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Objective: Much of psychological research has suffered from small sample sizes 
and low statistical power, resulting in unstable parameter estimates. The Bayesian 
approach offers a promising solution by incorporating prior knowledge into statistical 
models, which may lead to improved stability compared to a frequentist approach.

Methods: Simulated data from four populations with known bivariate correlations 
(ρ  = 0.1, 0.2, 0.3, 0.4) was used to estimate the sample correlation as samples 
were sequentially added from the population, from n  =  10 to n  =  500. The impact 
of three different, subjectively defined prior distributions (weakly, moderately, and 
highly informative) was investigated and compared to a frequentist model.

Results: The results show that bivariate correlation estimates are unstable, and that 
the risk of obtaining an estimate that is exaggerated or in the wrong direction is 
relatively high, for sample sizes for below 100, and considerably so for sample sizes 
below 50. However, this instability can be constrained by informative Bayesian priors.

Conclusion: Informative Bayesian priors have the potential to significantly reduce 
sample size requirements and help ensure that obtained estimates are in line 
with realistic expectations. The combined stabilizing and regularizing effect of 
a weakly informative prior is particularly useful when conducting research with 
small samples. The impact of more informative Bayesian priors depends on one’s 
threshold for probability and whether one’s goal is to obtain an estimate merely 
in the correct direction, or to obtain a high precision estimate whose associated 
interval falls within a narrow range. Implications for sample size requirements and 
directions for future research are discussed.
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1. Introduction

It is well known that many findings in psychological research are not replicable, due in large 
to small sample sizes and insufficient statistical power (Maxwell et al., 2015; Anderson and 
Maxwell, 2017; Szucs and Ioannidis, 2017; Tackett et al., 2019; Nosek et al., 2022). A large survey 
of over twelve thousand estimated effect sizes from the psychological literature found that only 
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8% of the included studies were adequately powered (Stanley et al., 
2018), and there has been little to no apparent increase in statistical 
power during the last six decades, despite a continuous flow of 
publications emphasizing the importance of adequate power 
(Sedlmeier and Gigerenzer, 1989; Rossi, 1990; Vankov et al., 2014; 
Smaldino and McElreath, 2016).

Low-powered studies and small sample sizes pose several 
challenges. For one, they are less likely to detect a true effect, resulting 
in an increased rate of false negatives. When true effects are detected, 
the effect sizes tend to be exaggerated, and a statistically significant 
finding in a low-powered study is more likely to be a false positive 
than a statistically significant finding in a high-powered study (Fraley 
and Vazire, 2014; Brysbaert, 2019). Furthermore, small sample sizes 
result in unstable estimates that rapidly fluctuate in magnitude and 
even direction as additional samples are added. This notorious 
instability has been referred to as the “sea of chaos” (Lakens and Evers, 
2014), and can result in findings that while statistically significant are 
in fact in the wrong direction (Gelman and Carlin, 2014; Klein et al., 
2018). This “chaos” is not just associated with parameter estimates; 
others have observed similar properties of p-values, though labeling 
it “fickleness” rather than “chaos” (Halsey et al., 2015; Halsey, 2019).

A relevant question, then, is when does chaos end and stability 
begin? In the case of bivariate correlations, Schönbrodt and Perugini 
(2013) sought to answer just that using Monte Carlo simulations. The 
authors simulated a bivariate Gaussian distribution of N = 1,000,000 
and a specified population correlation, ρ , then drew 100,000 bootstrap 
samples, each of n = 1,000. For every bootstrap sample they calculated 
the sample correlation, ρ



, from n = 20 to n = 1,000, adding a single 
observation at each step. This procedure makes it possible to follow 
the “trajectory” of ρ



 as the sample size increases. The authors defined 
a Corridor of Stability (COS) around ρ  within which all estimated 
sample correlations are deemed acceptable, based on an effect size 
measure, Cohen’s q, that only depends on sample size (e.g., Rosnow 
and Rosenthal, 2003). Using their method, chaos ends at the Point of 
Stability (POS): The sample size at which the trajectory of the sample 
correlation does not leave the COS. The authors examined different 
values of ρ  and different widths of the COS and concluded that in 
typical circumstances a reasonable trade-off between accuracy and 
confidence is achieved when the sample size approaches 250. They 
also note that there are few occasions where it is justifiable to go below 
n = 150.

For various reasons it may not always be feasible to recruit 250 or 
even 150 participants (Finkel et al., 2017). The target population could 
be small or difficult to access, such as in forensic settings (Dumas-
Mallet et al., 2017; Pedersen et al., 2021), or the phenomenon might 
be expensive to measure, such as in neuroscientific research (Mar 
et al., 2013). A promising solution to the challenge of small sample 
research, and one that has steadily gained traction in psychological 
research (Andrews and Baguley, 2013), is the Bayesian approach. 
Among the more attractive benefits of this approach is that Bayesian 
hypothesis testing allows researchers quantify evidence in favor of 
both the null hypothesis and any alternative hypothesis. Moreover, 
Bayesian parameter estimation allows researchers to make genuine 
probabilistic statements about parameter estimates that are not 
conditioned on hypothetical future replications, as is the case in 
frequentist estimation. As such, a Bayesian approach makes it possible 
to avoid many of the issues stemming from the routine use of p-values 
with arbitrary cutoffs (Wasserstein and Lazar, 2016; Wasserstein et al., 

2019). For a more in-depth introduction to Bayesian statistics in the 
context of psychological research, see Wagenmakers et al. (2018).

