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This paper primarily analyzes the one-parameter generalized logistic (1PGlogit)

model, which is a generalized model containing other one-parameter item

response theory (IRT) models. The essence of the 1PGlogit model is the

introduction of a generalized link function that includes the probit, logit, and

complementary log-log functions. By transforming di�erent parameters, the

1PGlogit model can flexibly adjust the speed at which the item characteristic

curve (ICC) approaches the upper and lower asymptote, breaking the previous

constraints in one-parameter IRT models where the ICC curves were either all

symmetric or all asymmetric. This allows for a more flexible way to fit data

and achieve better fitting performance. We present three simulation studies,

specifically designed to validate the accuracy of parameter estimation for a variety

of one-parameter IRT models using the Stan program, illustrate the advantages of

the 1PGlogit model over other one-parameter IRT models from a model fitting

perspective, and demonstrate the e�ective fit of the 1PGlogit model with the

three-parameter logistic (3PL) and four-parameter logistic (4PL) models. Finally,

we demonstrate the good fitting performance of the 1PGlogit model through an

analysis of real data.

KEYWORDS

Bayesian model evaluation criteria, item response theory, item characteristic curve, one-

parameter generalized logistic models, STAN software

1. Introduction

Latent trait models, also known as item response theory (IRT) models, have gained

widespread application in educational testing and psychological measurement (Lord and

Novick, 1968; van der Linden and Hambleton, 1997; Embretson and Reise, 2000; Baker and

Kim, 2004). These models utilize the probability of a response to establish the interaction

between an examinee’s “ability” and the characteristics of the test items, such as difficulty and

guessing. The focus is on analyzing the pattern of responses rather than relying on composite

or total score variables and linear regression theory. Specifically, IRT aims to model students’

ability by examining their performance at the question level, providing a granular perspective

on each student’s ability based on the unique insights each question offers.

The Rasch model, also known as the one-parameter logistic IRT model, was innovated

by Georg Rasch in 1960 and serves as a strategic tool in psychometrics for evaluating

categorical data. This data includes responses to reading exams or survey questions and

is analyzed in correlation with the trade-off between the respondent’s ability, attitude, or

personality trait and the item’s difficulty (Rasch, 1960). For instance, this model could be

used to determine a student’s level of reading comprehension or gauge the intensity of
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a person’s stance on issues like capital punishment from their

questionnaire responses. Beyond the realms of psychometrics and

educational research, the Rasch model and its derivatives also find

applications in diverse fields such as healthcare (Bezruczko, 2005),

market research (Wright, 1977; Bechtel, 1985), and agriculture

(Moral and Rebollo, 2017).

Within the framework of the Rasch model, the probability of a

specific response–such as right or wrong–is modeled in relation to

the examinee’s ability and the item characteristic. Particularly, the

classical Rasch model models the probability of a correct response

as a logistic function of the discrepancy between the examinee’s

ability and the item difficulty. Typically, the model parameters

depict the proficiency level of examinees and the complexity level of

the items on a continuous latent scale. For instance, in educational

assessments, the item parameter illustrates the difficulty level,

whereas the person parameter represents the ability or attainment

level of the examinee. The higher an individual’s ability relative to

the item difficulty, the higher the probability of a correct response.

In cases where an individual’s ability position equals the item

difficulty level, the Rasch model inherently predicts a 50% chance

of a correct response.

Parallel to the logistic IRTmodels, the normal ogive IRTmodels

utilize the probit function to delineate the relationship between

ability and item response, whereas the logistic IRT model employs

the logit function to depict the same relationship. This constitutes a

fundamental difference between the normal ogive IRT models and

the more frequently utilized logistic IRT models. In fact, the use

of the normal ogive model in the testing context has been further

developed by a number of researchers. Lawley (1943, 1944) was

the first to formally employ the normal ogive model to directly

model binary item response data. Tucker (1946) used the term

“item curve” to indicate the relationship between item response

and ability. The early attempts at modeling binary response data

culminated in the work of Lord (1952, 1953, 1980) who, unlike the

early researchers, treated ability as a latent trait to be estimated and

in doing so, laid the foundation for IRT.

The normal ogive IRT models (Lord, 1980; van der Linden

and Hambleton, 1997; Embretson and Reise, 2000; Baker and Kim,

2004), also known as the one parameter normal ogive model, are

a mathematical model used in the field of psychometrics to relate

the latent ability of an examinee to the probability of a correct

response on a test item. This model, as a component of IRT,

facilitates the design, analysis, and scoring of tests, questionnaires,

and comparable instruments intended for the measurement of

abilities, attitudes, or other variables.

As previously noted, the Rasch model and the one-parameter

normal ogive IRT model are premised upon symmetric functions

to delineate the relationship between ability and item response,

which result in a symmetric ICC. However, in certain contexts,

these symmetric IRT models may not sufficiently capture the

characteristics inherent in the data. These situations necessitate

the utilization of asymmetric IRT models. Several asymmetric IRT

models currently exist, such as the non-parametric Bayesian model,

which constructs the ICC with a Dirichlet process prior (Qin,

1998; Duncan and MacEachern, 2008), and the Bayesian beta-

mixture IRT model (BBM-IRT), which models the ICC with a

flexible finitemixture of beta distribution (Arenson andKarabatsos,

2018). Karabatsos (2016) used the infinite mixture of normal c.d.f

to model ICC, while Luzardo and Rodriguez (2015) constructed

the ICC using the kernel regression method. There are also some

skewed logistic IRT models, such as the logistic positive exponent

(LPE) model and the reflection LPE (RLPE) model (Samejima,

1997, 1999, 2000; Bolfarine and Bazan, 2010; Zhang et al., 2022),

which utilize skewed modifications of the logit links. Moreover,

the positive trait item response model (PTIRM), which employs

the log-logistic, lognormal, and Weibull as link functions to link

the latent trait to the response, is used in some literature (Lucke,

2014; Magnus and Liu, 2018). In addition, the one-parameter

complementary log-log IRT model also yields an asymmetric ICC

(Goldstein, 1980; Shim et al., 2022). Compared to their symmetric

counterparts, asymmetric IRT models can encapsulate a wider

spectrum of data characteristics, particularly when the speed at

which the probability of a positive response changes varies across

different intervals of the latent trait. Furthermore, asymmetric

IRT models are better suited to accommodate data where the

probability of a positive response escalates more rapidly at higher

trait levels and increases more sluggishly at lower trait levels.

These asymmetric models, therefore, have a distinct advantage in

capturing the nuanced dynamics of item responses that do not

adhere strictly to symmetric patterns, thereby providing a more

accurate representation of the interplay between individual ability

and item response. As such, they represent a crucial development

within the IRT field, broadening the applicability of these models

in psychometric analyses and educational measurement.

This article discusses and analyzes the aforementioned one-

parameter IRT models: the Rasch model, the one-parameter

normal ogive IRT model, and the one-parameter complementary

log-log IRT model. We propose a unified model representation

that can encompass all three models through the manipulation of

specific parameter values. In the present paper, our emphasis is

placed on a class of generalized logistic models, introduced initially

by Stukel (1988). This class of link functions is guided by a duo of

parameters, precisely (η1, η2). By modulating the values of (η1, η2),

this class is inclusive of logit, probit, complementary log-log link,

along with an assortment of other symmetric and asymmetric

links as particular instances. This class of models boasts sufficient

versatility to accommodate the fitting of identical or diverse links

to distinct items nested within the IRT model framework. An

additional appealing characteristic of this class streamlines the

execution of Markov chain Monte Carlo (MCMC) sampling from

the posterior distribution via the recently formulated software,

Stan. This research paper encompasses several key aspects.

