order to focus on the random effects part
of the model that goes beyond the ordinary regression setup.

Let yi,j denote the response of the i-th test taker to item j

(j = 1, . . . , J) of a test that is supposed to measure a single
construct—say numerical IQ, denoted by θi. The response yi,j is
binary, encoding as to whether the item was solved correctly or not.
The postulate of a single underlying construct when combined with
the local independence assumption2 provides us with a formula for

1 In fact, the CTT counterparts can be subsumed under the linear mixed

model formulation, so that most of the following discussion applies also to

the CTT framework.

the probability of any particular response pattern on the test, for
example:

P(yi,1 = 1, yi,2 = 0, . . . yi,k = 0|θ) = f1(θ)(1− f2(θ)) · · · (1− fk(θ)),
(8)

wherein fj(·) denotes the item response function (IRF) of the j-
th item. The latter is defined as the conditional probability that
a test taker with latent ability θi = θ solves the j-th item, i.e.,
fj(θ) = P(yi,j = 1|θ).

There are two key parts, wherein restrictive modeling
assumptions emerge: Firstly, the IRF must be specified, leading
to particular assumptions such as imposing logistic shape on
fi. Thus, fi has a given shape but may depend on a few
remaining parameters—such as item difficulty and discrimination
parameter(s)—which are suppressed in our notation. Secondly,
apart from the special case of a Rasch model (Andersen, 1970),
one needs to specify a distribution for the latent variable. This is
necessary because the conditional probabilities being functions of
unknown latent abilities in Equation (8) are not amenable.

However, by using the law of total probability in conjunction
with the specification of a distribution function for θ , Equation (8)
resolves to an empirical testable statement referring to observable
quantities with no hidden quantities involved,

P(yi,1 = 1, yi,2 = 0, . . . yi,k = 0)

=
∑

θ

f1(θ)(1− f2(θ)) · · · (1− fk(θ))P(θ) . (9)

In the latter equation, P(θ) denotes the probability of sampling
a test taker with numerical IQ θ . Equation (9) assumes a discrete
latent variable. In most applications, however, the hidden latent
variable is modeled as continuous. In these cases the above
summation has to be replaced by an integral with respect to G, the
cumulative density function of θ . Nearly all applications specify a
normal distribution for the latter.

Note that Equation (9) provides us with a frequency statement:
In a sample of size n of test takers from Pt , we expect n × P(yi,1 =

1, yi,2 = 0, . . . yi,k = 0) test takers to show this particular response
pattern according to our specified model. Stated differently, given
estimates for the unknown parameters, e.g., item difficulties, item
discrimination and variance of the latent variable, which enter
Equations (9) through (8), we can plug in these estimates into the
right hand side and evaluate the model fit via some discrepancy
measure between the observed frequency count and the expected
count according to the model.3

From the above outline, the following may be deduced. Firstly,
as the computation of the marginals in (9) also involves G, an
IRT model can show misfit despite a correct specification of
the dimensionality of θ and of each IRF. This misfit is then
solely caused by an incorrectly specified distribution function
of the latent variable (i.e., of the random effect). Secondly, it

2 The local independence assumption is the formal manifestation of the

statement that once the numerical IQ is fixed, the items show no statistical

dependency anymore.

3 There are some complications regarding the proper asymptotic behavior

if the resulting table is sparse. Hence, our description is somewhat imprecise,

as the correct setup would involve a properly defined likelihood function.
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is difficult to construct test statistics which allow for a detailed
analysis of the cause of misspecification. That is, although we may
observe a practically meaningful deviation of the observed and
expected counts, we may not know if the latter is a result of the
misspecification of the IRFs or of the distribution function. And
thirdly, it follows from the first aspect that the model fit is highly
dependent on subpopulations. That is, given two populations
which only differ in the distribution of the latent ability, the
appropriateness of the IRT model will be evaluated differently.
In essence, this is already highlighted in Equation (9). That is,
according to the law of total probability, (marginal) probabilities
are always affected by the marginal distribution of the partitioning
random variable (θ in this case) and differ from each other—even if
all conditional distributions are identical.

