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How children learn to understand
language meanings: a neural
model of adult–child multimodal
interactions in real-time

Stephen Grossberg*

Center for Adaptive Systems, Boston University, Boston, MA, United States

This article describes a biological neural network model that can be used to

explain how children learn to understand languagemeanings about the perceptual

and a�ective events that they consciously experience. This kind of learning often

occurs when a child interacts with an adult teacher to learn language meanings

about events that they experience together. Multiple types of self-organizing

brain processes are involved in learning language meanings, including processes

that control conscious visual perception, joint attention, object learning and

conscious recognition, cognitive working memory, cognitive planning, emotion,

cognitive-emotional interactions, volition, and goal-oriented actions. The article

shows how all of these brain processes interact to enable the learning of language

meanings to occur. The article also contrasts these human capabilities with AI

models such as ChatGPT. The currentmodel is called theChatSOMEmodel, where

SOME abbreviates Self-Organizing MEaning.

KEYWORDS

neural network, visual perception, language development, circular reaction, meaning,

joint attention, learning, object recognition

“The child. . . projects the whole of his verbal thought into things.”

Jean Piaget

“The most complex type of behavior that I know: the logical and orderly

arrangement of thought and action.”

Karl Lashley

1. Introduction: toward understanding how children
and adults learn language meanings

This article proposes a functional and mechanistic analysis of key brain processes that

enable a child to learn language utterances and their meaning. Learning the meaning of

language utterances allows children and adults to describe and understand their perceptual

and emotional experiences in the world, and to generate appropriate actions based on this

understanding. Such learning typically begins when a baby who knows no language interacts

with someone who does, often a parent or other caregiver.

The current article proposes how multiple brain regions interact to support the learning

of language utterances and their meanings. This explanation builds upon biological neural

network models of how our brains make our minds that have been getting steadily

developing during the past half-century. These models provide principled and unifying
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explanations of hundreds of psychological and neurobiological

experiments. Many model predictions have also been confirmed

by subsequent experiments. A self-contained and non-technical

exposition that provides an overview of this progress is described

in Grossberg (2021).

The importance of how language learning and its meaning

occur for understanding the human condition is reflected by a

large number of articles and books that have been written about it

(e.g., Boroditsky, 2000; Boroditsky and Ramscar, 2002; Kable et al.,

2002, 2005; Richardson et al., 2003; Hauk and Pulvemuller, 2004;

Gallese and Lakoff, 2005; Pecher and Zwaan, 2005; Wallentin et al.,

2005, 2011; Gibbs, 2006; Zwaan and Taylor, 2006; Chatterjee, 2008,

2010; Fischer and Zwaan, 2008; Holtgraves and Kashima, 2008;

Kemmerer et al., 2008; Mahon and Caramazza, 2008; Boulenger

et al., 2009; Dove, 2009; Raposo et al., 2009; Casasanto and Dijkstra,

2010; Glenberg, 2010; Glenberg and Kaschak, 2010; Saygin et al.,

2010; Bergen, 2012; Aziz-Aadeh, 2013; Fernardino et al., 2013;

Watson et al., 2013; Colston, 2019; Carey, 2022; Gleitman and

Gleitman, 2022). Although such contributions include many facts

about language learning and meaning, they do not provide a

unifying mechanistic neural explanation of these data, or of the

organizational principles that shape these brain mechanisms.

This article models brain processes of language learning

and meaning in real-time; notably, how these processes unfold

moment-by-moment as the learning individual interacts with the

world. Language learning and meaning are emergent properties of

widespread brain interactions operating in real time. No available

experimental method can provide a mechanistic link between such

interactive brain dynamics and the emergent behavioral properties

that they cause. A rigorous mechanistic theory is needed to bridge

this explanatory gap.

The article will discuss how a baby first learns, during visual

and auditory circular reactions, to look at, or point to, objects of

interest, as well as how to produce, store, and learn simple speech

sounds that create a foundation for learning to imitate the language

utterances of its teachers.

Before a baby or child can learn language from an adult, it

must first be able to pay attention to, and learn to recognize, that

adult’s behaviors, notably to pay attention to and recognize an adult

caregiver’s face when he or she is speaking. To accomplish this feat,

several additional learning processes need to occur.

Learning to recognize an adult caregiver’s face includes the

ability to recognize multiple views of the face as experienced from

multiple positions, orientations, and distances. In other words,

a young child effortlessly learns to solve the invariant pattern

recognition problem! This learning process includes the learning of

facial views while a baby looks up at its mother as it suckles milk

from her breast or a bottle.