Firstly, we thoroughly discuss symmetric models such as the

logit and probit models, as well as asymmetric models like the

complementary log-log and generalized logit models, within the

framework of a one-parameter IRT model. Secondly, we employ

different links for different items in our analysis. Thirdly, we utilize

the Stan platform to implement this flexible range of links for

one parameter models and provide the corresponding Stan codes.

By leveraging Stan, we are able to calculate deviance information

criterion (DIC; Spiegelhalter et al., 2002) based on posterior

distribution samples, which can naturally guide the selection of

links and IRT model types. Lastly, through the 2015 computer-

based PISA (Program for International Student Assessment)
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sciences data, we empirically demonstrate that employing different

generalized logit links for different itemsmarkedly improves data fit

compared to traditional logistic, normal ogive and complementary

log-log models, as determined by DIC criteria.

The remainder of this paper is organized as follows. In

Section 2, we review the three one-parameter IRT models and

the generalized logit link function, then introduce the main

model of our study, namely the one-parameter generalized

logistic (1PGlogit) model. In Section 3, we describe the Bayesian

parameter estimation method that we use, discuss its software

implementation, and elaborate on the Bayesian model assessment

criteria we employ to evaluate the model fittings. Section 4 presents

three simulation studies aimed at exploring the accuracy of model

parameter estimation and assessing the fit of the 1PGlogit model

in relation to various other symmetric or asymmetric models. In

Section 5, we conduct an empirical study to validate the practical

utility of the 1PGlogit model. Finally, in Section 6, we provide a

summary of the paper.

2. Item response theory models with
generalized logistic link functions

2.1. Overview of the one-parameter IRT
models

The initial model in the field of IRT can be traced back to

the 1930s, as proposed by Ferguson (1942), Lawley (1943), Mosier

(1940, 1941), and Richardson (1936). It was later improved by Lord

and Novick (1968) into what is now commonly referred to as the

normal ogive model. Suppose we have N students each answering J

items. Let X denote the response variable, and let xij be the response

of the ith student (i = 1, · · · ,N) on the jth item (j = 1, · · · , J).
Here, xij = 1 indicates a correct answer, and xij = 0 indicates

an incorrect one. Within the one-parameter normal ogive (1PNO)

model, the probability of a correct response by the ith student on

the jth item can be expressed as follows:

P(xij = 1|θi,βj) =
∫ θi−βj

−∞

1√
2π

e−
z2

2 dz. (1)

Here, βj is the difficulty parameter of the jth item and θi is the

latent trait of the ith student. A larger βj implies a more difficult

item, and the probability of a correct response increases with the

increasing value of θi. As we can see, the 1PNO model is essentially

a generalized linear model with a probit link.

Although the 1PNO model is quite interpretable and intuitive,

its computation is complicated. In response to this, Rasch proposed

the Rasch model in 1960, which was essentially a generalized linear

model with a logit link. Specifically, the probability of a correct

response in the model can be expressed in the following form:

P(xij = 1|θi,βj) =
exp(θi − βj)

1+ exp(θi − βj)
, (2)

where βj and θi maintain the same interpretations as in the 1PNO

model. In this form, to describe the probability of a student’s

response, it is no longer necessary to compute the cumbersome

integrals, thereby simplifying the calculation.

Both of the models mentioned above possess a symmetrical

item characteristic curve (ICC). However, Shim et al. (2022)

proposed a one-parameter complementary log-log model (CLLM)

which exhibits an asymmetric ICC. The probability of a correct

response in the CLLMmodel can be expressed as follows:

P(xij = 1|θi,βj) = 1− exp{− exp(θi − βj)}, (3)

where βj and θi retain the same interpretations as in the twomodels

discussed earlier. As demonstrated by Shim et al. (2022), the CLLM

possesses the capability to effectively address the guessing behavior

exhibited by examinees in the three-parameter logistic (3PL) model

and, in certain cases, can yield even better results. This implies that

CLLM accounts for the effect of guessing. Essentially, the CLLM is

a generalized linear model with a complementary log-log link.

2.2. Overview of the family of models based
on generalized logit links

Let y be a dichotomous random variable. We assume that y

equals 1 with probability µ(η) and 0 with probability 1 − µ(η),

where η is a linear predictor. Stukel (1988) introduced a class

of generalized logistic models (Glogits), indexed by two shape

parameters λ = (λ1, λ2). Therefore, the Glogits model is controlled

by a strictly increasing non-linear function hλ (η). The specific

expression is as follows:

µ(η) =
exp

{
hλ (η)

}

1+ exp
{
hλ (η)

} , (4)

where the function hλ (η) is defined as follows:

for η > 0
(
µ(η) > 1

2

)
,

hλ (η) =





− log(1− λ1η)

λ1
, λ1 < 0,

η, λ1 = 0,

exp (λ1η) − 1

λ1
, λ1 > 0.

(5)

for η ≤ 0
(
µ(η) ≤ 1

2

)
,

hλ (η) =





log(1− λ2 |η|)
λ2

, λ2 < 0,

η, λ2 = 0,

− exp (λ2 |η|) − 1

λ2
, λ2 > 0.

(6)

As evident from the above equations, the logit link serves as a

special case of Glogits when λ1 = λ2 = 0. Furthermore, Stukel

(1988) revealed that Glogits can be simplified to several other link

functions under certain conditions. For instance, it reduces to a

probit link when λ1 = λ2 ≈ 0.165, a log-log link when λ1 ≈
−0.037 and λ2 ≈ 0.62, a complementary log-log link when λ1 ≈
0.62 and λ2 ≈ −0.037, and a Laplace link when λ1 = λ2 ≈ −0.077.
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2.3. One-parameter generalized logistic IRT
model

According to Glogit models, µ(η) forms a cumulative

distribution function for η, which can be interpreted as the

probability of a correct answer in IRT. Building on the traditional

difficulty and ability parameters in a one-parameter IRT model,

we reintroduce two shape parameters related to the item factors,

denoted as λj = (λ1j, λ2j). Consequently, we can deduce that

the one-parameter generalized logistic model (1PGlogit) can be

articulated as follows:

P(xij = 1|θi,βj,λj) =
exp

{
hλj

(
θi − βj

)}

1+ exp
{
hλj

(
θi − βj

)} . (7)

Furthermore, when θi − βj > 0 (which implies that P(xij =
1|θi,βj,λj) > 1

2 ),

hλj

(
θi − βj

)
=





−
log(1− λ1j(θi − βj))

λ1j
, λ1j < 0,

θi − βj, λ1j = 0,

exp
(
λ1j(θi − βj)

)
− 1

λ1j
, λ1j > 0.

(8)

When θi − βj ≤ 0, which implies that (P(xij = 1|θi,βj,λj) ≤ 1
2 ),

hλj

(
θi − βj

)
=





log(1− λ2j
∣∣θi − βj

∣∣)
λ2j

, λ2j < 0,

θi − βj, λ2j = 0,

−
exp

(
λ2j
∣∣θi − βj

∣∣)− 1

λ2j
, λ2j > 0.

