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Background: Rumination impedes problem solving and is one of the most 
important factors in the onset and maintenance of multiple psychiatric disorders. 
The current study aims to investigate the impact of social rejection on rumination 
and explore the underlying neural mechanisms involved in this process.

Methods: We utilized psychological questionnaire and resting-state brain imaging 
data from a sample of 560 individuals. The predictive model for rumination 
scores was constructed using resting-state functional connectivity data through 
connectome-based predictive modeling. Additionally, a mediation analysis was 
conducted to investigate the mediating role of the prediction network in the 
relationship between social rejection and rumination.

Results: A positive correlation between social rejection and rumination was found. 
We obtained the prediction model of rumination and found that the strongest 
contributions came from the intra- and internetwork connectivity within the 
default mode network (DMN), dorsal attention network (DAN), frontoparietal 
control network (FPCN), and sensorimotor networks (SMN). Analysis of node 
strength revealed the significance of the supramarginal gyrus (SMG) and angular 
gyrus (AG) as key nodes in the prediction model. In addition, mediation analysis 
showed that the strength of the prediction network mediated the relationship 
between social rejection and rumination.

Conclusion: The findings highlight the crucial role of functional connections 
among the DMN, DAN, FPCN, and SMN in linking social rejection and rumination, 
particular in brain regions implicated in social cognition and emotion, namely 
the SMG and AG regions. These results enhance our understanding of the 
consequences of social rejection and provide insights for novel intervention 
strategies targeting rumination.
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1. Introduction

Rumination refers to an individual’s passive and repeated 
recollection, reflection, and analysis of problems in a negative 
emotional state and is a negative style of cognitive appraisal of painful 
events (Nolen-Hoeksema, 1991; Nolen-Hoeksema et al., 2008). In a 
recent review, Watkins and Roberts (2020) defined rumination as 
repetitive thoughts about the symptoms, causes, circumstances, 
meanings, and consequences of negative mood. Research suggests that 
rumination is not only associated with emotional and mental health 
problems such as anxiety (Olatunji et al., 2013), depression (Spasojević 
and Alloy, 2001), and sadness (Kirkegaard Thomsen, 2006) but may 
also lead to impaired memory and executive control (Davis and 
Nolen-Hoeksema, 2000; Watkins and Brown, 2002) as well as 
cognitive dissonance (through excessive attention to and memory of 
negative information)(Watkins and Teasdale, 2001; Whitmer and 
Gotlib, 2013) and impaired positive problem solving (Lyubomirsky 
and Nolen-Hoeksema, 1995; Watkins and Baracaia, 2002). Theories 
suggest that rumination is one of the key factors in the maintenance 
of depression and other disorders (Lyubomirsky and Nolen-
Hoeksema, 1995). Rumination can exacerbate neurological disorders 
in several ways, including amplifying and prolonging existing negative 
emotions and thoughts, interfering with problem solving and positive 
instrumental behavior, and reducing sensitivity to changing 
circumstances (Nolen-Hoeksema et  al., 2008; Offredi et  al., 2016; 
Watkins and Roberts, 2020). In other words, such self-focused 
rumination often leads to maladaptive responses and chronic pain, 
resulting in impaired problem-solving skills and increased negative 
emotions, and may form a vicious cycle. It is crucial to have an 
in-depth comprehension of the neural mechanisms underlying 
rumination, which can contribute to enhancing our understanding of 
the etiology and mechanisms of these disorders, thereby increasing 
diagnostic accuracy and providing valuable insights for treatment 
and intervention.