Furthermore, Bayesian estimation in small samples has several 
advantages. One major advantage is that unlike maximum likelihood 
estimation, Bayesian estimation does not assume large samples, and 
therefore a Bayesian model should result in estimates comparable to 
a maximum likelihood model but using less data (Hox et al., 2012; van 
de Schoot et al., 2015). Moreover, each parameter in a Bayesian model 
is assigned a prior distribution that is generally chosen so that 
impossible values cannot occur (Hox, 2020). The prior can also 
incorporate knowledge from previous research or from expert 
judgment. For instance, if previous research suggests that the bivariate 
correlation between scores on two personality measures should 
be positive, a prior can be constructed that gives more credibility to 
positive rather than negative estimates. Such a prior should, in theory, 
decrease the risk of reporting an estimate that is in the wrong 
direction; committing a Type S (for sign) error.

A prior can also be  constructed that gives less credibility to 
extreme values, which should increase precision further and decrease 
the risk of reporting exaggerated estimates; committing a Type M (for 
magnitude) error (Gelman and Carlin, 2014). Another advantage is 
that the sample size does not have to be determined a priori. With the 
Bayesian approach, one can simply keep adding samples until a 
desired threshold is reached, without having to worry about 
complicated p-value adjustments (Rouder, 2014). Finally, the Bayesian 
approach also provides a more intuitive framework for interpreting 
statistical results. Rather than relying on p-values and null-hypothesis 
significance tests, Bayesian models produce a posterior distribution 
that can be directly interpreted as the degree of belief in the hypothesis 
of interest.

Since the prior influences the estimate, especially at small sample 
sizes, the choice of prior remains a contentious issue (Stefan et al., 
2020). While the use of informative Bayesian priors can outperform 
frequentist approaches in terms of model accuracy and power, naively 
using a Bayesian approach can lead to worse performance (Smid et al., 
2020; Zitzmann et al., 2021a,b). Ideally, prior elicitation and selection 
should be seen as any other aspect of the research process: It should 
be backed by theory, well described, and justified in the context of the 
research question (Baldwin and Fellingham, 2013; Smid et al., 2020). 
As Stefan et al. (2020) notes, however, there have been few efforts at 
prior elicitation in psychological research to date, and it is difficult to 
know a priori how different priors will affect one’s parameter estimates. 
Knowing how much a specific prior influence the sample size required 
to, for instance, obtain an estimate in the correct direction or reach a 
certain threshold for stability is especially valuable in research contexts 
where recruitment is expensive or otherwise challenging.

Simulation-based research can aid prior elicitation by examining 
how much impact various priors have on parameter estimates, thus 
providing some initial guidelines for choosing a suitable Bayesian 
prior. As an example, previous simulation work focused on 
multilevel models has shown that informative Bayesian priors can 
produce more accurate estimates compared to a maximum 
likelihood-based approach, particularly under problematic 
conditions, and that Bayesian estimates are highly dependent on the 
choice of prior distribution (Zitzmann et al., 2015). The current 
study will build upon the work by Schönbrodt and Perugini (2013) 
and examine the impact of a Bayesian statistical approach to 
bivariate correlations. Specifically, the current study will investigate 
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the sample size required to conclude, with different degrees of 
confidence, for different values of ρ , and using different Bayesian 
priors, that:

 1. An estimate is in the correct direction
 2. An estimate is robustly different from zero
 3. An estimate is within an acceptable range

The first aim relates to the risk of committing a Type S error, and 
since only positive values of ρ  will be used in the current study it is 
defined as the sample size at which a specific proportion of estimates are 
above zero. The second aim is related to the traditional notion of 
statistical power and is defined as the sample size at which a specific 
proportion of the lower bound of the associated 66, 90% or 95% interval 
is above zero. The third aim concerns the precision of obtained estimates 
and the risk of committing a Type M error and is defined here in two 
ways. First, as the sample size at which a specific proportion of estimates 
fall inside the COS, and second, as the sample size at which a specific 
proportion of the associated interval falls inside the COS. It should 
be noted that these definitions differ slightly from Schönbrodt and 
Perugini (2013), who focused the sample size at which the estimate does 
not leave the COS again. The definitions used in the current study does 
not preclude the estimate or interval bounds from leaving the COS 
again, but one can instead decide on a threshold for the probability that 
they do. Finally, since most previous simulation studies did not directly 
compare Bayesian and frequentist approaches (van de Schoot et al., 
2017), the current study will include frequentist models that will serve 
as a point of reference for comparisons.

Due to the computational demands of running Monte Carlo 
simulations with Bayesian models, the different ρ  will be limited to 
0.1, 0.2, 0.3, and 0.4. A ρ  of 0.2 is in line with previous estimates of the 
average effect size in psychology (Richard et al., 2003; Stanley et al., 
2018), and the range considered is in line with newer guidelines for 
what constitutes small, medium, and large effect sizes (Gignac and 
Szodorai, 2016; Funder and Ozer, 2019). Furthermore, the maximum 
sample size will be constrained to 500, since the influence of Bayesian 
priors is expected to diminish as the sample size increases (van de 
Schoot et al., 2015; Stefan et al., 2020).

2. Materials and methods

2.1. Data generation procedure

The Monte Carlo simulation approach used in the current study 
largely mirrors that used by Schönbrodt and Perugini (2013), with two 
notable exceptions. First, the generation of bootstrap samples from the 
simulated population data proved to be a significant computational 
bottleneck. Second, due to the non-trivial computational demands of 
Markov chain Monte Carlo (MCMC) sampling for the Bayesian 
models, the number of bootstrap replications had to be limited to 
10,000. To ameliorate these issues, all necessary data was generated 
and saved to disk prior to running the models, according to the 
following procedure:

 1. Set the outer seed and generate one million rows of bivariate 
normal data x  and y with a specified correlation ρ . This is the 
population data.

 2. Set the inner seed and randomly select and remove an initial 10 
samples from the population data. Save samples to disk.

 3. Set the inner seed and randomly select an additional sample 
from the remaining population data. Add to the previous 
samples and save to disk.

 4. Repeat step 3 until the sample size is 500.
 5. Repeat steps 1–4 10,000 times. These are the 

bootstrap replications.
 6. Repeat steps 1–5 for each of ρ  = 0.1, 0.2, 0.3, and 0.4.