(9)

Specifically, when λ1j = λ2j = 0, the 1PGlogit model reduces

to the Rasch model as shown in Equation (2); when λ1j = λ2j ≈
0.165, the 1PGlogit model becomes the traditional 1PNO model in

Equation (1). This applies when θi − βj ≤ 0, we have

P(xij = 1|θi,βj) =
exp

{
−
exp{0.165

∣∣θi − βj

∣∣} − 1

0.165

}

1+ exp

{
−
exp{0.165

∣∣θi − βj

∣∣} − 1

0.165

} , (10)

when θi − βj > 0, we have

P(xij = 1|θi,βj) =
exp

{
exp{0.165(θi − βj)} − 1

0.165

}

1+ exp

{
exp{0.165(θi − βj)} − 1

0.165

} , (11)

In fact, the CLLM model in Equation (3) is also a special case of

the 1PGlogit model when the two shape parameters are restricted

to λ1j ≈ 0.62 and λ2j ≈ −0.037. Specifically,

when θi − βj ≤ 0,

P(xij = 1|θi,βj) =
exp

{
−
log{1+ 0.037

∣∣θi − βj

∣∣}
0.037

}

1+ exp

{
−
log{1+ 0.037

∣∣θi − βj

∣∣}
0.037

} , (12)

when θi − βj > 0,

P(xij = 1|θi,βj) =
exp

{
exp{0.62(θi − βj)} − 1

0.62

}

1+ exp

{
exp{0.62(θi − βj)} − 1

0.62

} , (13)

To intuitively explore 1PGlogit IRT models, we visualize the

ICCs of 1PGlogit IRT models with different λ1j and λ2j in Figure 1,

where the difficulty parameter b is set as 0. It can be observed

from Figure 1 that parameters λ1j and λ2j control the convergence

speed of the tail of 1PGlogit. The speed at which the tail of the ICC

approaches 0 can be referred to as the “rate of convergence to the

lower limit”. Similarly, the speed at which the ICC approaches 1

can be referred to as the “rate of convergence to the upper limit”.

Specifically, Figure 1A shows that the parameter λ1j controls the

convergence speed to the upper asymptote, while Figure 1B shows

that the parameter λ2j controls the convergence speed to the lower

asymptote. Common to both parameters is that the larger the value

of λ1j (λ2j), the faster the ICCs converge to the upper (lower)

asymptote line. For instance, as shown in Figure 1A, when λ1j =
1, the ICC of 1PGlogit(1, 0)has already converged to the upper

asymptote P(θ) = 1 before θ = 2, while when λ1j = 0, the ICC of

1PGlogit(0, 0) (i.e., Rasch model) just reaches the upper asymptote

at θ = 4. However, when λ1j = −1, the ICC of 1PGlogit(−1, 0)

only converges to around P(θ) = 0.8 at θ = 4. The effect of the

parameter λ2j on the convergence of the ICC to the lower asymptote

is similar to that of λ1j, which can be seen in Figure 1B.

Based on the above analysis, it can be seen that the role of the

parameter λj in 1PGlogit is somewhat analogous to the parameter

c in the three-parameter logistic (3PL) model and the parameter d

in the four-parameter logistic (4PL) model. As a result, we further

compared the ICC of 1PGlogit with that of the 3PL model in

Figure 2A and with the 4PL model in Figure 2B. Specifically, the

expressions for the 3PL and 4PL models are as follows:

P(xij = 1|θi,αj,βj, cj) = cj + (1− cj)
exp{αi(θi − βj)}

1+ exp{αi(θi − βj)}
, (14)

and

P(xij = 1|θi,αj,βj, cj, dj) = cj+(dj−cj)
exp{αi(θi − βj)}

1+ exp{αi(θi − βj)}
. (15)

In these models, αj is the discrimination parameter, cj is the

lower asymptote parameter (which can be viewed as a guessing

probability), and dj is the upper asymptote parameter, where 1− dj
can be considered as a slipping probability. For this analysis, we

set αj = 1, βj = 0, cj = 0.2, and dj = 0.8. As demonstrated in

Figure 2A, the 3PL model has an upper asymptote at P(θ) = 1 and

a lower asymptote at P(θ) = 0.2, while the 1PGlogit(0,−1), with
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FIGURE 1

Item characteristic curves based on di�erent the 1PGlogit models. (A) βj = 0, λ1j = 0, 1,−1 and λ2j = 0. (B) βj = 0, λ1j = 0 and λ2j = 0, 1,−1.

λ1j = 0 and λ2j = −1, displays an ICC similar to that of the 3PL

model. In Figure 2B, the 4PL model exhibits an upper asymptote at

P(θ) = 0.8 and a lower asymptote at P(θ) = 0.2. When λ1j = −1

and λ2j = −1, the 1PGlogit(−1,−1) shows an ICC comparable to

the 4PLmodel. Hence, the parameter λj in 1PGlogit can be adjusted

to represent the assumed guessing and slipping behaviors in the 3PL

and 4PL models.

3. Bayesian estimation and model
evaluations

In this study, we adopt the Bayesian statistical inferencemethod

to estimate the parameters in 1PGlogit IRT models. Let Pij =
p(xij = 1|βj, λ1j, λ2j, θi), which is defined as shown in Equations

(7)–(9). Thus, the likelihood function for the response of the ith

examinee to the jth item can be written as:

p(xij|βj, λ1j, λ2j, θi) = P
xij
ij (1− Pij)

1−xij . (16)

Let x = (xi, · · · , xN), β = (β1, · · · ,βJ), λ1 = (λ11, · · · , λ1J),
λ2 = (λ21, · · · , λ2J), θ = (θ1, · · · , θN). Then the joint posterior

distribution of parameters β ,λ1,λ2, and θ can be derived as:

p(β ,λ1,λ2, θ |x) = p(x|β ,λ1,λ2, θ)p(β)p(λ1)p(λ2)p(θ),

=





N∏

i=1

J∏

j=1

p(xij|βj, λ1j, λ2j, θi)





︸ ︷︷ ︸
Likelihood function





J∏

j=1

p(βj)p(λ1j)p(λ2j)





{
N∏

i=1

p(θi)

}

︸ ︷︷ ︸
Prior distributions

. (17)

3.1. Prior distributions

According to Chen et al. (2002) and Chen et al. (1999), it is

necessary to constrain the parameters λ1j and λ2j to be greater than

−1 to ensure a proper posterior distribution. Therefore, the priors

for λ1j and λ2j should be truncated at−1. The parameters βj and θi

are assumed to follow different normal prior distributions, while λ1j

and λ2j are assumed to follow a truncated normal prior distribution.

Overall, the priors for the parameters are set as follows:

βj ∼ N(0, σ 2
β ),

λ1j ∼ N(0, σ 2
λ )I (−1,∞) ,

λ2j ∼ N(0, σ 2
λ )I (−1,∞) ,

θi ∼ N(0, 1),

σβ ∼ Cauchy(0, 5)I (0,∞) ,

σλ ∼ Cauchy(0, 5)I (0,∞) ,

(18)

where I
(
a, b
)
implies that the parameter is constrained within the

interval (a, b).