An important feature of rumination is an intense self-focus 
(Watkins and Moulds, 2005), and this constant, self-referential 
cognitive activity is closely linked to the default mode network 
(DMN) (Berman et al., 2011; Hamilton et al., 2015; Rosenbaum et al., 
2017; Zhou et  al., 2020), which supports internal reflection and 
autobiographical memory (Buckner et  al., 2008). The DMN can 
be  further divided into three functionally distinct subsystems; 
researchers found that the subsystems of the DMN were not equally 
active during rumination and exhibited altered functional 
connectivity (Chen et al., 2020; Zhou et al., 2020). Another important 
feature of rumination is that it is associated with continuous negative 
emotions (Thomsen et al., 2003), which is related to brain regions 
involved in emotion regulation. For example, several studies have 
shown a significant correlation between rumination and activation 
of the amygdala (Ray et al., 2005; Mandell et al., 2014; Belzung et al., 
2015). Furthermore, researchers found that depressed patients with 
high levels of rumination had reduced nodal centrality of the 
amygdala during task performance (Zhang et al., 2020). This suggests 
that the amygdala is unable to play a full role in emotion regulation 
in rumination, resulting in lack of regulation of emotional states. In 
addition, individuals tend to ignore changes in the external 
environment during rumination. As previous studies have found, the 
dorsal attentional network (DAN), which helps to focus and maintain 
attention to external stimuli, is negatively associated with rumination 

(Lois and Wessa, 2016; Rosenbaum et  al., 2018a,b). Reduced 
functional connectivity has also been found between the 
frontoparietal network and DAN in depressed patients with high 
levels of rumination (Kaiser et al., 2015). To summarize, rumination 
is closely related to brain networks responsible for functions such as 
self-referential processing, attentional control, and 
emotion regulation.

While numerous studies have examined the effects of rumination, 
much less attention has been given to the factors that influence 
rumination. Rumination, as a complex cognitive process, can 
be influenced by a variety of factors, such as personality traits, genes, 
environmental conditions, events, and feedback modalities (Cox et al., 
2010; Johnson et al., 2014; Watkins and Roberts, 2020). Although the 
social environment plays an important role in individual growth, few 
studies have investigated the effects of social relationships on 
rumination. Indeed, studies have shown that the negative effects of 
rejection are not limited to the emotional and psychological levels but 
may also extend to cognition and thought patterns (Voncken et al., 
2008; Gunther Moor et al., 2010; Slavich et al., 2010; Rudert et al., 
2021). For example, social rejection has been shown to lead to negative 
thought patterns (Monroe et al., 2007; Cacioppo and Hawkley, 2009). 
There is growing evidence that social rejection may influence 
individuals’ emotional and cognitive responses by eliciting ruminative 
thought processes, which may contribute to the development and 
maintenance of mood disorders (Goodman and Southam-Gerow, 
2010; Wesselmann et al., 2013). In Williams (2009) temporal need-
threat model, rumination is one of the events experienced after the 
occurrence of rejection. Additionally, researchers have proposed a 
psychobiological model of social rejection and depression, in which 
rejection-related events activate brain regions involved in processing 
negative emotions and pain, triggering negative self-referential 
thoughts and feelings of self-consciousness (Slavich et  al., 2010), 
which are key features of rumination. Therefore, exploring the role of 
social rejection on rumination not only contributes to a deeper 
understanding of the effects of rejection on individuals but also 
provides new ideas for coping with its negative effects.

Recent advances in neuroimaging techniques have enabled 
researchers to investigate how brain functional connectivity is related 
to specific cognitive and affective processes. The connectome-based 
predictive model (CPM) is one such technique that has shown 
promise for predicting individual differences in cognitive and 
emotional traits (Shen et al., 2017). In this study, we used the CPM 
approach to identify a resting-state functional connectivity network 
that predicted rumination; we  believed that this network would 
involve brain areas related to self-referential thoughts, emotions, and 
attention. Furthermore, we use mediation analyses to examine the role 
of this network in the relationship between social rejection and 
rumination. Our findings would provide novel insights into the neural 
mechanisms underlying the link between social rejection and 
rumination, and might have important implications for the 
development of interventions to mitigate the negative consequences 
of social rejection.

In summary, the present study aimed to demonstrate the 
followings: (1) social rejection is positively correlated with rumination, 
(2) brain functional connectivity features of rumination, and (3) social 
rejection-induced enhancement of ruminative traits (leading 
individuals to have a greater risk of anxiety and depression) through 
brain functional connectivity features.
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2. Methods