By setting the outer seed depending on ρ , the same population 
data will always be generated in each bootstrap replication, while 
setting the inner seed depending on both ρ  and the current bootstrap 
replication ensures that different samples and thus a different 
trajectory is generated during each bootstrap replication. The 
population data was generated using the mvrnorm function from the 
R package MASS (version 7.3–57) running on R version 4.2.1. Each 
individual data file was saved in JavaScript Object Notation (JSON) 
format, as this is the preferred data format for CmdStan (see the 
following section). With 491 different sample sizes (n = 10 to n = 500), 
four different ρ , and 10,000 replications, the outlined procedure 
generated a total of 19.64 million JSON files, which took approximately 
100 h on a 12 CPU core Linux workstation.

2.2. Bayesian models

A linear regression approach with a Gaussian likelihood was used 
to estimate bivariate correlations. A Normal (0, 2.5) prior was used for 
β  and a Cauchy (0, 1) prior was used for σ . The estimated correlation 
was constrained to fall between −1 and 1 by putting a Beta (α , β) prior 
on the transformed parameter (β  + 1)/2 (Gelman et al., 2014, p. 317). 
The prior could then be made more or less informative by varying the 
values of α  and β .

Three sets of priors, each reflecting three levels of informativeness, 
were used in the current study. The first, a Beta (2, 2) prior, was labeled 
“weakly informative.” Since it was centered around zero regardless of 
ρ , with equally diminishing probability mass on either side giving less 
credibility to extreme values, it should have a small regularizing effect 
on the estimate. The remaining two sets of priors, labeled “moderately 
informative” and “highly informative,” respectively, were constructed 
such that the mode of the distribution was centered around ρ . They 
differed in width and thus in how much credibility was assigned to 
values away from ρ , with the moderately informative prior having a 
wider distribution than the highly informative. The priors along with 
their respective α  and β  values are visualized in Figure 1.

It is important to note that “levels of informativeness” is used here 
in a similar fashion to “degree of prior knowledge.” Thus, the more 
informative priors outlined above reflect a state of more knowledge 
about the true distribution of ρ . A prior can also be informative in the 
sense of having a specific impact on the posterior without reflecting 
actual knowledge about the parameter. A narrow prior centered around 
−0.2, for instance, could be considered highly informative, but would 
not reflect prior knowledge.

All Bayesian models were specified using Stan (v2.31.0) and 
compiled into C++ executable programs using CmdStan (Lee et al., 
2017). Sampling was carried out using four chains of 5,000 MCMC 
iterations each, after discarding 1,000 warm-up iterations. Step size 
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was set to 0.05; all other settings remained at default values. Diagnostic 
information and posterior summaries — the posterior mean along 
with 66, 90 and 95% intervals based on percentiles — were obtained 
using CmdStan utility functions. A 95% interval was included due its 
close association with frequentist statistics, whereas the 90 and 66% 
intervals may be  interpreted as being “very likely” and “likely,” 
respectively, to contain the true estimate (Mastrandrea et al., 2011).

2.3. Frequentist models

A custom C++ program, using the Armadillo library for linear 
algebra and scientific computing (Sanderson and Curtin, 2016) and 
JSON for Modern C++,1 was written to efficiently estimate the sample 
correlation coefficient. The program takes a JSON file as input and 

1 https://json.nlohmann.me/

outputs the estimated sample correlation as well as 66, 90 and 95% 
intervals based on percentiles calculated using the Fisher 
z-transformation.

2.4. Monte Carlo simulation procedure

In total, 58.91 million Bayesian models and 19.64 million frequentist 
were estimated. All models were run as C++ executable programs via 
Linux shell scripts that supplied the JSON data files in parallel using 
GNU Parallel (Tange, 2011). Computations for the Bayesian models 
were carried out on a 32 CPU core node on the Tetralith high-
performance computing (HPC) cluster located at the National 
Supercomputer Centre, Linköping University, Sweden.2 The entire 
computational environment required for running the simulations was 

2 https://www.nsc.liu.se/

FIGURE 1

Overview of Bayesian priors. α  and β  indicate the parameters used for each prior, dashed lines indicate the population correlation coefficient ρ .
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packaged into a Singularity container,3 which is an open source, secure 
way to capture and distribute software and computational environments 
(Kurtzer et al., 2017). The Singularity container was built locally on a 
Linux workstation and uploaded to the Tetralith HPC cluster.

Simulations took approximately 75 h to run for each ρ  and prior, 
with a total runtime of approximately 900 h (28 000 core hours), for the 
Bayesian models. All Gelman-Rubin convergence statistics (R



) 
were < 1.00, indicating that all MCMC chains mixed well (Vehtari et al., 
2021), and the average effective sample size (ESS) was 16,575, well above 
the recommended cutoff of 400 (Zitzmann and Hecht, 2019). Detailed 
MCMC diagnostic information is available in the Supplementary material. 
The total runtime for the frequentist models was negligible in comparison 
and was carried out locally on a 12 CPU core Linux workstation.

3. Results

The chaotic nature of estimates at small sample sizes is illustrated 
in Figure 2, which traces every 50th simulated trajectory for ρ = 0 2.  
for all four models. Three extreme trajectories are highlighted: the 

3 https://singularity.hpcng.org

trajectory with the highest estimate (red line), lowest estimate (green 
line), and the trajectory with the largest difference between the highest 
and lowest estimate (blue line).

The red line begins with an estimate of about 0.8 at N = 10 — 
remarkably higher than the actual ρ  of 0.2 — then tapers off toward ρ . 
The green line shows the opposite, with the estimate fluctuating between 
around −0.6 and − 0.4 at sample sizes up to 20, before slowly 
approaching ρ . The blue line shows how estimates can fluctuate rapidly 
and dramatically from negative to positive. Here, the estimate changes 
from about −0.4 to about 0.5 with just a small increase — from 10 to 20 
— in sample size. While the overall pattern of the trajectories is the same 
for both the frequentist and the Bayesian models, Figure 2 illustrates the 
impact the more informative Bayesian priors have on restricting the 
range of possible estimates at sample sizes up to around 100.