3.2. Stan software

In this paper, we employ the MCMC method for parameter

estimation. Currently, there are various software options available

for implementing the MCMC algorithm, such as WinBUGS (Lunn

et al., 2000), OpenBUGS (Spiegelhalter et al., 2010), and JAGS

(Plummer, 2003). However, In the subsequent research, we utilize

the Stan software (Stan Development Team, 2019), which is based

on the Hamiltonian Monte Carlo (HMC) algorithm (Neal, 2011)

and the no-U-turn sampler (NUTS) (Hoffman and Gelman, 2014).

HMC efficiently explores posteriors in models and is often faster

than the Gibbs method (Geman and Geman, 1984) and the

Metropolis algorithm (Metropolis et al., 1953), while NUTS further

improves efficiency. Additionally, Stan provides interfaces with

data analysis languages such as R, Python, Matlab, etc., making
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FIGURE 2

Item characteristic curves based on 3PL, 4PL, and 1PGlogit models. (A) 3PL model with αj = 1, βj = 0, cj = 0.2. (B) 4PL model with αj = 1, βj = 0,

cj = 0.2, dj = 0.8.

FIGURE 3

Boxplot of parameter R̂ in four models under N = 1, 000 and J = 20 conditions in simulation 1. (A) 1PGlogit model. (B) Rasch model. (C) 1PNO

model. (D) CLLM.

it convenient for our use. To implement the Stan program, we

specifically utilize the R package rstan, which interfaces with

Stan in R (R Core Team, 2019). The Stan code employed for

parameter estimation in this study, along with the actual data, can

be found at the following URL: https://github.com/X-Wang777/-

A-Generalized-One-Parameter-IRT. Furthermore, Luo and Jiao

(2018) offer a detailed tutorial on utilizing Stan for estimating

various IRT models.
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FIGURE 4

(A–F) Sampling trace plots of parameters β1, λ11, λ21, θ1, σβ , and σλ in four Markov chains for 1PGlogit model under N = 1, 000 and J = 20 conditions

in simulation 1.

3.3. Criteria for assessing parameter
estimation accuracy

In this research, we will use four criteria for assessing the

accuracy of parameter estimation. They are Bias, RMSE (Root

Mean Squared Error), SE (Standard Error), and SD (Standard

Deviation). Assuming the parameter of interest is βj, the evaluation

criteria based on the βj parameter are defined as follows:

Bias(βj) =
1

R

R∑

r=1

(β̂
(r)
j − βj),

RMSE(βj) =

√√√√ 1

R

R∑

r=1

(β̂
(r)
j − βj)2,

SE(βj) =

√√√√√ 1

R

R∑

r=1

(
β̂

(r)
j − 1

R

R∑

l=1

β̂
(l)
j

)2

,

SD(βj) =
1

R

R∑

r=1

SD(r)(βj).

where R denotes the number of replications and β̂
(r)
j is the estimate

of βj in the rth replication, and SD(r)(βj) is the posterior standard

deviation of βj in the rth replication. Thus, we are able to calculate

the average values for the four accuracy assessment indicators based

on all items. That is,

Average Bias(β) = 1

J × R

J∑

j=1

R∑

r=1

(̂
(r)
j − βj),

Average RMSE(β) = 1

J

J∑

j=1

√√√√ 1

R

R∑

r=1

(β̂
(r)
j − βj)2,

Average SE(β) = 1

J

J∑

j=1

√√√√√ 1

R

R∑

r=1

(
β̂

(r)
j − 1

R

R∑

l=1

β̂
(l)
j

)2

,

Average SD(β) = 1

J × R

J∑

j=1

R∑

r=1

SD(r)(βj).
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TABLE 1 Evaluating the accuracy of parameter estimation for various models and simulation conditions in simulation study 1.

N = 1, 000 N = 2, 000

Bias MSE SE SD Bias MSE SE SD

J = 20

1PGlogit

β –0.0310 0.0102 0.0869 0.1009 –0.0361 0.0063 0.0642 0.0729

λ1 –0.0452 0.0972 0.1381 0.2246 0.0123 0.0566 0.1359 0.1945

λ2 –0.0406 0.0785 0.1513 0.2530 –0.0284 0.0508 0.1395 0.2141

θ –0.0281 0.1869 0.3825 0.4416 0.0389 0.1907 0.3803 0.4311

Rasch
β 0.0329 0.0067 0.0728 0.0792 –0.0033 0.0027 0.0498 0.0563

θ 0.0337 0.2058 0.3988 0.4583 –0.0024 0.2168 0.3993 0.4597

1PNO
β 0.0287 0.0051 0.0642 0.0740 0.0166 0.0025 0.0463 0.0526

θ 0.0344 0.1879 0.3807 0.4293 0.0148 0.1857 0.3809 0.4293

CLLM
β –0.0146 0 .0046 0.0639 0.0710 -0.0095 0.0020 0.0428 0.0505

θ –0.0103 0.1701 0.3616 0.4073 –0.0058 0.1697 0.3608 0.4082

J = 40

1PGlogit
β –0.0434 0.0138 0.0936 0.1082 0.0064 0.0067 0.0728 0.0798

λ1 –0.0383 0.0912 0.1503 0.2449 –0.0201 0.0631 0.1344 0.2079

λ2 0.0318 0.0938 0.1755 0.2574 –0.0167 0.0684 0.1575 0.2111

θ –0.0280 0.1166 0.3102 0.3378 –0.0091 0.1135 0.3104 0.3373

Rasch
β 0.0296 0.0061 0.0713 0.0792 0.0046 0.0027 0.0507 0.0563

θ 0.0331 0.1197 0.3201 0.3462 0.0048 0.1223 0.3190 0.3466

1PNO
β –0.0049 0.0045 0.0658 0.0739 0.0110 0.0024 0.0471 0.0524

θ –0.0049 0.1036 0.2976 0.3209 0.0117 0.1029 0.2981 0.3198

CLLM
β –0.0118 0 .0047 0.0657 0.0726 –0.0078 0.0023 0.0456 0.0516

θ –0.0104 0.0943 0.2828 0.3054 –0.0059 0.0954 0.2843 0.3057

The terms Bias, MSE, SD, and SE denote the average bias, mean square error (MSE), standard deviation (SD), and standard error (SE) of the parameters, respectively.

3.4. Bayesian model assessment

The following four model selection criteria will be used in this

paper to evaluate the goodness of model fit: (1) DIC, (2) Logarithm

of the pseudomarginal Likelihood (LPML; Geisser and Eddy, 1979;

Ibrahim et al., 2001), (3) Widely applicable information criterion

(WAIC; Watanabe and Opper, 2010), and (4) Leave-one-out cross-

validation (LOO; Vehtari et al., 2017). In addition, the last two

information criteria are calculated based on the R package loo

(Vehtari et al., 2017).

4. Simulation studies

4.1. Simulation 1

In this simulation study, our aim is to assess the accuracy of

parameter estimation for various one-parameter symmetric and

asymmetric IRT models implemented using the Stan software. The

following four models will be considered: (1) 1PGlogit(λ1j, λ2j),

j = 1, 2, ..., J; (2) Rasch (1PGlogit(0, 0)); (3) 1PNO

(1PGlogit(0.165, 0.165)); and (4) CLLM (1PGlogit(0.62,−0.037)).