2.1. Participants

The present study was conducted in a population of healthy 
adults, and none of them had a history of neurological or psychiatric 
illness (self-reported, with no history of brain damage, schizophrenia, 
major depression, anxiety disorder, and insomnia). All subjects in this 
study were from Southwest University, Chongqing, China. 
Psychological questionnaire and brain data were obtained from our 
ongoing project, Gene-Brain-Behavior (GBB). The GBB project aims 
to establish a multimodal database focusing on cognition and brain 
development to explore the relationships of structural and functional 
brain development with creativity, emotion, personality, etc.; these 
data have been used in several previous studies (Chen et al., 2019; 
Zhuang et al., 2021). The research protocol was approved by the Ethics 
Committee of the Brain Imaging Center of Southwest University. All 
participants signed an informed consent form prior to the data 
acquisition and were paid 50 RMB for their participation. Of the 
subjects recruited for this study, 593 had complete data available for 
psychological measures that were able to be matched with brain data. 
Thirteen subjects were excluded due to excessive head movement 
(mean head movements >0.3 mm), and 20 subjects were excluded due 
to substandard brain imaging data (artefacts, etc.). Thus, data from 
560 subjects (mean age: 19.32 ± 1.27 years; range: 16–26 years; 401 
females and 159 males) were included in the analyses. Basic details of 
the participants, along with additional information, are available in 
the Supplementary material.

2.2. Psychological questionnaire

Rumination was measured with the Ruminative Responses Scale 
(RRS) (Nolen-Hoeksema and Morrow, 1991). The RRS contains 22 
items rated a scale from 1 (almost never) to 4 (almost always) 
regarding the frequency of ruminative thoughts (e.g., Think “Why do 
I have problems other people do not have?”). The RRS comprises three 
subscales: reflective pondering, brooding and depression-related. 
We removed the third subscale, depression-related responses, as in 
previous studies (Li et al., 2022), because we focused on the behavioral 
of ruminative thoughts rather than its emotional consequences and 
because of the spurious discriminatory validity given its overlap with 
symptoms of depression. Thus, the final rumination score 
encompassed two subscales (reflective pondering and brooding) and 
had a Cronbach’s alpha coefficient of 0.92 (Lackner and Fresco, 2016).

Social rejection was assessed using the Perceived Rejection survey 
from the NIH Toolbox on Emotion (Salsman et al., 2013). On this 
survey, participants rate the 8 items on a scale from 1 (never) to 5 
(always) regarding their feelings of rejection (e.g., “Does not listen 
when I  ask for help”). The Cronbach’s alpha coefficient for the 
Perceived Rejection survey was 0.93 (Salsman et al., 2013).

2.3. Image data acquisition and 
preprocessing

The resting-state scan lasted 8 min, during which participants 
were told to keep their bodies as still as possible, not to think about 

specific things, and to keep their eyes open as much as possible. 
During the scan, a lab assistant was present outside the scanning room 
to monitor the participant’s state and respond to his or her needs.

Functional and structural data were obtained using a Siemens 3 T 
Trio scanner (Siemens Medical System, Erlangen, Germany) at the 
Brain Imaging Center of Southwest University. Resting-state fMRI 
data were obtained using a gradient-echo echo-planar imaging (GRE-
EPI) sequence with the following parameters: repetition time 
(TR) = 2,000 ms, echo time (TE) = 30 ms, flip angle (FA) = 90°, field of 
view (FOV) = 220 × 220 mm2, slices = 32, thickness = 3 mm, interslice 
gap = 1 mm, and voxel size = 3.4 × 3.4 × 4 mm3. A high-resolution, 
three-dimensional magnetization-prepared rapid acquisition gradient 
echo (MPRAGE) sequence with the following parameters was 
conducted: TR = 1,900 ms, TE = 2.52 ms, FA = 9°, slices = 176, 
FOV = 256 × 256 mm2, thickness = 1 mm, and voxel size = 1 × 1 × 1 mm3. 
Images were preprocessed using the CONN toolbox (Whitfield-
Gabrieli and Nieto-Castanon, 2012). Slice timing correction was 
applied. During head motion estimation and correction, we  also 
regressed out outlier scans due to head motion. Potential outlier scans 
were identified based on two criteria: the observed global BOLD 
signal and the amount of subject motion during scanning. Acquisitions 
with framewise displacement above 0.9 mm or global BOLD signal 
changes above 5 s.d. were flagged as potential outliers. The images 
were segmented into grey matter, white matter (WM), and 
cerebrospinal fluid (CSF) and normalized to standard MNI space 
(Ashburner and Friston, 2005). An 8-mm full-width at half-maximum 
Gaussian kernel was applied to smooth the images. The images were 
then denoised using the anatomical component-based correction 
(aCompCor) method, and we regressed out signals from WM, CSF, 
and 12 head movement parameters. After denoising, the images were 
linearly detrended and bandpass filtered (0.01–0.1 Hz). Global signal 
regression was not used in this study, as hemispheric segregation and 
hemispheric integration are based on the functional connectivity (FC) 
between these regions and corresponding homotopic regions.