3.1. Sample size required to obtain an 
estimate in the correct direction

The proportion of estimates in the correct direction was, as 
expected, highly influenced by ρ , and the difference in required sample 
size when moving from ρ  = 0.2 to ρ  = 0.1 was pronounced. Interestingly, 
the proportion of estimates in the correct direction decreased slightly 

FIGURE 2

Examples of extreme trajectories. The colored lines highlight three simulated trajectories to illustrate the chaotic nature of estimates at small sample 
sizes. (A) Results for all sample sizes. (B) Results up until N  =  100.
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for highly informative model, as sample size increased from 10 to 
around 100. Differences between the frequentist and weakly informative 
models were negligible across all sample sizes and effect sizes (Figure 3).

Since obtaining an estimate in the correct direction is essential, 
most researchers will likely aim for a higher probability. Assuming a 
typical effect size of ρ  = 0.2 and 95% probability of obtaining an 
estimate in the correct direction, the required sample size was 66 for 
the frequentist and weakly informative models, 35 (47% decrease) for 
the moderately informative model, and 10 or less (85% decrease or 
more) for the highly informative model. If instead assuming a smaller 
effect size of ρ  = 0.1, all else equal, the required sample sizes were 269 
for the frequentist and weakly informative models, 239 (11% decrease) 
for the moderately informative model, and 200 (26% decrease) for the 
highly informative model. An overview of sample sizes required for 
obtaining specific proportions of estimates in the correct direction, for 
each population ρ  and model, is presented in Table 1.

3.2. Sample size required to obtain an 
estimate robustly different from zero

In contrast to differences in the proportion of estimates in the 
correct direction, differences in the proportion of estimates robustly 
different from zero were most pronounced at medium to large effect 

sizes. The differences between the frequentist and weakly informative 
models were small, although the regularizing effect of the weakly 
informative prior resulted in the weakly informative models always 
requiring a slightly larger sample size than the frequentist models to 
obtain the same proportion of estimates robustly different from zero. 
As expected, sample sizes for the frequentist model resembled those 
from a frequentist power analysis.4

Assuming a typical effect size of ρ  = 0.2 and 80% probability of 
the estimate being robustly different from zero — akin to a statistical 
power of 80% in the frequentist approach — the required sample sizes 
were 190, 205 (8% increase), 186 (2% decrease), and 163 (14% 
decrease) for the frequentist, weakly, moderately, and highly 
informative models, respectively. If instead assuming ρ  = 0.1, all 
models required sample sizes >500, and if assuming ρ  = 0.3, the 
required sample sizes were 85, 90 (6% increase), 75 (12% decrease), 
and 53 (38% decrease) for the frequentist, weakly, moderately, and 
highly informative models, respectively. An overview of sample size 
required for obtaining different proportions of estimates robustly 
different from zero, using a 95% interval, is presented in Table 2. 

4 Using, for instance, inverse tangent approximation: N atan= + × − ( )( )( )1 2ρ β ρ/ .

FIGURE 3

Proportion of sample estimates above zero for each population correlation coefficient ρ . Lines represent the aggregated proportion across 10,000 
replications for each model. (A) Results for all sample sizes. (B) Results up until N  =  100.
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Details for 90 and 66% intervals are presented in 
Supplementary Figures S1, S2 as well as Supplementary Tables S3, S4.

3.3. Sample size required to obtain an 
estimate within an acceptable range

3.3.1. Proportion of estimates within the COS
The impact of informative Bayesian priors on the proportion 

of estimates inside the COS was relatively pronounced at smaller 
sample sizes, but quickly tapered off as sample size increased 

(Figures  4, 5). The regularizing effect of a weakly informative 
prior seems to result in weakly informative models having a 
slightly higher proportion of estimates inside the COS, compared 
to the frequentist models, but again mainly for sample sizes up 
until around 50 (Figure  5). For the widest COS (w = 0.2), the 
proportion of estimates inside the COS never dropped below 0.8 
for either the moderately or highly informative models. 
Furthermore, a slight tendency toward a lower proportion of 
estimates inside the COS with increasing ρ  was observed for the 
Bayesian models (Figure 5A). Note also how, again, the proportion 
of estimates inside the COS decreased slightly between sample 

TABLE 1 Sample size required for obtaining a specific proportion (P) of estimates in the correct direction, for different ρ and models.

ρ P Model

Frequentist Weakly informative Moderately 
informative

Highly informative

0.1 0.80 70 70a 35 (−50%) < 10 (−86%)b

0.2 0.80 20 19 (−5%) < 10 (−50%)b < 10 (−50)b

0.3 0.80 10 10a < 10b < 10b

0.4 0.80 < 10b < 10b < 10b < 10b

0.1 0.90 158 157 (−1%) 135 (−15%) 10 (−94%)

0.2 0.90 42 41 (−2%) 10 (−76%) < 10 (−76%)b

0.3 0.90 19 18 (−5%) < 10 (−47%)b < 10 (−47%)b

0.4 0.90 11 10 (−9%) < 10 (−9%)b < 10 (−9%)b

0.1 0.95 269 268a 239 (−11%) 189 (−30%)

0.2 0.95 66 66a 35 (−47%) < 10 (−85%)b

0.3 0.95 30 30a < 10 (−67%)b < 10 (−67%)b

0.4 0.95 17 16 (−6%) < 10 (−41%)b < 10 (−41%)b

Percentage difference from the frequentist model is presented within parenthesis. aLess than 1% difference from frequentist model; no percentage change calculated. bRequired sample size less 
than 10; numbers represent upper bound.