4.1.1. Simulation designs
The true values of the parameters are generated following

this formulation: θ ∼ N(0, 1), b ∼ N(0, 1). For the

1PGlogit(λ1j, λ2j) model, the true values of (λ1j, λ2j) are generated

from the distribution λ1j ∼ N(0, 0.52)I(−1,+∞), λ2j ∼
N(0, 0.52)I(−1,+∞). Meanwhile, λ1j is fixed at 0, 0.165, and 0.62

for the Rasch, 1PNO, and CLLM models, respectively, while λ2j

is fixed at 0, 0.165, and –0.037, respectively. The manipulated

factors include sample size (i.e., the number of students) N =
1, 000, 2,000, and item length J = 20, 40. Thus, there are

four simulation conditions for each model, and each simulation

condition was replicated 50 times. We set four chains in each

simulation, each executing 3,000 iterations, and the burn-in period

is 2,000 iterations.

4.1.2. Convergence diagnosis
Firstly, we examined the convergence of the MCMC procedure

implemented in rstan. As an example, we considered the case

with N = 1, 000 and J = 20. The potential scale reduction

factor (PSRF; also known as R̂, Brooks and Gelman, 1998) values

of the parameters in each model are shown in Figure 3, which

presents a boxplot of the R̂ values for all difficulty parameters
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TABLE 2 Comparing the DIC, LPML, WAIC, and LOO values for 1PGlogit,

Rasch, 1PNO, and CLLMmodels in simulation 2.

Fitted model DIC LPML WAIC LOO

True model: 1PGlogit

1PGlogit 23306.55 –11686.98 23335.52 23367.22

Rasch 23559.69 –11781.79 23560.16 23566.15

1PNO 23546.30 –11790.91 23574.84 23584.28

CLLM 23476.40 –11767.11 23520.99 23535.90

True model: Rasch

1PGlogit 20965.74 –10489.26 20974.06 20980.80

Rasch 20970.16 –10488.71 20974.30 20979.91

1PNO 20964.79 –10500.66 20994.16 21003.703

CLLM 21043.82 –10575.56 21123.53 21150.62

True model: 1PNO

1PGlogit 22122.17 –10618.52 21226.77 21238.39

Rasch 21250.88 –10622.21 21241.22 21246.88

1PNO 21201.76 –10611.60 21215.99 21225.56

CLLM 21278.45 –10684.17 21342.14 21367.91

True model: CLLM

1PGlogit 22131.63 –11091.62 22148.53 22178.66

Rasch 22330.45 –11155.46 22307.58 22313.39

1PNO 22252.20 –11129.47 22251.93 22261.30

CLLM 22111.62 –11073.75 22127.46 22147.63

The bold values represent the minimum values of the corresponding model selection criteria

across all candidate models.

across 50 repeated simulations. It can be observed that the R̂ for all

parameters in each model is close to 1 and less than 1.05, indicating

that all parameters have converged. In addition, we selected the

parameters for the first item, namely β1, λ11, λ21, as well as the

latent trait of the first student θ1 and the standard deviations σβ , σλ.

We plotted the MCMC traces of these parameters across the four

chains in Figure 4. The red vertical line represents the burn-in value

and the colored circles represent the initial values. From the trace

plots, it is apparent that all parameters reached stationarity before

the burn-in period, which further validates that the convergence is

assured when using the Stan software for parameter estimation.

4.1.3. Analysis of parameter estimation accuracy
In this study, we examine the accuracy of the estimation for

the item parameters and latent trait parameters of each model. We

computed the average bias, MSE, SE, and SD for each parameter,

which are presented in Table 1. By examining the results in the

table, we draw the following conclusions: First, the estimation

appears unbiased, as reflected by the minimal and close-to-zero

bias of all parameters. Second, our estimation exhibits large

sample properties, meaning the precision of parameter estimation

improves as the number of students increases for item parameters,

and as the number of items increases for ability parameters. For

instance, in the 1PGlogit model, as the sample size increases from

N=1,000 to N=2,000, the MSE, SE, and SD of item parameters β ,

λ1, λ2 decrease. Similarly, when increasing from J=20 to J=40, the

MSE, SE, and SD of θ decrease as well. Similar conclusions hold true

in the Rasch, 1PNO, and CLLM models. Moreover, we observed

that the estimation precision of latent trait parameters θ is not as

robust as that of difficulty parameters β across all models. This can

be attributed to the limited number of items (only 20 or 40 items).

Specifically, in the 1PGlogit model, the estimation precision of λ is

also poorer than that of β , and we speculate that this may be due to

the interaction between λ and θ affecting the estimation precision.

4.2. Simulation 2

In this simulation study, our aim is to assess the model fit of

traditional symmetric IRT models, asymmetric IRT model, and the

Glogit IRT models under the framework of the one-parameter IRT.

We consider a sample size of N = 1, 000 individuals, with

the test length fixed at 20. Item responses are generated within the

framework of a one-parameter IRT model. We consider four item

response models: (1) 1PGlogit(λ1j, λ2j), j = 1, 2, ..., J; (2) Rasch

(1PGlogit(0, 0)); (3) 1PNO (1PGlogit(0.165, 0.165)); and (4) CLLM

(1PGlogit(0.62,−0.037)). Therefore, we evaluate the model fitting

in the following four cases.

• Case 1: True model: 1PGlogit(λ1j, λ2j) v.s. Fitted model:

1PGlogit(λ1j, λ2j), Rasch, 1PNO, and CLLM;

• Case 2: Truemodel: Rasch v.s. Fittedmodel: 1PGlogit(λ1j, λ2j),

Rasch, 1PNO, and CLLM;

• Case 3: True model: 1PNO v.s. Fitted model:

1PGlogit(λ1j, λ2j), Rasch, 1PNO, and CLLM;

• Case 4: True model: CLMM v.s. Fitted model:

1PGlogit(λ1j, λ2j), Rasch, 1PNO, and CLLM.

The true values and prior distributions for the parameters are

specified in the same way as in simulation 1. To implement the

MCMC sampling algorithm, chains of length 3,000 are chosen,

with an initial burn-in period of 2,000. The results of the Bayesian

model assessment, based on 50 replications, are shown in Table 2.

It is worth noting that the reported results of DIC, LPML, WAIC,

and LOO are based on the average of these 50 replications. The

corresponding boxplots of the four Bayesian model assessment

indexes is shown in Figure 5. Additionally, we have compiled the

number of times each model was selected as the best or second-best

model in Table 3.

According to Tables 2, 3, when the true model is a 1PGlogit

model, the 1PGlogit model is consistently chosen as the optimal

model for data fitting based on the average values of the four

model evaluation criteria, compared to the other three competing

models. The second-best model is mostly the asymmetric CLLM,

except for two instances where the Rasch model is selected for

LPML and LOO criteria. When the true model is the CLLM

model, the evaluation results are very similar to the case where

the true model is the 1PGlogit model. With only a few exceptions,

the CLLM model is chosen as the optimal model for almost

all evaluation indicators, and the 1PGlogit model is chosen as

the second-best model. Additionally, from Table 2 and Figure 5,
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FIGURE 5

Boxplots of DIC, –LPML, WAIC, and LOO for 1PGlogit, Rasch, 1PNO, and CLLM models in simulation 2. (A) True model: 1PGlogit model. (B) True

model: Rasch model. (C) True model: 1PNO model. (D) True model: CLLM.

we can observe that the fitting results of the 1PGlogit model

are not significantly different from that of the CLLM model. In

fact, 1PGlogit model has been selected four times as the best

model using DIC and WAIC. However, the fitting results of the

other two symmetric models, Rasch and 1PNO, are noticeably

worse compared with that of the CLLM and 1PGlogit models.
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TABLE 3 Number of times selected as the best model and the second-best model based on DIC, LPML, WAIC, and LOO in simulation 2.