2.4. Functional network construction

FC matrices were constructed using the GRETNA toolbox 
(Wang et al., 2015a). The atlas used to calculate FC in this study 
partitioned the cortex into 400 ROIs and grouped them into 7 major 
brain networks with specific functions: the visual network (VIS), 
somatomotor network (SMN), dorsal attention network (DAN), 
salience network (SAL), limbic network (LIM), frontoparietal 
control network (FPCN) and default mode network (DMN)
(Schaefer et al., 2018). In constructing the functional connectivity 
matrix, the time series data of the node were extracted from each 
ROI, and the “edges” were represented by the Pearson correlation 
coefficients of the time series of the nodes, which underwent a 
Fisher z transformation (Zar, 1999). The significance of the negative 
values of the resting-state functional connectivity matrix is not clear 
and is susceptible to preprocessing methods and noise, which may 
be  artificially created false correlations that do not necessarily 
indicate negative coupling between regions (Murphy et al., 2009; 
Chai et al., 2012).Therefore, negative values in the matrix were set 
to zero as previous studies (Chan et al., 2014, 2021; Wang et al., 
2021a, 2022). Each subject’s data were constructed as a 400 × 400 
matrix for further analysis.
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2.5. Connectome-based predictive 
modeling

Here, we used a leave-one-out approach of connectome-based 
predictive modeling (CPM) (Shen et al., 2017) to predict rumination 
from rs-fMRI connectivity, which has been widely used in recent 
years to predict anxiety (Wang et al., 2021b), irritability (Scheinost 
et al., 2021), loneliness (Feng et al., 2019), etc. CPM consists of three 
steps: feature selection, model construction, and model validation 
(Ren et al., 2021). First, we calculated the correlation coefficients 
between resting-state functional connectivity and rumination scores 
and selected the significant edges (p < 0.01)(Kucyi et  al., 2021; 
Scheinost et al., 2021), including both positive and negative edges. 
The retained edges were used to form the positive and negative 
prediction networks. For leave-one-out cross-validation, one 
participant was excluded from the training set in each iteration, and 
the model was trained with data from N-1 participants (i.e., 559 in 
this study). Then, data from the excluded participant were used as a 

validation set to obtain the predicted value, and this process was 
repeated until each participant had obtained one. Thus, a positive 
network and a negative network were obtained in each iteration, and 
the final prediction network consisted of edges that appeared in each 
iteration (Figure  1A). Next, the values of all these edges in each 
network were summed to obtain the strength of the prediction 
network. The general linear model (GLM) was trained with these data 
to reflect the relationship between prediction network strength and 
rumination. The predictive efficacy was reflected by the Pearson 
correlation between the predicted and observed scores. If a relatively 
strong correlation was observed, the prediction model was successful. 
We further controlled for covariates such as age, sex, and mean head 
movement to determine whether these factors had a confounding 
effect (see at Supplementary material). Finally, we  performed an 
iterative test (1,000 iterations) to obtain the distribution of the 
observed correlation coefficients (Figure 1B). The number of times 
that the distribution was greater than the true value was divided by 
the number of permutations to calculate the p value.