TABLE 2 Sample size required for obtaining a specific proportion (P) of estimates robustly different from zero, using a 95% interval, for different ρ and 
models.

ρ P Model

Frequentist Weakly informative Moderately 
informative

Highly informative

0.1 0.80 > 500 > 500a > 500a > 500a

0.2 0.80 190 205 (+8%) 186 (−2%) 163 (−14%)

0.3 0.80 85 90 (+6%) 75 (−12%) 53 (−38%)

0.4 0.80 46 50 (+9%) 34 (−26%) 12 (−74%)

0.1 0.90 > 500 > 500a > 500a > 500a

0.2 0.90 256 272 (+6%) 253 (−1%) 228 (−11%)

0.3 0.90 113 119 (+5%) 103 (−9%) 78 (−31%)

0.4 0.90 60 64 (+7%) 49 (−18%) 24 (−60%)

0.1 0.95 > 500 > 500a > 500a > 500a

0.2 0.95 313 332 (+6%) 309 (−1%) 285 (−9%)

0.3 0.95 136 144 (+6%) 127 (−7%) 104 (−24%)

0.4 0.95 73 78 (+7%) 63 (−14%) 37 (−49%)

Percentage difference from the frequentist model is presented within parenthesis. Robustly different from zero is defined here as the lower bound of the associated interval being above zero. 
aRequired sample size above 500 for all models; no percentage change calculated.
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sizes 10 to 100 for the moderately and highly informative models 
(Figure 5A).

Assuming a typical effect size of ρ = 0 2.  and accepting only 
small fluctuations (w = 0.1) while aiming for 80% probability of the 
estimate being inside the COS, the required sample sizes were 158, 
159 (1% increase), 139 (12% decrease), and 10 (94% decrease) for 
the frequentist, weakly, moderately, and highly informative 
models, respectively. If one wants to be  more certain — 95% 
probability that the estimate falls inside the COS — while still 
tolerating only small fluctuations (w = 0.1), the required sample 
sizes were 363, 383 (6% increase), 364 (less than 1% increase), and 
319 (12% decrease) for the frequentist, weakly, moderately, and 
highly informative models, respectively. An overview of the sample 
size required for different ρ , proportions, and COS widths is 
presented in Table 3.

3.3.2. Proportion of intervals within the COS
There was a gradual, S-shaped increase in the proportion of 

intervals within the COS for the Bayesian models, and a sharp and 
linear increase for the frequentist models (Figure 6). Zooming in, the 
sharp increase for the frequentist models appears to always begin at 
the same sample size for any given w, regardless of ρ . The proportion 
of intervals within the COS is, on the other hand, higher at smaller ρ  
for the Bayesian models, at any given sample size (Figure 7). The 
proportion of intervals within the COS is becomes highest for the 
frequentist models when ρ  = 0.4 as sample size approaches 500 
(Figure 7, final panel of each row).

Overall, the weakly informative model always required a higher 
sample size than the frequentist model, and reductions in required sample 
size was primarily seen for the highly informative models when ρ  = 0.1 
and 0.2. In several cases the required sample size was above 500. For 

FIGURE 4

Proportion of sample estimates within different widths (w) of the corridor of stability (COS) for each population correlation coefficient ρ . Lines 
represent the aggregated proportion across 10,000 replications for each model. (A) w  =  0.1. (B) w  =  0.15. (C) w  =  0.2.
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instance, if accepting only small fluctuations (w = 0.1) while aiming for 
80% probability of the 95% interval being inside the COS, the required 
sample was above 500 for all models, regardless of ρ . Widening the COS 
to w = 0.15 still required a sample size between 450 and 500, with the 
weakly informative model always requiring a larger (3–7%) sample than 
the frequentist model. For the widest COS width, w = 0.20, assuming a 
typical effect size of ρ = 0 2.  and still aiming for 80% probability of the 
95% interval being inside the COS, the required sample sizes were 262, 
281 (7% increase), 263 (less than 1% increase), and 238 (9% decrease) for 
the frequentist, weakly, moderately, and highly informative models, 
respectively. An overview of the sample size required for different ρ , 
proportions, and COS widths is presented in Table 4. Details for 90 and 
66% intervals are presented in Supplementary Figures S3, S4 as well as 
Supplementary Tables S5, S6.

4. Discussion

The current study used Monte Carlo simulations to examine 
the impact of three different Bayesian priors, with varying degrees 
of informativeness, on the sample size required to conclude that an 
estimate is (1) in the correct direction, (2) robustly different from 
zero, and (3) within an acceptable range. The results showed that 
while Bayesian priors can have an appreciable impact, the impact 
differs for each of the three aims and depends to a large degree on 
ρ  as well as on one’s threshold for probability and precision. 
Overall, and in line with expectations (van de Schoot et al., 2015; 
e.g., Stefan et  al., 2020), the stabilizing effect of informative 
Bayesian priors was primarily observed at small sample sizes. 
Previous work has documented a robust negative correlation 

FIGURE 5

Proportion of sample estimates within different widths (w) of the corridor of stability (COS) for each population correlation coefficient ρ . Lines 
represent the aggregated proportion across 10,000 replications for each model. Only showing sample sizes up to N  =  100. (A) w  =  0.1. (B) w  =  0.15. 
(C) w  =  0.2.
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between sample size and effect size in psychological research, 
indicating that studies using small sample sizes tend to report 
exaggerated effects (Kühberger et al., 2014). The results from the 
current study, together with previous simulation work (Schönbrodt 
and Perugini, 2013), lends further credence to this observation; 

small sample size studies are indeed sailing in a “sea of chaos” 
(Lakens and Evers, 2014). As illustrated by Figure 2, the risk of 
committing a Type S error — reporting an estimate in the wrong 
direction — or a Type M error — reporting an exaggerated estimate 
— remains high until sample sizes approach 100. As Figure  2 

TABLE 3 Sample size required for obtaining a specific proportion (P) of estimates within a specific width (w) of the corridor of stability, for different ρ 
and models.