Times of selected as the best model Times of selected as the second-best model

1PGlogit Rasch 1PNO CLLM 1PGlogit Rasch 1PNO CLLM

True model: 1PGlogit

DIC 50 0 0 0 0 0 0 50

LPML 50 0 0 0 0 2 0 48

WAIC 50 0 0 0 0 0 0 50

LOO 50 0 0 0 0 2 0 48

True model: Rasch

DIC 20 2 28 0 25 21 4 0

LPML 13 36 1 0 36 14 0 0

WAIC 24 25 1 0 25 24 1 0

LOO 15 34 1 0 34 16 0 0

True model: 1PNO

DIC 2 0 48 0 47 2 1 0

LPML 2 0 48 0 37 12 1 0

WAIC 3 0 47 0 42 5 3 0

LOO 3 0 47 0 37 1 1 2

True model: CLLM

DIC 4 0 0 46 46 0 0 4

LPML 0 0 0 50 0 0 0 50

WAIC 4 0 0 46 46 0 0 4

LOO 0 0 0 50 0 0 0 50

Interestingly, when the true model is the Rasch model, we observe

that the fitting results of the 1PGlogit and 1PNO models are

highly similar to those of the Rasch model. In terms of average

DIC value, the 1PGlogit and 1PNO models even perform better

and are often chosen as the best models. The Rasch model has

only a very slight advantage over the 1PGlogit model in LPML

and LOO, and in many cases, the 1PGlogit model is selected

as the true model. The difference between 1PGlogit model and

Rasch model, based on the four model evaluation criteria, is very

small and less than 1. The fitting results of the 1PNO model

are slightly worse than that of 1PGlogit and Rasch models based

on LPML, WAIC, and LOO criteria, and the performance of the

CLLM is the worst in all four evaluation criteria. In the case

where the 1PNO model is the true model, we also observe that

the performance of the CLLM is consistently the worst. While the

1PNO model slightly outperforms the 1PGlogit model across all

model evaluation criteria, the 1PGlogit model still provides a good

fit and has been selected as the best fittingmodel several times based

on these model evaluation criteria.

Additionally, we chose the first item from four simulation

conditions, respectively, and plotted their true ICCs against

the four fitted ICCs for comparison in Figure 6. The true

ICC is represented by the black line, while the red line

illustrates the ICC fitted using 1PGlogit model. It can be

noted that regardless of the true model type, our 1PGlogit

model can provide an excellent fit, especially when the Rasch

model and 1PNO model serve as the true model, the ICC

fitted by 1PGlogit model almost coincides with the true ICC

curve. In summary, 1PGlogit model proves to be a versatile

generalized model that fits several widely used one-parameter IRT

models effectively.

4.3. Simulation 3

In our previous discussion, we noted that the two shape

parameters in the proposed 1PGlogit model can control whether

the ICC has a heavy or light tail, playing a role similar to the

lower asymptote parameter in the three-parameter IRT models,

and the upper asymptote parameter in the more generalized four-

parameter IRT models. In this simulation study, we focus on

comparing the fit superiority of the 1PGlogit model with the

traditional 3PL and 4PL models.

We consider a sample size of N = 1, 000 individuals, with the

test length fixed at 20. Item responses are generated from the 3PL

model and 4PL model. Therefore, we evaluate the model fitting in

the following two cases.

• Case 1: True model: 3PL v.s. Fitted model: 1PGlogit(λ1j, λ2j),

Rasch, 1PNO, CLLM, and 3PL;
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FIGURE 6

Analyzing the degree of fit for ICCs across di�erent true models and fitting models in simulation 2. (A) True model: 1PGlogit with β1 = −0.5734,

λ11 = 1, λ21 = 1. (B) True model: Rasch (1PGlogit with β1 = 1.5891, λ11 = 0, λ21 = 0). (C) True model: 1PNO (1PGlogit with β1 = −1.7712,

λ11 = 0.165, λ21 = 0.165). (D) True model: CLLM (1PGlogit with β1 = 0.5036, λ11 = 0.62, λ21 = −0.037).

TABLE 4 Comparing the DIC, LPML, WAIC, and LOO values for 1PGlogit,

Rasch, 1PNO, CLLM, 3PL, and 4PL models in simulation 3.

Fitted model DIC LPML WAIC LOO

True model: 3PL model

1PGlogit 22205.12 –11136.05 22234.30 22265.62

Rasch 22504.53 –11268.28 22532.98 22533.96

1PNO 22486.74 –11268.22 22528.35 22538.81

CLLM 22469.30 –11290.41 22550.59 22579.95

3PL 22186.26 –11095.16 22169.37 22189.71

True model: 4PL model

1PGlogit 25991.13 –13031.57 26054.59 26062.20

Rasch 26234.96 –13144.81 26286.36 26292.44

1PNO 26257.85 –13164.60 26323.77 26332.01

CLLM 26266.45 –13183.73 26357.70 26369.97

4PL 25985.41 –12933.86 25857.94 25866.80

The bold values represent the minimum values of the corresponding model selection criteria

across all candidate models.

• Case 2: True model: 4PL v.s. Fitted model: 1PGlogit(λ1j, λ2j),

Rasch, 1PNO, and CLLM, and 4PL.

The true values of parameters in the 3PL and 4PL models are

generated as follows: αj ∼ U(0.5, 2), βj ∼ N(0, 1), cj ∼ Beta(5, 17)

and dj ∼ Beta(17, 5) (dj = 1 for 3PL model). The prior distribution

of parameters in the 1PGlogit model, Rasch model, 1PNO model,

and CLLM are generated the same as in simulation 1. Moreover,

we wish to clarify the prior distributions setting for the parameters

in the 3PL/4PL models: logαj ∼ N(0, 1), βj ∼ N(0, σ 2
β ), cj ∼

U(0, 0.5), dj ∼ U(0, 0.5) (in 4PLmodel), and σβ ∼ Cauchy(0, 5). To

implement the MCMC sampling algorithm, chains of length 5,000

are chosen, with an initial burn-in period of 4,000.

In Table 4, we present the DIC, LPML, WAIC, and LOO

values for each model. Figure 7 depicts the boxplots of these four

model selection criteria across 50 replications. Additionally, Table 5

summarizes the instances where each model was selected as the

best or second best fitting model across the 50 replications. The

results indicate that when the true model is the 3PL model, the

average values of –LPML, WAIC, and LOO for the 3PL model

are the lowest among all models under consideration. In all 50

replications, these evaluation criteria identify the true 3PL model

as the best model. For the second-best model selection, apart

from LOO (which chose the Rasch model once), all other criteria

consistently select the 1PGlogit model. Although the average

DIC value for the 3PL model is the lowest, it differs from the

other three criteria. In 12 out of 50 replications, the 1PGlogit
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FIGURE 7

Boxplots of DIC, –LPML, WAIC, and LOO for 1PGlogit, Rasch, 1PNO, CLLM, 3PL, and 4PL models in simulation 3. (A) True model: 3PL model. (B) True

model: 4PL model.