FIGURE 1

Connectivity-based predictive model of rumination. (A) For the leave-one-out method, in each iteration, data from N-1 participants are used as the 
training data, while the data from the remaining individual serve as the testing data. Within the training data, we calculated the correlation coefficients 
between resting-state functional connectivity and rumination scores and selected the significant edges (p  <  0.01), the values of all these edges in each 
network were summed to obtain the strength of the prediction network. Next, the general linear model was trained to reflect the relationship between 
prediction network strength and rumination scores. This model will then be used in the test set to obtain a predicted score. This process will 
be repeated N times until each participant has received a prediction score. Edges retained each iteration form the final prediction network (red: positive 
correlation; blue, negative correlation). (B) The predictive efficacy of the model was judged by calculating the Pearson’s correlation coefficient 
between the predicted scores and the observed scores. This correlation value (indicated by the blue line) was then compared with the null distribution 
of r values from 1,000 random permutations. The scatterplot on the left side of the figure demonstrates the relationship between the predicted scores 
obtained using the negative prediction network and the actual scores in this study, while the right side presents the results of the permutation test, 
pperm  =  0.004.
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2.6. Model validation

To enhance the rigor of our study and attain more robust 
outcomes, we  employed the ten-fold cross-validation method for 
model validation. In contrast to leave-one-out method, the adoption 
of ten-fold cross-validation involves a more stringent evaluation, 
mitigating the randomness introduced by specific data partitioning 
and better controlling the risk of overfitting. In this method, 
we randomly divided all 560 participants into 10 groups. The model 
was trained using data from 9 of these groups and tested with data 
from the remaining group; this process was repeated for all groups. 
Here, we used the same significance threshold as the leave-one-out 
approach above (p < 0.01). Since random grouping may introduce bias 
regarding model prediction efficacy, we  repeated this process 100 
times to reduce the effect, after which we obtained the averaged r and 
p values. Then, we performed 1,000 random permutations to generate 
the null distribution for significance testing.

2.7. Mediation analysis

We conducted a mediation analysis to explore whether rumination 
network strength mediated the association between social rejection 
and rumination scores. Analyses were conducted using Model 4 of the 
indirect macro PROCESS designed for SPSS (Preacher and Hayes, 
2008). In the present study, the independent variable (X) was the 
social rejection score, the dependent variable (Y) was the rumination 
score, and the mediation variable (M) was the strength of the 
prediction network. Indirect effects were considered significant if zero 
was not included in the bootstrapped 95% confidence intervals (CIs) 
(5,000 samples).

3. Results

3.1. Psychological questionnaire results

We verified the completeness, logical consistency, and reasonable 
timing of the collected questionnaires, assessed the rationality of data 
distribution, and examined the presence of outliers and non-genuine 
responses. At this stage, no participants were excluded. We  used 
Pearson’s correlation coefficients to explore the correlation between 
social rejection and rumination, and the results showed that there was 
a significant positive correlation (r = 0.283, p < 0.001).

3.2. CPM Results

3.2.1. Predictive efficacy of the leave-one-out 
approach

The network strength of a positive or negative prediction network 
is obtained by summing the values of all edges within the network. 
Predictive efficacy was represented by the correlation between the 
observed rumination scores and predicted rumination scores. After 
leave-one-out cross-validation, there were 182 edges in the positive 
network and 299 edges in the negative network (Figure  2A). The 
results showed that the negative network significantly predicted 
individual differences in rumination scores (r = 0.152, p < 0.001, 

pperm = 0.004), while the positive network did not significantly predict 
these differences (r = 0.045, p = 0.288). The pperm values was based on 
permutation testing (1,000 permutations). Controlling for head 
movement, sex, and age did not affect the validation of the results.

3.2.2. Functional neuroanatomical basis of the 
predictive network

To better understand the functional neuroanatomical implications 
of the prediction network, we assigned the 299-edge negative network 
into intranetwork and internetwork connections according to the 
Schaefer400 atlas (Schaefer et al., 2018). The Schaefer400 atlas can 
classify nodes into 7 networks or 17 networks; here, we  used the 
7-network classification, consistent with the Yeo-Krienen networks 
(Yeo et al., 2011). Similar to the findings of previous studies (Chen 
et al., 2020), the DMN was closely associated with rumination and 
contributed strongly to the prediction of rumination among the 
networks. The top five network pairs contributing to negative edges 
were as follows: DMN-SMN, DAN-SMN, VIS–VIS, FPCN-DAN, and 
FPCN-VIS (Figure 2B).