ρ P w Model

Frequentist Weakly 
informative

Moderately 
informative

Highly informative

0.1 0.80 0.20 44 38 (−14%) < 10 (−77%)b < 10 (−77%)b

0.2 0.80 0.20 44 39 (−11%) < 10 (−77%)b < 10 (−77%)b

0.3 0.80 0.20 45 42 (−7%) < 10 (−78%)b < 10 (−78%)b

0.4 0.80 0.20 45 44 (−2%) 10 (−78%) < 10 (−78%)b

0.1 0.80 0.15 75 69 (−8%) 35 (−53%) < 10 (−87%)b

0.2 0.80 0.15 75 73 (−3%) 44 (−41%) < 10 (−87%)b

0.3 0.80 0.15 76 78 (+3%) 54 (−29%) < 10 (−87%)b

0.4 0.80 0.15 76 83 (+9%) 61 (−20%) < 10 (−87%)b

0.1 0.80 0.10 163 158 (−3%) 137 (−16%) 10 (−94%)

0.2 0.80 0.10 158 159 (+1%) 139 (−12%) 10 (−94%)

0.3 0.80 0.10 169 182 (+8%) 158 (−7%) 118 (−30%)

0.4 0.80 0.10 166 193 (+16%) 174 (+5%) 134 (−19%)

0.1 0.90 0.20 69 65 (−6%) 10 (−86%) < 10 (−86%)b

0.2 0.90 0.20 70 69 (−1%) 36 (−49%) < 10 (−86%)b

0.3 0.90 0.20 71 73 (+3%) 46 (−35%) < 10 (−86%)b

0.4 0.90 0.20 70 77 (+10%) 54 (−23%) < 10 (−86%)b

0.1 0.90 0.15 123 119 (−3%) 85 (−31%) < 10 (−92%)b

0.2 0.90 0.15 118 118a 94 (−20%) 10 (−92%)

0.3 0.90 0.15 124 130 (+5%) 108 (−13%) 10 (−92%)

0.4 0.90 0.15 123 141 (+15%) 123a 10 (−92%)

0.1 0.90 0.10 276 273 (−1%) 246 (−11%) 203 (−26%)

0.2 0.90 0.10 260 266 (+2%) 244 (−6%) 204 (−22%)

0.3 0.90 0.10 284 301 (+6%) 284a 242 (−15%)

0.4 0.90 0.10 267 314 (+18%) 295 (+10%) 263 (−1%)

0.1 0.95 0.20 96 94 (−2%) 64 (−33%) < 10 (−90%)b

0.2 0.95 0.20 95 97 (+2%) 71 (−25%) < 10 (−89%)b

0.3 0.95 0.20 99 106 (+7%) 83 (−16%) < 10 (−90%)b

0.4 0.95 0.20 100 114 (+14%) 97 (−3%) < 10 (−90%)b

0.1 0.95 0.15 173 169 (−2%) 146 (−16%) < 10 (−94%)b

0.2 0.95 0.15 162 168 (+4%) 142 (−12%) 96 (−41%)

0.3 0.95 0.15 174 185 (+6%) 162 (−7%) 121 (−30%)

0.4 0.95 0.15 174 196 (+13%) 184 (+6%) 146 (−16%)

0.1 0.95 0.10 396 400 (+1%) 377 (−5%) 326 (−18%)

0.2 0.95 0.10 363 383 (+6%) 364a 319 (−12%)

0.3 0.95 0.10 393 436 (+11%) 416 (+6%) 380 (−3%)

0.4 0.95 0.10 370 467 (+26%) 444 (+20%) 399 (+8%)

Percentage difference from the frequentist model is presented within parenthesis. aLess than 1% difference from frequentist model; no percentage change calculated. bRequired sample size less 
than 10; numbers represent upper bound.
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further illustrates, however, this instability at small sample sizes 
can be constrained by informative Bayesian priors.

4.1. Weakly informative priors

The impact of an informative Bayesian prior obviously depends 
on its degree of informativeness. So-called weakly informative priors 
do not include any domain-specific information and are typically 
designed to have a small regularizing effect on the estimate. This 
regularizing effect is similar maximum likelihood approaches to 
regularization or penalization, which makes them desirable as a kind 
of “default” prior (Cole et al., 2014; Gelman et al., 2017). Using a 
weakly informative prior, thus, can be seen a way to “let the data 
speak” while also ruling out impossible or implausible values, which 

can take over the posterior distribution when the sample size is small 
(Gelman, 2009, p. 176).

Using a weakly informative prior had no impact on obtaining an 
estimate in the correct direction, and thus no impact on the risk of 
committing a Type S error, compared to a frequentist model. In terms 
of obtaining an estimate robustly different from zero, however, the 
regularizing effect of the weakly informative prior came into play. The 
weakly informative models always required a slightly larger sample size 
the frequentist models to obtain the same proportion of estimates 
robustly different from zero. At the same time, as shown in Figure 5, the 
weakly informative models had a higher proportion of estimates inside 
the COS compared to the frequentist models, thus decreasing the risk 
of committing a Type M error, at sample sizes up to around 50. As 
sample size increased this effect diminished, however, with the weakly 
informative models instead requiring a slightly larger sample size to 

FIGURE 6

Proportion of 95% intervals within different widths (w) of the corridor of stability (COS) for each population correlation coefficient ρ . Lines represent 
the aggregated proportion across 10,000 replications for each model. (A) w  =  0.1. (B) w  =  0.15. (C) w  =  0.2.
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obtain same proportion of estimates within COS as the frequentist 
models. For a specific and relatively small sample size range, the weakly 
informative models also had a higher proportion of intervals inside the 
COS compared to the frequentist models (Figure 7).

Taken together, a weakly informative prior seems particularly 
useful when conducting research with small sample sizes, given its 
ability to both stabilize and regularize parameter estimates. With 
larger sample sizes the stabilizing effect diminishes, but the 
regularizing effect may still be desirable.