TABLE 5 Number of selected times as the best-model and the second-best model based on DIC, LPML, WAIC, and LOO in Simulation 3.

Times of selected as the best model Times of selected as the second best model

1PGlogit Rasch 1PNO CLLM 3PL 1PGlogit Rasch 1PNO CLLM 3PL

True model: 3PL model

DIC 12 0 0 0 38 38 0 0 0 12

LPML 0 0 0 0 50 50 0 0 0 0

WAIC 0 0 0 0 50 50 0 0 0 0

LOO 0 0 0 0 50 49 1 0 0 0

1PGlogit Rasch 1PNO CLLM 3PL 1PGlogit Rasch 1PNO CLLM 4PL

True model: 4PL model

DIC 25 0 0 0 25 25 0 0 25

LPML 0 0 0 0 50 50 0 0 0 0

WAIC 0 0 0 0 50 50 0 0 0 0

LOO 0 0 0 0 50 50 0 0 0 0

model is selected as the best model, and in 38 replications, it’s

chosen as the second-best model. These findings suggest that

our flexible 1PGlogit model can effectively fit the 3PL model.

Considering the values of various model selection criteria and the

boxplot results, the fitting performance of the 1PGlogit model is

significantly superior to other one-parameter models. To further

illustrate this, we plotted the ICC of the first item for the true

3PL model, as well as ICC curves fitted by the five different

models in Figure 8. The plots reveal that, aside from the fitted

3PL model, our 1PGlogit model shows the best fit with the

true ICC, regardless of item difficulty. In the 3PL model, the

assumed guessing behavior causes the lower asymptote of its

ICC to be above zero. Our 1PGlogit model can account for this

phenomenon through the parameter λ, suggesting that our model

can also interpret the assumed guessing behavior inherent in the

3PL model.
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FIGURE 8

Analyzing the degree of fit for ICCs across di�erent true models and fitting models in simulation 3. (A) True model: 3PL model with α1 = 0.7766,

β1 = 2.3315, c1 = 0.3470. (B) True model: 4PL model with α1 = 0.5167, β1 = −1.0322, c1 = 0.1894, d1 = 0.7518.

FIGURE 9

Item characteristic curve (ICC) of all items based on 1PGlogit model for the real data.

Secondly, when the true model is the 4PL model, the results

are nearly identical to those under the 3PL model. The 4PL

model performs the best based on LPML, WAIC, and LOO,

and is selected as the optimal model in all 50 repetitions.

The second-best model is consistently the 1PGlogit model. In

terms of DIC value, the average for the 4PL model is the

lowest, but in 25 out of 50 repetitions, the 1PGlogit model is

chosen as the best. As illustrated by the boxplot in Figure 7, the

model selection criteria of the 1PGlogit model are significantly

lower than those of the other one-parameter models. Figure 8

displays the ICCs of the first item. Aside from the 4PL model,

the ICC of the 1PGlogit model demonstrates the best fitting

performance, suggesting that this flexible 1PGlogit model provides

a well-fitted representation of the guessing behavior and slipping
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TABLE 6 Values of DIC, LPML, WAIC, and LOO for 1PGlogit, Rasch, 1PNO,

CLLM, 3PL, and 4PL models for the real data.

Model DIC LPML WAIC LOO

1PGlogit 6464.903 –3257.137 6454.856 6499.141

Rasch 6689.912 –3341.841 6679.935 6684.846

1PNO 6647.231 –3330.087 6651.59 6661.054

CLLM 6708.316 –3387.79 6742.526 6771.13

3PL 6528.033 –3276.638 6528.809 6552.125

4PL 6552.333 –3275.981 6528.991 6550.834

The bold values represent the minimum values of the corresponding model selection criteria

across all candidate models.

behavior assumed in the 4PL model, which affects the lower and

upper asymptotes.

In summary, the 1PGlogit model demonstrates superior fitting

performance for asymmetric models compared to other one-

parameter models. This model enhances flexibility by adjusting the

parameter λ to fit the upper and lower asymptotes. However, we

observed that DIC sometimes failed to identify the true model in

this simulation, as was also the case when Rasch was the true model

in Simulation 2. According to Luo and Al-Harbi (2016), within the

dichotomous IRT framework, the performances ofWAIC and LOO

surpass that of DIC. Therefore, in light of the findings of this paper,

we recommend giving greater consideration to LPML, WAIC, and

LOO criteria when selecting models.

5. Real data

For this example, we use the 2015 computer-based PISA science

data. Out of all the countries that took part in the computer-based

science assessment, we selected data from the United States of

America (USA). The initial sample consisted of 685 students, but

76 students were excluded due to Not Reached (original code 6)

or No Response (original code 9) outcomes. These Not Reached

and No Response results were treated as missing data. Therefore,

the final sample size stands at 609 students, for whom the response

data is available. The 11 items were scored on a dichotomous scale.

We utilize six different models to fit the PISA dataset. This includes

two symmetric models, namely the Rasch and the 1PNO models,

in conjunction with three asymmetric models: the CLLM, the 3PL

model, the 4PL model, and our generalized logistic model, known

as the 1PGlogit model. During the process of estimation, we employ

the same prior probabilities for the unknown parameters as used

in simulations 2 and 3. Throughout all Bayesian computations,

we generate 5,000 MCMC samples after a burn-in period of 4,000

iterations for each model to compute all the posterior estimates.

The convergence of the chains is assured by evaluating the PSRF

values (R̂). For each model, the PSRF values of all parameters, both

item and person, are observed to be under 1.1.

First, we depicted the frequency distribution histogram of

the estimated ability parameter θ values across different models

in Figure 9, and fitted their respective distribution curves. From

this, it is apparent that the distributions of the estimated ability

parameters remain largely consistent across the varied models.

TABLE 7 Parameter estimates for all items based on the 1PGlogit model

in real data.