To further understand the importance of each node within the 
prediction network, we obtained the node strength by calculating the 
sum of the edge weights connected to the node (He et al., 2021). 
Specifically, weights were correlation coefficients between the 
functional connectivity and rumination scores. Then, we summed the 
absolute values of these correlation coefficients (since all correlation 
coefficients were negative) to obtain the strength of these nodes. The 
results showed that regions with higher node strength were mainly 
located in the supramarginal gyrus, angular gyrus, middle temporal 
gyrus, 3 inferior temporal gyrus, fusiform gyrus and parahippocampal 
gyrus (Figure 3).

3.2.3. Model validation
Tenfold cross-validation yielded similar results as the leave-

one-out method. The negative network significantly predicted 
rumination scores (r = 0.125, p = 0.005, pprem = 0.016), while the positive 
network did not.

3.3. Mediation analysis

We defined the sum of the FC values as the strength of the 
prediction network. In the mediation analysis, the independent, 
mediating, and dependent variables were social rejection, prediction 
network strength, and rumination. The relationship between social 
rejection and rumination (c’ = 0.206, p < 0.001) was mediated by 
prediction network strength (a = −0.520, p < 0.001; b = −0.508, 
p < 0.001). The 95% confidence interval of the mediation analysis did 
not include 0 (LLCI = 0.038, ULCI = 0.121), indicating that this 
indirect effect was significant (Figure 4).

4. Discussion

Rumination has received widespread attention as an important 
factor in the maintenance of a variety of psychiatric disorders 
(Watkins and Roberts, 2020). However, to date, no studies have 
constructed predictive models of rumination from the functional 
connectivity characteristics of healthy individuals. In addition, 
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research has consistently focused on the effects of rumination 
rather than the factors that influence rumination. In the present 
study, we established a resting-state functional connectivity network 
capable of predicting rumination scores using CPM and assessed 
the validity of the prediction model using two different cross-
validation methods (leave-one-out and tenfold cross-validation). 
The model maintained predictive validity after controlling for sex, 
age and mean head movement. We then calculated the strength of 
the prediction network by summing the values of all FC edges and 
verified its mediating role in the relationship between social 

rejection and rumination. These results suggest that social rejection 
may lead to more rumination by affecting functional networks in 
the brain.

The present study assigned functional connectivity values to a 
functionally explicit large-scale network to further investigate the 
neural basis of the prediction network; the results indicated that the 
following networks strongly contributed to the predictive power of 
the  network: the default mode network (DMN), dorsal attention 
network (DAN) and frontoparietal control network (FPCN). The 
DMN is one of the networks that has received the most attention 
regarding the cognitive mechanisms of rumination due to its high 

FIGURE 2

Functional neuroanatomical basis of the predictive network. (A) Edges from the negative prediction network. Only edges that appeared in each 
iteration were retained. (B) The number of edges in the negative prediction network assigned to each intra- or internetwork pair based on the 
Schaefer400 and Yeo-Krienen 7-network atlases. VIS, visual network; SMN, somatomotor network; DAN, dorsal attention network; SAL, salience 
network; LIM, limbic network; FPCN, frontoparietal control network; DMN, default mode network.

FIGURE 3

The strength of nodes in the prediction network. Edge weights were 
obtained by calculating the correlation coefficients between 
rumination scores and functional connectivity in the prediction 
network. Node strength was computed by summing the absolute 
value of the correlation coefficients. The darker the color, the greater 
the weight of the ROI in the predictive model, indicating a stronger 
association with rumination.