We may further elaborate on the latter point: Assuming a
validly constructed numerical IQ scale in accordance with the usual
assumptions (entailing the normality of θ), it follows that we are
likely to encounter nonnormality in subpopulations. For example,
if we have a mixture of two subpopulations which differ in the
location or variance of the latent ability (the analog reasoning
as given in Section 4.1 applies). Likewise, if there is a variance
restriction such as using the scale for job selection tasks, wherein
the job applicants are supposed to show less variation in the IQ due
to the requirements of the job profile (e.g., engineers; cf. Section
3). Both cases depict a simple, practical relevant mechanism which
dissolves any prior existing normality. In conjunction with the
second example, it follows that two researchers which examine
the same scale in different (sub)populations are likely to disagree
on the fit of the model solely due to a strong assumption on the
distribution for θ .

Importantly, it must be emphasized that the outlined results
also appear in other GLMM type models. Every GLMM model
requires the specification of the distribution of an unobservable
latent quantity.

5. Minimizing the risk of biased
inferences

There is a fine line in reaching valid conclusions, with any
violation of an assumption along the way potentially leading to
biased conclusions. However, there are also strategies for dealing
with the potential problems discussed in this paper. A scientifically
sound approach to empirical research is, first, to be aware of
the assumptions underlying the selection and analysis steps and,
second, to explicitly state the assumptions and justify their validity.
Both aspects require the following triad: A sufficiently developed
theory, appropriate methods to generate and analyze the data, and
a reliable body of relevant empirical studies. Appropriateness of
the methods in turn implies availability and good knowledge of the
adopted statistical techniques. All three components are necessarily
interdependent and ideally evolve iteratively as knowledge is
accumulated.

It follows from the foregoing sections that the maturity of a
theory determines how precisely P1 and DGP1 can be defined.
The more developed a theory, the better informed a possible
sampling design, the better justified the statistical analysis tools,
and consequently the fewer untestable assumptions required. This

in turn increases the credibility of inferences and helps to built
better theories. Therefore, at any point in the process, available
knowledge should be used to challenge, sharpen and develop a
theory. In general, however, the systematic development of theories
does not seem to have been given a high priority in psychological
research (e.g., Meehl, 1978; Fiedler, 2014; Eronen and Bringmann,
2021; McPhetres et al., 2021; Szollosi and Donkin, 2021). In the
usual case, where the definition of the target population is vague
at best, conclusions should be interpreted with great caution and
perhaps limited to a smaller, defensible subpopulation, such as a
group of students in a particular subject and age group.

A crucial condition for ignoring the selection mechanism
resembles the fundamental condition in experimental settings
to avoid systematic effects of confounding variables: Selection
into the “observed” vs. “not observed” conditions may depend
on observed covariates but not additionally on the outcome. In
many psychological studies, this is implicitly assumed without
further justification, but in order to allow compensation of a
possible selectivity of an observed subsample and thus to justify
statements about a broader subpopulation or even Pt , the selection
mechanism, the relevant variables and their relationships with the
DGP1 must be known. Thus, in addition to the theory of interest, at
least a rudimentary auxiliary theory of response behavior must be
available.

Based on not necessarily exact replications of a study,
knowledge of response behavior can be built up iteratively by
collecting variables informative of non-response. This can consist
of individual information about non-respondents such as age
or cohort membership in terms of age groups, field of study if
units are students, or residential area (e.g., Groves et al., 2001).
Although trying to collect this additional information requires
more expensive data collection methods, it would allow researchers
to adopt a weighting strategy, to include a correction term in the
estimated model, to apply a (full information) maximum likelihood
method or to generate multiple imputations to compensate for
missing units (e.g., Rubin, 1987; Robins et al., 1995; Schafer and
Graham, 2002; Wooldridge, 2002, 2007, 2010). To allow valid
inference, all these techniques require, in addition to more or less
strong modeling assumptions, that all variables relevant to the
non-response process are included in the analysis.

In addition to variables directly related to DGP1 or response
behavior, variables could be collected for explanatory purposes
to help build an increasingly strong foundation by sharpening
the definition of Pt , helping to learn about possible mixture
populations, and thus increasing knowledge about DGP1. The
necessary exploratory analyses should be incentivized by publishing
these as independent, citable articles. Similarly, research on the
reasons for non-response should be encouraged to provide the
research community with information on variables to compensate
for unobserved units in related contexts.

If the theory underlying a research question of interest does not
justify the assumptions necessary for the adopted analysis method,
or if empirical results raise doubts whether they are met, then a
sensitivity analysis, a multiverse analysis (Steegen et al., 2016) or
the adaption of a robust or non-parametric estimation methodmay
be an appropriate choice. The basic idea of sensitivity analyses is to
analyze the data set at hand under a range of plausible assumptions.
If inferences do not change substantially, they are robust with
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respect to this set of plausible assumptions (e.g., Rosenbaum and
Rubin, 1983; in the context of missing values, see Rubin, 1987).
This strategy, although not new, has not received much attention
in applied research.