Estimate SD HPDI R̂

β

Item 1 –0.3259 0.1178 [–0.5528, –0.1009] 1.0027

Item 2 0.7981 0.1544 [0.5035, 1.1023] 1.0001

Item 3 0.6522 0.1241 [0.4250, 0.9101] 1.0024

Item 4 –0.1680 0.1069 [-0.3772, 0.0352] 1.0006

Item 5 –0.7112 0.1055 [–0.9126, –0.4937] 1.0015

Item 6 2.4805 0.2461 [2.0107, 2.9589] 0.9996

Item 7 0.0470 0.1325 [–0.2003, 0.3080] 1.0000

Item 8 –0.5728 0.1416 [–0.8627, –0.3006] 0.9999

Item 9 0.9687 0.1407 [0.7115, 1.2589] 1.0010

Item 10 1.5533 0.1419 [1.2907, 1.8341] 1.0010

Item 11 –2.5073 0.3414 [–3.2047, –1.8844] 1.0001

λ1

Item 1 0.4927 0.2843 [–0.0540, 1.0522] 1.0018

Item 2 –0.2222 0.4696 [–0.9962, 0.6246] 1.0018

Item 3 –0.1674 0.4650 [–0.9995, 0.6549] 1.0023

Item 4 0.4861 0.3014 [–0.0436, 1.1152] 1.0006

Item 5 1.2090 0.3863 [0.5059, 1.9562] 1.0010

Item 6 0.1382 0.6449 [–0.9873, 1.3015] 1.0008

Item 7 –0.0362 0.3830 [–0.8312, 0.7113] 1.0020

Item 8 –0.0904 0.2658 [–0.6508, 0.4159] 1.0014

Item 9 –0.0398 0.5547 [–0.9744, 0.9865] 1.0017

Item 10 0.2537 0.6769 [–0.9908, 1.4677] 1.0000

Item 11 –0.4990 0.1685 [–0.8577, –0.1966] 1.0016

λ2

Item 1 0.4891 0.5216 [–0.5493, 1.5489] 1.0029

Item 2 –0.3930 0.2545 [–0.9086, 0.0654] 1.0020

Item 3 0.9644 0.5037 [0.0353, 1.9567] 1.0046

Item 4 0.7601 0.3364 [0.1513, 1.4065] 1.0017

Item 5 0.6816 0.6276 [–0.4691, 1.9689] 1.0003

Item 6 0.7804 0.3510 [0.2051, 1.4938] 0.9994

Item 7 –0.2759 0.3416 [–0.9636, 0.3079] 0.9997

Item 8 0.2539 0.5746 [–0.9122, 1.2491] 1.0002

Item 9 0.3990 0.2278 [–0.0012, 0.8625] 1.0019

Item 10 1.1567 0.0094 [0.4972, 1.9112] 1.0010

Item 11 0.1632 0.6592 [–0.9988, 1.3891] 1.0000

Upon examining the fitted distributions of the estimated θ , it

can be observed that the ability distribution under the 1PGlogit

model is closest to a normal distribution. The θ distributions

under the Rasch and 1PNO models are notably similar, while the

θ distributions under the 3PL model are more analogous to those

of the 4PL model. Next, we provide detailed results of the Bayesian
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FIGURE 10

Item characteristic curve (ICC) of all items based on 1PGlogit model for the real data. (A) ICC of Item 1–5. (B) ICC of Item 6–11.

model assessment for the PISA dataset in Table 6. All these criteria

indicate that the 1PGlogit model fits the data best among the six

models. The second-best fitting model tends to be either the 3PL

model or the 4PL model, both of which demonstrate similar fitting

effects, while the three one-parameter IRT models show a notably

inferior fit compared to the others. Hence, we surmise that the data

shows a preference for flexible asymmetrical models. Based on the

results of themodel assessment, we will proceed with the best fitting

1PGlogit model for the analysis of the PISA data. In Table 7, we

provide the estimated values of parameters in the 1PGlogit model,

including the SD, 95% highest posterior density interval (HPDI),

and R̂ for each parameter. It is evident from the R̂ values that the

Markov chain has achieved convergence. Examining the estimated

parameter values, we note firstly that item 6 is the most difficult,

with β6 = 2.4805, while item 11 is the easiest, with β11 = −2.5073.

Moreover, for the parameter λ1, the values are mostly small, except

for item 5 which exceeds 1, suggesting that the tail of this item’s

ICC approaches the upper asymptote more quickly. Conversely,

the estimated values for λ2 are generally larger and positive, such

as for item 10, which exceeds 1, indicating a rapid approach to

the lower asymptote for the tail of its ICC. Lastly, we have plotted

the ICCs for all the items in Figure 10. From Figure 10, it can be

seen that for item 2, there appears to be some guessing behavior

among low ability students, as they have a certain probability of

answering the item correctly even with very low ability. Conversely,

high ability students may exhibit slipping behavior, as even with

relatively high ability, their probability of answering correctly is

only around 90%. In contrast, for item 5, students with ability values

below 2 have virtually no chance of answering correctly, while

those with ability values exceeding 1.5 have almost no chance of

answering incorrectly. In essence, the 1PGlogit model can deliver

robust data fitting and outstanding interpretability.

6. Discussion

This paper discusses a generalized one-parameter IRT model,

the 1PGlogit model, which can encompass commonly-used IRT

models such as the Rasch, 1PNO, and the recently proposed CLLM

as its submodels. Owing to its adjustable parameter λ, it exhibits

high flexibility, which enables control over the rate at which it

approaches the upper and lower asymptotes of the ICC. In this

paper, we first examine the accuracy of the model in parameter

recovery using the Stan program. Subsequently, we investigate its

performance in fitting data generated by other one-parameter IRT

models. Finally, we delve deeper into its effectiveness in fitting

asymmetric 3PL and 4PL models.

From the simulation results, we can draw the following

conclusions. Firstly, the estimates generated by Stan are consistent

with the large sample properties and exhibit excellent parameter

recovery accuracy. The difficulty parameter demonstrates the

highest estimation precision, followed by λ and θ . Secondly, the

1PGlogit model showcases commendable fitting performance for

data generated by its various submodels. It ranks as the best model

in terms of fitting performance, with the exception of the true

model. Finally, the 1PGlogit model presents an outstanding fit for

data generated by the asymmetric 3PL and 4PL models, markedly

superior to other one-parameter IRT models. The 1PGlogit model

can more accurately recover the shape of the ICC of the 3PL/4PL

model.

In summary, the 1PGlogit model is a highly flexible and

generalized model that encompasses Rasch, 1PNO, and CLLM as

its submodels. Its parameter λ adjusts the speed at which the ICC

curve approaches the upper and lower asymptotes. A larger λ1

results in a quicker approach to the upper asymptote, and a larger

λ2 results in a swifter approach to the lower asymptote. As such,

the 1PGlogit model can effectively accommodate the assumptions

of guessing and slipping behavior in the 3PL and 4PLmodels, which

would otherwise cause the upper and lower asymptotes to diverge

from 1 and 0, respectively. However, the 1PGlogit model also has

its limitations. Firstly, the constraint that its parameter λ must be

greater than -1 may inhibit the model’s ability to depict behaviors

on the ICC where the asymptotes significantly diverge from 1 and

0. Secondly, although the 1PGlogit model is a generalized model

that includes other one-parameter IRT models, the introduction

of the new parameter λ adds complexity to the model, and the
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estimation accuracy of 1PGlogit is slightly lower than that of other

one-parameter models. Moreover, the introduction of λ may also

introduce some identifiability issues to the model, where λ and θ

might mutually influence each other.

In conclusion, we would like to propose some directions for

future work. The 1PGlogit model is a flexible and generalized

model, and this paper merely provides an initial exploration of

its advantages in fitting various types of data. We believe there is

significant potential for its further development and application,

such as extending the 1PGlogit model to higher-order IRT models,

graded response models, multilevel IRT models, and longitudinal

IRT models, among others. Therefore, in our future research, we

will dedicate ourselves to the advancement and application of the

1PGlogit model in these proposed areas. Moreover, a wealth of

scholarly work has been dedicated to formulating link functions for

binary and ordinal response data. Notable contributions in this field

have been made by Aranda-Ordaz (1981), Guerrero and Johnson

(1982), Stukel (1988), Kim et al. (2008), Wang and Dey (2010), and

Jiang et al. (2014), among others. It is worth exploring whether

these existing link functions can be directly applied to the field of

IRT. We intend to investigate this possibility in our future work.
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