FIGURE 4

The mediation model of the relationships among social rejection, 
rumination network strength, and rumination. Mediation analysis is a 
method used to explain the mechanism through which an 
independent variable influences a dependent variable via an 
intermediate variable. In the present study, the independent variable 
(X) was the social rejection scores, the dependent variable (Y) was the 
rumination scores, and the mediation variable (M) was the strength 
of the prediction network. Path a represents the influence of X on M. 
Path b represents the influence of the M on the Y. Path c, the total 
effect, includes both the direct and indirect effects, representing the 
overall impact of X on Y. Path c’ represents the direct impact of X on 
Y when not considering the mediator variable M. *p  <  0.05; **p  <  0.01.
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relevance to self-awareness (Davey et  al., 2016). Studies have 
demonstrated that the DMN is involved in self-referential processes, 
theory of mind and autobiographical memory (Buckner and Carroll, 
2007; Sheline et al., 2009; Qin and Northoff, 2011). A task-state fMRI 
study found that the overall FC within the entire DMN tended to 
decrease during rumination, including FC between the core and dorsal 
medial prefrontal cortex (dmPFC) subsystems (Chen et al., 2020). The 
dmPFC subsystem is widely believed to be associated with mentalizing 
and present-oriented thoughts (Van Overwalle, 2011; Wagner et al., 
2012; Andrews-Hanna et al., 2014). Therefore, our results may indicate 
that during rumination, people tend to devote more attention to past 
events and thus less attention to their present state. Notably, rumination 
is a multifaceted process and its link to DMN cannot be simply defined. 
Since individuals may engage differently with their past experiences 
and present states during rumination, it is essential to recognize that 
changes in FC patterns can be context-dependent and influenced by 
various factors (Zhou et al., 2020; Tsuchiyagaito et al., 2021). Future 
research may be able to explore the relationship between the different 
cognitive processes involved in rumination state and DMN 
connectivity by adopting more fine-grained approaches.

Extensive experiments have shown that the DAN supports the 
maintenance of concentration, allowing people to focus on the same 
thing for longer periods of time and ignore external influences 
(Corbetta and Shulman, 2002; Corbetta et  al., 2008), while the 
FPCN supports executive control of attention and emotions, playing 
an important role in inhibitory control and cognitive flexibility 
(Bressler and Menon, 2010; Zhang et al., 2017; Kupis et al., 2021). 
Dixon et al. (2018) found that one subsystem in the FPCN regulates 
mental activities such as introspection through connections with 
the DMN, while the other subsystem is connected to the DAN and 
regulates processes such as top-down attentional selection. 
Therefore, decreased FC within and between these networks 
predicts less attention to the external environment and stimuli, 
during which time individuals’ cognitive control may 
be  compromised, leading to a greater likelihood of dwelling on 
recurring memories and suffering negative emotions.

In addition, the SMN also contributed strongly to the prediction 
model. A number of previous studies have identified that the SMN 
plays a role in the perception of external stimuli, body awareness and 
emotional and cognitive processing (Pineda, 2008; Banissy et al., 2010; 
Wood et  al., 2016; Davis et  al., 2017). In addition, decreased FC 
between the SMN and the DAN might underlie attention deficits 
(Wang et al., 2015b; Zhu et al., 2016). Studies on bipolar disorder have 
suggested that changes in connectivity between the SMN and DMN 
may be related to impaired emotion processing and executive function 
(Martino et al., 2016; Kazemi et al., 2018; Zhu et al., 2022). This may 
indicate that impaired cognitive control during rumination makes it 
difficult for individuals to shift their attention away from negative 
stimuli and that this continuous processing of self-relevant negative 
events leads to persistence of ruminative thoughts.

Analysis of node strengths revealed that key nodes predicting 
rumination scores were located in the supramarginal gyrus (SMG), 
angular gyrus (AG), middle temporal gyrus (MTG), inferior temporal 
gyrus (ITG), fusiform gyrus (FFG) and parahippocampal gyrus 
(PHG), areas which are closely related to memory, attention and 
emotion. The SMG supports attention orientation, emotion regulation, 
language and verbal working memory (Rushworth et al., 2001; Silk 
et al., 2010; Deschamps et al., 2014), and researchers have found that 
the SMG is also capable of integrating perceptual information from 

multiple modalities and is associated with self-related emotions (Silani 
et al., 2013). The AG supports memory retrieval, attention and spatial 
cognition, semantic memory, reasoning, and other higher-order 
cognitive functions (Seghier, 2013; Humphreys et al., 2021). The MTG 
is activated by processes regarding memory and emotion (Chan et al., 
2009; Fan et al., 2017), and some studies have suggested that it may 
be related to poor emotion regulation and neuroticism (DeYoung 
et al., 2010; Zhang et al., 2022). In addition, the ITG and the FFG are 
brain regions closely associated with the processing of perceptual 
information (Rossion et al., 2003; Domínguez-Borràs et al., 2009), 
such as visual and auditory information, and FFG has also been found 
to play a crucial role in face processing (Rossion et al., 2000).While the 
PHG is related to emotion regulation and autobiographical memory 
processes (Almeida et al., 2009; Frank et al., 2014).