The learning of invariant object representations coexists with

the learning of individual views of the object. In addition to

enabling the child to recognize its mother’s face from multiple

perspectives, this ability enables the child to also learn that specific

views of her face correlate with her looking, pointing, or otherwise

acting on objects in a given direction. These invariant and view-

specific representations reciprocally interact with each other via

learned connections so that a child can invariantly recognize its

mother’s face even as it uses her currently perceived view to predict

her ongoing actions.

Section 3 will discuss how learning of invariant object

categories such as a face requires interactions between spatial

attention in the dorsal, or Where, cortical processing stream with

object attention in the ventral, or What, cortical processing stream,

notably between cortical areas PPC (posterior parietal cortex) and

IT (inferotemporal cortex), respectively. More generally, all the

learning that is important for a child’s understanding and survival

requires interactions between multiple brain regions.

Another important example of inter-region interactions

during learning occurs when the cognitive representations for

learned object recognition interact reciprocally via learned

connections with emotional representations. These cognitive-

emotional interactions, which include brain regions such as the

prefrontal/temporal cortices and amygdala/hypothalamus, amplify

the cognitive representations of currently valued objects in a

scene. These cognitive-emotional interactions will be discussed in

Section 4.

Competitive interactions among object representations in the

temporal and prefrontal cortices can choose the currently most

valued objects in a scene that may be cluttered with multiple

other objects. It is explained in Section 4 how these motivationally

amplified representations successfully compete for spatial attention

to attract an observer’s gaze, such as when a child orients to

look at its mother’s face. The child can then begin to learn how

current views of her face predict where she is looking, pointing, or

otherwise acting.

A prerequisite for learning to understand and produce simple

language utterances is for a sequence of speech sounds, or items,

to be stored temporarily in a working memory that is designed

to support learning and stable memory of stored phonemes,

syllables, words, and sentences. Such working memories occur in

multiple regions of the prefrontal cortex. Reciprocal interactions

occur between sequences of stored working memory items and

the learned speech categories, or list chunks, that categorize the

sequences. Bottom-up interactions from the working memory to

the list chunk level enable the list chunks to be learned. Top-down

interactions from an active list chunk to the working memory can

dynamically stabilize the learning of the item sequence that it codes.

How and why working memories and their learned list chunks have

the designs that they do will be explained in Section 14.

During language recall, list chunks read-out into working

memory their learned item sequences. Volitional signals, or GO

signals, from the basal ganglia enable a sequence that is stored in

working memory to be performed in the correct order and at the

desired speed. This role for the basal ganglia will be discussed in

Section 15. Also, how more complex rhythmic performances, as

during the singing of musical lyrics and melodies, can be achieved

using spectral timing circuits in the cerebellum and basal ganglia

is discussed.

When these capabilities interact in real time, a child can learn

that specific language phrases and sentences strongly correlate with

specific visual objects and events that the child is simultaneously

watching a teacher use or perform. In this way, a child can learn

that a phrase like “mommy walks” correlates with a simultaneous
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percept of the described action. The phrase hereby acquires

meaning by representing this perceptual experience.

Learning of auditory language utterances occurs in the ventral,

or What, cortical processing stream for object attention and

categorization, including the temporal and prefrontal cortices

(Rauschecker and Scott, 2009; Kimppa et al., 2015; Sections 14 and

19) Learning to visually recognize mommy also occurs in the What

stream, including the inferotemporal cortices (Tanaka et al., 1991;

Tanaka, 1996).

In contrast, the perceptual representation of mommy walking

includes representations in the dorsal, or Where cortical stream

for spatial attention and action, including cortical areas MT and

MST. Learning language meanings thus often requires What-to-

Where cortical stream interactions that link language utterances

to the perceptual experiences that they describe. Sections 4 and 5

will discuss how learning between these What and Where stream

interactions occurs.

Mommy can also activate affective representations, which

enable a baby or child to have feelings about mommy. As noted

above, midbrain regions such as the amygdala and hypothalamus

help to generate such feelings when they interact reciprocally

with perceptual and cognitive representations that represent

mommy. Section 4 will discuss how interactions between cognitive

and emotional representations are learned and how they focus

motivated attention upon a valued caregiver like mommy.