4.2. Moderately and highly informative priors

The impact of the moderately and highly informative priors was 
particularly evident in terms of obtaining an estimate in the correct 

direction, and thus decreasing the risk of a Type S error. Compared to 
the frequentist models, the moderately and in particular the highly 
informative models could reach the same proportion of estimates in 
the correct direction using considerably smaller samples. In terms of 
obtaining an estimate robustly above zero, these more informative 
priors had less impact. Still, an interesting observation was that the 
effect of a moderately and especially a highly informative prior on the 
proportion of estimates robustly above zero was more pronounced for 
larger ρ . In fact, at ρ  = 0.1 and sample sizes up to around 100, the 
proportion of estimates robustly above zero was slightly smaller for the 
moderately and highly informative models compared to the 
frequentist model (Figure  8B). The reason for this is unclear and 
should be investigated in further detail. The impact of the moderately 
and highly informative priors on the proportion of estimates and 
intervals within an acceptable range depended both on ρ  and on the 

FIGURE 7

Proportion of 95% intervals within different widths (w) of the corridor of stability (COS) for each population correlation coefficient ρ . Lines represent 
the aggregated proportion across 10,000 replications for each model. Only showing specific sample sizes. (A) w  =  0.1. (B) w  =  0.15. (C) w  =  0.2.
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COS width; a larger ρ  led to less impact, and a wider COS led to 
higher impact.

Taken together, a moderately or highly informative prior can 
lower the sample size required to obtain a precise estimate, or 
conversely decrease the risk of committing a Type M error at a given 
sample size, but primarily for larger effect sizes and with less precision. 

Some caution is warranted, however, since careful reading of Tables 3, 
4 reveals some unexpected findings. For instance, in Table 3, when 
w = 0.1, the proportion p = 0.95, and looking only at the frequentist 
model, the required sample sizes are 396, 363, 393, and 370 for ρ  = 
0.1, 0.2, 0.3, and 0.4, respectively. It is unclear why the required sample 
size should drop, then increase, then drop again, for increasing values 

TABLE 4 Sample size required for obtaining a specific proportion (P) of 95% intervals within a specific width (w) of the corridor of stability, for different 
ρ and models.

ρ P w Model

Frequentist Weakly 
informative

Moderately 
informative

Highly informative

0.1 0.80 0.20 271 280 (+3%) 261 (−4%) 230 (−15%)

0.2 0.80 0.20 262 281 (+7%) 263a 238 (−9%)

0.3 0.80 0.20 265 301 (+14%) 287 (+8%) 260 (−2%)

0.4 0.80 0.20 264 320 (+21%) 309 (+17%) 284 (8%)

0.1 0.80 0.15 482 496 (+3%) 476 (−1%) 449 (−7%)

0.2 0.80 0.15 472 498 (+6%) 482 (+2%) 451 (−4%)

0.3 0.80 0.15 474 > 500 (+5%)c > 500 (+5%)c 492 (4%)

0.4 0.80 0.15 467 > 500 (+7%)c > 500 (+7%)c > 500 (7%)c

0.1 0.80 0.10 > 500 > 500b > 500b > 500b

0.2 0.80 0.10 > 500 > 500b > 500b > 500b

0.3 0.80 0.10 > 500 > 500b > 500b > 500b

0.4 0.80 0.10 > 500 > 500b > 500b > 500b

0.1 0.90 0.20 333 347 (+4%) 326 (−2%) 292 (−12%)

0.2 0.90 0.20 325 346 (+6%) 332 (+2%) 300 (−8%)

0.3 0.90 0.20 330 371 (+12%) 357 (+8%) 332 (1%)

0.4 0.90 0.20 324 400 (+23%) 387 (+19%) 360 (11%)

0.1 0.90 0.15 > 500 > 500b > 500b > 500b

0.2 0.90 0.15 > 500 > 500b > 500b > 500b

0.3 0.90 0.15 > 500 > 500b > 500b > 500b

0.4 0.90 0.15 > 500 > 500b > 500b > 500b

0.1 0.90 0.10 > 500 > 500b > 500b > 500b

0.2 0.90 0.10 > 500 > 500b > 500b > 500b

0.3 0.90 0.10 > 500 > 500b > 500b > 500b

0.4 0.90 0.10 > 500 > 500b > 500b > 500b

0.1 0.95 0.20 393 412 (+5%) 391 (−1%) 359 (−9%)

0.2 0.95 0.20 380 409 (+8%) 395 (+4%) 365 (−4%)

0.3 0.95 0.20 390 443 (+14%) 428 (+10%) 400 (+3%)

0.4 0.95 0.20 379 477 (+26%) 466 (+23%) 438 (+16%)

0.1 0.95 0.15 > 500 > 500b > 500b > 500b

0.2 0.95 0.15 > 500 > 500b > 500b > 500b

0.3 0.95 0.15 > 500 > 500b > 500b > 500b

0.4 0.95 0.15 > 500 > 500b > 500b > 500b

0.1 0.95 0.10 > 500 > 500b > 500b > 500b

0.2 0.95 0.10 > 500 > 500b > 500b > 500b

0.3 0.95 0.10 > 500 > 500b > 500b > 500b

0.4 0.95 0.10 > 500 > 500b > 500b > 500b

Percentage difference from the frequentist model is presented within parenthesis. aLess than 1% difference from frequentist model; no percentage change calculated. bRequired sample size 
above 500 for all models; no percentage change calculated. cRequired sample size above 500; numbers represent lower bound.
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of ρ . Since the same pattern was observed for both frequentist and 
Bayesian models, issues stemming from MCMC sampling can 
be ruled out.