The results from the questionnaire analysis showed that social 
rejection and rumination were positively correlated. Furthermore, 
we found that the prediction network played a mediating role in the 
relationship between social rejection and rumination. Rejection 
damages interpersonal relationships and threatens basic needs such as 
sense of belonging and security (Kemeny, 2009). Once individuals 
experience rejection, they suffer pain, negative emotions, and lack of 
satisfaction of their basic needs, leading them to focus on the 
experience of rejection and continually recall, consider and assess the 
meaning and importance of the rejection event (Williams, 2009). After 
suffering social rejection, people were more inclined to respond by 
withdrawing from social contact, hoping to protect themselves from 
further social loss. This withdrawal was accompanied by rumination, 
which may represent heightened motivation to prevent similar 
circumstances (Molden et al., 2009). However, studies have shown that 
rumination may also occur after interpersonal difficulties lead to 
reduced satisfaction with our relationships, leading individuals to 
become less confident, rejection sensitive, exhibit maladaptive 
responses and reduced interpersonal problem solving, ultimately 
preventing them from recovering from rejection (Lam et al., 2003; 
Kuehner and Buerger, 2005; Pearson et al., 2010; Wesselmann et al., 
2013). Numerous studies have shown that the DMN is broadly related 
to social cognition and is coupled with various other networks, such 
as the attention network, during different social cognition tasks 
(Schurz et al., 2014; Xie et al., 2016; Schurz et al., 2020). In the present 
study, the SMG and the AG contributed the most to the prediction 
network. A study showed that the SMG is associated with emotional 
egocentric bias (Silani et al., 2013), and we hypothesized that social 
rejection may trigger self-referential rumination by triggering 
emotional experiences strongly related to the self. The AG is a region 
in the core system in the default mode network associated with 
functions from mentalization to semantic processing and memory 
retrieval; this region is responsible for detecting behaviourally relevant 
stimuli and environmental changes (Seghier, 2013; Spreng and 
Andrews-Hanna, 2015). The mediation analysis results may explain 
the tendency of people to immerse themselves in introspection after 
rejection, decreasing their cognitive load during other cognitive tasks 
and overlooking changes in the environment. In conclusion, 
we  hypothesize that social rejection may predispose people to 
rumination by inducing more assessment of self- and social-related 
events as an emotion-regulation strategy for coping with the negative 
experience of rejection.

There are still some limitations of our study. First, we explored 
the influence of social relationships on rumination; therefore, 
we  chose social rejection, which is one of the most important 

https://doi.org/10.3389/fpsyg.2023.1264221
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Geng et al. 10.3389/fpsyg.2023.1264221

Frontiers in Psychology 08 frontiersin.org

characteristics in social relationships; however, such data are 
inevitably subjective in nature. Subsequent experiments could 
attempt to use other approaches, such as the construction of social 
networks, to utilize objective data. Second, this study examined the 
relationship between social rejection and rumination from a cross-
sectional perspective, without further exploring the wider 
consequences of rumination on social cognition and relationships. 
Follow-up studies should further explore the possible long-term 
relationship between rumination and rejection with longitudinal 
designs as well as the impact of this vicious circle on depression and 
anxiety. Besides, at the stage of constructing the functional 
connectivity matrix, we excluded negative values as their meaning 
was unclear, which could have resulted in the loss of valuable 
information. Finally, the results of this study inspired us to consider 
new approaches to intervening rumination from a social 
perspective. Future research could explore the effectiveness and 
feasibility of interventions, such as providing mental health 
education and social support, offering training in emotion 
regulation skills and social skills, and implementing socio-
emotional interventions.

5. Conclusion

This study was the first to develop a network capable of 
predicting rumination scores that was trained with resting-state 
functional connectivity data from a healthy population. We found 
that the functional connectivity among the DMN, DAN, FPCN 
and SMN contributed strongly to the predictive model. 
We  explored the relationship between social rejection 
and rumination, demonstrating that the experience of rejection 
may lead to rumination. These findings enhance understanding 
of the impact of social rejection and can inform the 
development of interventions for rumination from a social 
cognitive perspective.
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