Language meaning is thus embodied in the interactions

between a language utterance and the perceptual and affective

experiences with which it is correlated, much as the word

“mommy” can activate a complex set of learned associations that

prime perceptual, cognitive, emotional, and action representations

that have been experienced during previous interactions with her.

When the word “mommy” is internally heard as a child thinks

about mommy, the activation of this language representation can

prime multiple perceptual and affective representations. Volitional

GO signals from the basal ganglia (Section 15) can then activate

internal visual experiences such as visual imagery and felt emotions,

thereby enabling a child or adult to understand the perceptual and

affective meaning of “mommy” without needing to observe her.

The OpenAI project ChatGPT (GPT, Generative Pre-trained

Transformer) has shown a remarkable ability to provide useful

answers in often impressive language about a broad number of

topics, as well as sometimes surprising failures to do so. ChatGPT

has acquired this ability after having been fed immense language

databases by human operators, as well as a probabilistic algorithm

to predict what comes next in its currently active linguistic context

(http://chat.openai.com; Newport, 2023).

In contrast to the biological neural network models that are

described below, ChatGPT cannot do fast incremental learning

with self-stabilizing memories about novel situations that include

unexpected events. In particular, it cannot rapidly learn about the

rare events that are often the basis of great discoveries, such as being

able to learn the first breakout of a new disease in an environment

where lots of people are sick with other diseases, or to make a great

scientific discovery based on just a few key facts combined with a

deep experimental intuition and a creative imagination. ChatGPT

cannot learn anything after its parameters are frozen before it is

used in applications.

ChatGPT would not seem nearly as impressive if it were

not being interpreted by humans who do know the real-world

meaning of the language that they use, including ChatGPT creators

and users.

Perhaps most importantly, and central to the main theme of the

current article, ChatGPT does not know the real-world meaning of

its predictions.

The current article describes brain processes that enable

humans to learn a language that expresses the meaning of

perceptually and affectively experienced events in the real world.

I call the neural model that accomplishes this ChatSOME (SOME

= Self-Organizing MEaning).

2. Building upon visual and auditory
circular reactions

Early steps in language development prepare a learned scaffold

upon which later learning of language meanings can build.

These processes are reviewed by Grossberg (2021). As noted

there, perception-cognition-action circular reactions occur during

auditory and visual development, to whose understanding the

pioneering Swiss clinical and developmental psychologist Jean

Piaget has richly contributed (e.g., Piaget, 1945, 1951, 1952). Recent

reviews and discussions of Piaget’s work include those of Singer

and Revenson (1997), Carey et al. (2015), and Burman (2021). In

particular, all babies normally go through a babbling phase during

which a circular reaction can be learned (Figure 1).

During a visual circular reaction, babies endogenously babble,

or spontaneously generate, hand/arm movements to multiple

positions around their bodies. Babbled movements endogenously

sample the workspace within which a baby can reach. As their

hands move in front of them, their eyes reactively look at their

hands. While the baby’s eyes are looking at its hands, an associative

map is learned from its hand positions to the corresponding

eye positions, and from its eye positions to hand positions. The

learned map between eye and hand in both directions is the

“circular” reaction.

After map learning occurs, when a baby, child, or adult looks at

a target position with its eyes, this eye position can use the learned

associativemap to prime the activation of amovement command to

reach the target position in space. If a volitional GO signal (Figure 1,

Right), or “the will to act”, is also activated by opening the correct

basal ganglia gate, then the chosen target position is fully activated

and enables a hand/arm movement to reach the foveated position

in space, as when a baby looks at her toes and then moves her

hands to hold them. Because our bodies grow for many years as

we develop from babies into children, teenagers, and adults, these

maps continue updating their learned parameters to enable control

of accurate movements using our current bodies and limbs.

An auditory circular reaction occurs during its babbling phase.

During an auditory circular reaction, babies endogenously babble

simple sounds that sweep out the workspace of sounds that they

can create. The babies also hear the sounds that they create. When

the motor commands that caused the sounds and the auditory

representations of the heard sounds are simultaneously active
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FIGURE 1

The DIRECT and DIVA models have homologous circuits to learn and control motor-equivalent reaching (Left) and speaking (Right), with tool use

within the hand-arm system, and coarticulation within the speech articulator system, resulting properties [Reprinted with permission from Grossberg

(2021)].

in the baby’s brain, a map is learned between these auditory

representations and the motor commands that produced them.