One possible explanation is that the number of replications was 
too low to obtain stable results. Indeed, the jagged lines seen most 
prominently in Figures  3, 7 suggest that there is still appreciable 
variability in the aggregated estimates. Thus, additional replications 
may have been necessary to obtain more accurate simulation results. 
Previous work by Schönbrodt and Perugini (2013) and Lakens and 
Caldwell (2021) used 100,000 replications, and both offer convincing 
explanations for why such a high number is important. Although 
previous Bayesian simulation studies have used 5,000 replications 
(Brysbaert, 2019), 1,000 replications (Hox et al., 2012; van de Schoot 
et  al., 2015), or even less (Holtmann et  al., 2016), the 10,000 
replications used in the current study may simply not be adequate. 
Unfortunately, 100,000 replications is not feasible within a reasonable 
time frame when estimating Bayesian models using MCMC unless 
substantial computational resources are available.

4.3. Limitations and future directions

Throughout the results section, ρ  = 0.2 has served as a 
reference to the “typical effect size” in psychological research. 

Although based on a substantial amount of previous research 
(Richard et al., 2003; Stanley et al., 2018), it is nevertheless likely 
that this number is overestimated due to publication bias and the 
favoring of large and statistically significant effects (Funder and 
Ozer, 2019). Increased attention has been given to the dangers of 
a culture that demands large effects, and that accepting small 
effects as the norm is critical for reliable and reproducible 
psychological research (Götz et  al., 2021). Thus, it seems 
reasonable to suspect that the typical effect size in psychological 
research lies somewhere between ρ  = 0.1 and ρ  = 0.2. The 
difference in required sample size when moving from ρ  = 0.2 to ρ  
= 0.1 was quite drastic, but unfortunately no intermediate effect 
sizes were included, and thus no intermediate sample size 
requirements are available in the current study. Although the 
sample size requirements for obtaining an estimate either in the 
correct direction or robustly different from zero seem to 
be captured quite well using a nonlinear least squares model with 
an exponential link function, future work should keep this 
limitation in mind.

It should be  reiterated that the priors used in this study were 
constructed and defined as weakly, moderately, and highly informative 
solely by the author. Recent work by Sarma and Kay (2020) shows that 
prior elicitation is influenced by both available information but also 
by statistical ideology and past experience. Interestingly, the authors 

FIGURE 8

Proportion of lower 95% interval bound above zero for each population correlation coefficient ρ . Lines represent the aggregated proportion across 
10,000 replications for each model. (A) Results for all sample sizes. (B) Results up until N  =  100.
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found that while weakly informative priors are popular they are 
implemented inconsistently, and different researchers have their on 
view on what “weakly informative” should entail. They also found that 
researchers find it particularly difficult to elicit priors for complicated 
parameters, such as transformed coefficients. This is further 
complicated by the fact that in more complex models, there are several 
ways informative priors can be  incorporated in order to increase 
stability and parameter accuracy (e.g., Zitzmann et al., 2021a,b). Taken 
together, detailed and transparent reasoning is key whenever Bayesian 
priors are used, even if they are “just” weakly informative. Future work 
should explore the impact of priors tailor-made for specific research 
questions and in specific contexts, utilizing both prior research 
findings, such as from meta-analyses and elicited through expert 
judgment, along with appropriate sensitivity analyses (Lakens and 
Evers, 2014; van de Schoot et al., 2017; Stefan et al., 2020). In addition, 
another avenue worth exploring is the impact of “incorrect” 
informative priors. In the context of the current study, an “incorrect” 
informative prior could be a prior with mode 0 and extremely narrow 
width. While such a prior is not informative in the sense of reflecting 
knowledge about the true parameter distribution, it still likely has a 
strong influence on the posterior distribution.

The kind of standardized, multivariate normal data used in the 
current study is likely not an accurate reflection of the variability 
present in real psychological data (Smid et  al., 2020). Caution is 
therefore recommended when interpreting the results of the current 
study, and future work may benefit from further investigating the 
impact of Bayesian priors on estimates obtained from non-normal 
data as well as data with outliers (e.g., de Winter et al., 2016). Similarly, 
although not a focus of the current study, the Bayesian approach also 
allows for specifying different likelihood functions. Importantly, it has 
been argued that the prior can only fully be understood in the context 
of the likelihood, at least when using default priors such as weakly 
informative ones (Gelman et  al., 2017). A Student’s T likelihood 
(Lange et  al., 1989), for instance, may be  particularly suitable for 
achieving more robust estimates when outliers are present.

The focus of the current work has been the bivariate correlation. 
Although a simple model, it forms the foundation of several more 
advanced statistical techniques, including factor analysis, structural 
equation models, and multiple regression (Rodgers and Nicewander, 
1988; Goodwin and Leech, 2006). This ubiquity has led the bivariate 
correlation to be  described as a cornerstone of statistical analysis 
(Olkin and Finn, 1995). Nevertheless, future work should examine the 
impact of Bayesian priors on more sophisticated models. Finally, 
future work may also want to consider other approaches to defining 
an acceptable range, such as using the region of practical equivalence 
(Kruschke, 2018).

4.4. Conclusion

The current study found that bivariate correlation estimates 
were highly unstable, and consequently that the impact of 
informative Bayesian priors was most evident, at sample sizes up 
to around 100. Owing to its combined stabilizing and regularizing 
effect, a weakly informative prior is particularly useful when 
conducting research with small samples. For larger samples, and 
despite the slight increase in required sample size compared to 
frequentist models, its regularizing effect may still prove valuable 

enough to warrant its use. Whether more informative Bayesian 
priors can relax sample size requirements compared to a frequentist 
model is highly dependent on one’s goal, be it obtaining an estimate 
merely in the correct direction or a high precision estimate whose 
associated interval falls within a narrow range, and threshold for 
probability. Still, in settings where small samples are expected, such 
as when participant recruitment is expensive or otherwise difficult, 
using informative Bayesian priors can help ensure that obtained 
estimates are in line with realistic, real-world expectations rather 
than succumbing to chaos.
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