However, there is a way around using parametric models based
on strong assumptions. Semi- or non-parametric methods require
larger, although not necessarily much larger samples (e.g., Spiess
and Hamerle, 2000) but also less detailed formulated theories,
which is helpful at an earlier stage of theory development. If then
a random sample is selected from a clearly defined subpopulation
according to a known sampling design and auxiliary variables
are surveyed to compensate for possible selectivity due to non-
response, the results may cautiously be interpreted with respect
to the addressed subpopulation if model diagnostics following the
analyses do not imply serious violation of assumptions. Of course,
the whole procedure including all the variables surveyed should be
described in detail and the data should be made publicly available
to allow replications and evaluation of the results.

Semiparametric approaches, requiring less strong assumptions
have been proposed, e.g., in biometrics and econometrics,
respectively. Hansen (1982) proposes a generalized methods
of moments (GMM) approach and Liang and Zeger (1986) a
generalized estimating equations (GEE) approach. For valid
inferences in (non-) linear (panel or repeated measurement)
regression models, both approaches require only correct
specification of the fixed part of a model, whereas the covariance
structure may be misspecified. GMM is more flexible as it allows
the estimation of more general models than GEE, but the latter is
easier to use. Both approaches have been adapted or generalized
since the 80’s, e.g., to deal with many different situations, e.g.,
high dimensional data (Fan and Liao, 2014), panel or repeated
measurement models with mixed continuous and ordinal
outcomes (Spiess, 2006) or ordered stereotpye models (Spiess
et al., 2020). Another approach that allows modeling linear or
much more general, smooth non-linear effects of covariates on the
mean and further shape parameters of the (conditional) outcome
distribution is described in Rigby and Stasinopoulos (2005). This
approach would be helpful when the effects of some covariates
cannot be assumed to be linear, but need to be controlled.

For the non-parametric modeling approach, we limit ourselves
to an example from IRT to illustrate that these arguably more
robust approaches have been available, but have not been adopted
by researchers in psychology: The theoretical underpinnings of
some non-parametric approaches were established as early as the
1960s (Esary et al., 1967). One of the first practical outlines of a
non-parametric approach to IRT was then given in the early 1970s
by Mokken (1971), and some important generalizations of the
latter—both in practical and theoretical aspects—were established
in the 1980s (e.g., Holland and Rosenbaum, 1986) and 1990s (e.g.,
Ramsay, 1991). These results generally provide robustness against
misspecification of the distribution of θ as well as misspecification
of the IRFs. Inmany cases,G does not need to be specified at all, and
the only relevant property of the IRF is monotonicity. Of course,
this comes at a price, e.g., inference of the latent variable is done via
simple sum scores. However, since the latter is already dominant in
practical applications, this does not seem to be a severe restriction
in practice.

Obviously, semi- or non-parametric approaches make less
strong assumptions than fully parametric approaches, by allowing
certain aspects of the statistical models to be miss- or unspecified.
Besides the fact that they usually require more observations than
fully parametric approaches, inferences about the misspecified
aspects are either not possible or should be drawn very cautiously,
e.g., when a correlation matrix might be misspecified. If no theory
is available to justify a statistical model, including assumptions,
a better strategy, if possible, would be to use a simpler design
in conjunction with a simple and robust evaluation method (e.g.,
Peterson, 2009). A notable side-effect of relying on simple designs
and analysis steps is the availability of sufficiently elaborated tools
for model diagnostics.

6. Discussion and conclusions

The methodological framework presented in Section 2
highlights the close linkage between scientific theory, sampling
and data collection design as well as the statistical methods and
models adopted to empirically test the theory. Since not much
resources are devoted to the proper sampling of subjects from
a well-defined population and since missing data are oftentimes
ignored or assumed to follow a convenient missing mechanism, it
can be assumed that assumptions of the commonly used parametric
models are often violated. As shown in Section 3, the consequences
can range from marginal biases to, e.g., in case of confidence
intervals, actual coverage rates of true values close to zero even
in the analysis of experimental data. It should also be noted
that the outlined methodological problems cannot be prevented
by preregistration or a ban on null hypothesis testing, nor can
they be uncovered by mere replications within the same or very
similar subpopulations. Increasing sample sizes, e.g., via online data
collection, makes things even worse: the biases in the estimators do
not vanish but the standard errors tend to zero, further lowering
the actual coverage rates of confidence intervals in case of biased
estimators.