After enough map learning occurs, a child can use the map

to approximately imitate sounds from adult speakers. It can then

incrementally learn how to speak using increasingly complicated

speech and language utterances, again under volitional control.

Several biological neural network models have been developed

to explain how visual circular reactions enable reaching behaviors

to be learned (Bullock and Grossberg, 1988, 1991; Gaudiano and

Grossberg, 1991, 1992; Bullock et al., 1993, 1998), and auditory

circular reactions enable speech and language behaviors to be

learned (Grossberg, 1986; Grossberg and Stone, 1986; Cohen

et al., 1988; Guenther, 1995; Guenther et al., 2006). Grossberg

(2021) summaries solutions of the multiple design problems that

must be solved by each brain for these processes to work well,

including neural models that solve these design problems, and both

psychological and neurobiological data that support these models.

These processes enable babies to learn to imitate simple

sentences that adult caregivers say, such as “Mommy walk”,

“Mommy throw ball”, and so on.

3. Learning invariant categories of
valued objects: Where-to-What
stream interactions

Before a child can learn to say anything about, or to, mommy, it

must be able to notice that mommy is there by paying attention to

her. To explain this, I will review brain processes that contribute to

social cognition (Grossberg and Vladusich, 2010; Grossberg, 2021).

Before a child can pay attention to mommy, it must first

learn to recognize her face using both an invariant object category

representation as well as category representations of specific facial

views. The ARTSCAN Search model proposes how this happens

(Figure 2).

Such category learning can begin when the baby looks up

at mommy’s face, say during suckling or other close encounters

where mommy provides high-value primary rewards. The baby

then gradually learns view-specific category representations of

her face in the posterior inferotemporal cortex, or ITp, as well

as an invariant category representation of it in the anterior
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FIGURE 2

ARTSCAN Search model (Chang et al., 2014) macrocircuit: (A) These interactions of the ARTSCAN Search model enable it to learn to recognize and

name invariant object categories. Interactions between spatial attention in the Where cortical stream, via surface-shroud resonances, and object

attention in the What cortical stream, via feature-category resonances that obey the ART Matching Rule, coordinate these learning, recognition, and

naming processes (B). The ARTSCAN Search model can also search for a desired target object in a scene [Reprinted with permission from Grossberg

(2021)].

inferotemporal cortex, or ITa. The learned associations between

ITp and ITa are bidirectional (Figure 2A), as during all object

learning processes that are capable of dynamically stabilizing

their learned memories, as modeled by Adaptive Resonance

Theory, or ART (Grossberg, 1978a, 2019, 2021; Carpenter et al.,

1989; Grossberg and Wyse, 1992; Fazl et al., 2009; Cao et al.,

2011; Grossberg et al., 2011b,c, 2014; Chang et al., 2014;

Section 21).

The bottom-up pathways from ITp to ITa are an adaptive

filter for learning the invariant category’s adaptive weights.

The adaptive weights in the top-down pathways from ITa

to ITp learn expectations that focus attention on the critical

features that are used to recognize object views in ITp. The

reciprocal excitatory interactions between ITp and ITa trigger

a category-to-category resonance that dynamically stabilizes the

memories that are learned by adaptive weights in both the

bottom-up and top-down pathways. ART is said to solve

the stability-plasticity dilemma because it can support fast

incremental learning of such categories without experiencing

catastrophic forgetting.

An invariant object representation in ITa is learned by being

associated with multiple view-specific representations that are

learned in ITp. This is proposed to happen as follows: The first

ITp representation to be learned activates an initially uncommitted

cell population in ITa that will become the invariant category

representation. To become an invariant object representation, this

chosen cell population in ITa must remain active while multiple

view-specific representations in ITp are associated with it as the

observer inspects the object.

Each view-specific category in ITp is inhibited, or reset (see

category reset stage in Figure 2), when the next one is activated,

learned, and associated with the emerging invariant category in

ITa. Why is the ITa representation not reset when this happens,

since it was originally activated by the first ITp representation to be

reset? This is explained by how the child’s spatial attention sustains

its focus on mommy’s face with a surface-shroud resonance that

prevents reset of the ITa representation while the baby attends

multiple views of mommy’s face (Fazl et al., 2009). An active shroud

inhibits the category reset processing stage that would otherwise

have inhibited ITa. Each ITp view-specific category that is learned

can then be associated with the persistently active ITa category,

thereby converting it into an invariant object category.