Interestingly, although the approaches described in Section
5 circumvent severe problems in the estimation of general
regression and IRT models, they seem to have largely been ignored.
Instead, applied research seems to stick to convenience samples
and highly specific (and fragile) parametric models. Among
other reasons, such as publication policies, part of the problem
may be that statistical training in psychology largely neglects
sampling theory (e.g., Särndal et al., 1992) (beyond sample size
determination), strategies of avoiding or compensating for non-
response (e.g., Rubin, 1987; Wooldridge, 2010) and problems of
model misspecification.

However, the problem of missing reported model checks seems
to be mainly caused by two factors. Firstly, in many modeling
classes there is not a uniquely defined and accepted way of
testing the modeling assumptions. In fact, the number of potential
applicable statistics can be arbitrarily large. For example, assessing
unidimensionality in an IRT model with J items can entail more
than 10J potential statistics (Ligtvoet, 2022) and there is no
universal way to check unidimensionality. In conjunction with the
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dominance of parametric models this contributes to the fragility of
the analysis.

Secondly, there is also an important connection of the lack of
model checking with respect to the so called “garden of folking
paths” (Gelman and Loken, 2014). The latter describes a sequence
of data-dependent choices a researcher undertakes in order to
arrive at his/her final analysis result. At each step, another decision
could have beenmade with potential consequences for the outcome
of the analysis. The mere fact that these decisions are not set a
priori but are made data dependent contributes to the inflated
effect sizes reported in the literature. Now suppose a researcher
did arrive at a final result that seems to make sense in terms of
content. In this case, we would argue that looking at additional
model checks has already become highly unlikely. Not only is
there the potential to “ruin” the result, but there is also the
implication of going back to the drawing board and starting from
scratch.

A potential way to resolve the problem of forking paths
is given by preregistration of the study and by specifying the
analysis protocol ahead of looking at the data. However, if we
were humble with respect to the validity of our proposed model
in the preregistration step, our plan would need to entail the
possibility of misspecification. In some cases this could very well
be incorporated in the preregistration step (e.g., Nosek et al., 2018).
However, for complex types of analysis, the potential ways of model
failures and the number of alternative models grows very fast,
so that preregistration is unlikely to cover all potential paths of
analysis. Furthermore, if it is suspected that the observed sample
is selective and model diagnostics are considered as an important
part of analysis, we must be open to sometimes unforeseen
changes in the analysis plan—for otherwise we put too much
trust in our models. This reveals that some proposals, such as
preregistration, that aim to increase the trustworthiness of scientific
research face additional major challenges, as the data dependence
of the analysis may require switching to alternative models or
procedures.

A longer-term strategy to overcome the shortcomings discussed
above would be to hopefully increase students’ appreciation
of statistics by emphasizing the close interaction of theory,
methods, and empirical information. A simple example would
be to ask students to try to define the humans about which
inferences are being made, to compare this definition with
observed samples described in research papers, and to try to
verbalize as clearly as possible the rationale and necessary
assumptions for the inferences from the latter to the former.
This exercise may also demonstrate that the validity of inferences
depends on the weakest link in the chain. In addition, rather
than teaching statistics as a clickable toolbox with many
different models and techniques, and in addition to topics such
as sample selection and missing data compensation, it may
be beneficial to treat in depth the consequences of violated
assumptions of standard techniques andmodels. The consequences
of violated assumptions could be illustrated by simulating
data sets following a real example, varying the assumptions
being violated and discussing the consequences with respect to
the inferences. To clearly demonstrate the consequences, this
amounts to running simulation experiments. Students should

learn that violation of some assumptions may have only mild
consequences, whereas inferences can be very misleading if other
assumptions are violated. Application of robust methods could
be illustrated by applying semi- or non-parametric methods to
a real problem for which the data set is available and compare
the results with those reported in the corresponding research
paper. Although the described problem-oriented strategy relies
on practical examples and illustrations (or simulations), the
corresponding theoretical concepts should be treated as well to
a mathematical level such that the key ideas can be understood.
Generalizations to more complex models should then be possible
for students even without recourse on simple but often superficial
receipts.
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