An attentional shroud is spatial attention that fits itself to

the shape of the object surface that is being attended (Tyler and

Kontsevich, 1995). When spatial attention shifts to another object,

the category reset stage is disinhibited and learning of a new

invariant category can begin.

A surface-shroud resonance is depicted in Figure 2A between

visual cortical area V4 (lumped with V2 as V2/V4 in the

figure) and the posterior parietal cortex, or PPC. A gain field

in the lateral intraparietal area, or LIP, occurs between these

cortical areas to carry out the change of coordinates from

retinotopic surface coordinates of the attended object’s view-

specific categories to head-centered spatial attention coordinates of

the invariant category.

ITp-ITa category learning goes on in the ventral, or What,

cortical processing stream. Modulation of ITa learning by an

attentional shroud is due to Where-to-What stream signals that

occur while a surface-shroud resonance is active between the

attended object’s surface representation in cortical area V4 of the

What stream and the shroud in the posterior parietal cortex, or

PPC, of the dorsal, or Where, stream.
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In summary, a surface-shroud resonance between V4 and

PPC sustains spatial attention on mommy’s face during invariant

category learning between ITp and ITa. Recurrent inhibitory

interactions occur within these cortical regions to select the

most predictive cell representations, focus attention on them, and

suppress outlying features (Figure 2A).

While a surface-shroud resonance modulates invariant

category learning in the What stream, it also supports conscious

seeing of the surface representation in V4 upon which PPC

maintains spatial attention.

Figure 2B shows the brain regions whereby a search can be

carried out for a desired target object in a cluttered scene, thereby

solving the Where’s Waldo problem (Chang et al., 2014).

Supportive psychophysical and neurobiological data are

reviewed in Grossberg (2021), whose Chapter 3 explains how

boundaries and surfaces interact to generate percepts of rounded

shapes like a ball.

4. Cognitive-emotional interactions
focus motivated attention on a valued
caregiver’s face

A baby can learn its mommy’s face while she is engaged in

actions that reward the baby, notably feeding it with her breast

or a bottle. The milk, warmth, comfort, happiness, etc. that are

experienced during feeding are all positively rewarding. As category

learning occurs, categories that persist over time, notably the

emerging invariant face category, are bidirectionally associated

with positive emotional centers, also called drive representations

or value categories, that are activated in the baby’s brain by

mommy’s rewarding activities. These drive representations are in

the amygdala/hypothalamic system.

A neural model of cognitive-emotional resonances, called

the Cognitive-Emotional-Motor, or CogEM (Figure 3), has

been incrementally developed to achieve an ever-broadening

interdisciplinary explanatory range (Grossberg, 1971a,b, 1972a,b,

1974, 1975, 1978b, 1982, 1984a,b, 2018, 2019; Grossberg and

Levine, 1987; Grossberg and Schmajuk, 1987, 1989; Fiala et al.,

1996; Dranias et al., 2008; Grossberg et al., 2008; Chang et al., 2014;

Franklin and Grossberg, 2017). Cognitive-emotional resonance

links attended objects to feelings. Its positive feedback loop

associates an invariant object category with an active drive

representation. The positive feedback loop generates conscious

feelings about the attended object while maintaining motivated

attention on the object and reading-out commands for actions that

realize currently valued goals.

After category learning and cognitive-emotional learning occur,

when the baby and its mommy are in different spatial locations, the

baby’s attention is drawn towhatever familiar view ofmommy’s face

is seen. If an unfamiliar view is similar to a familiar one, then the

most similar familiar view category is activated.

Whereas invariant category learning requires aWhere-to-What

interaction between cortical streams, orienting to a valued familiar

face requires a What-to-Where stream interaction (Figure 2B).

Such an interaction is needed because the motivationally amplified

FIGURE 3

Macrocircuit of the functional stages and anatomical interpretations

of the Cognitive-Emotional-Motor, or CogEM, model [Reprinted

with permission from Grossberg (2021)].

invariant face category in ITa, being positionally invariant, cannot

directly control orienting to a particular position in space.

However, the invariant ITa category of mommy’s face is

amplified by cognitive-emotional feedback. The invariant category

can then prime all the ITp view-specific categories of mommy’s face

(Figure 2A). Bottom-up inputs from a current view of mommy’s

face (green arrow from the object’s boundary representation in

Figure 2A) determine which ITp category will fire.

Such an ITp category is both view-specific and positionally

specific. It can, in turn, trigger reciprocal excitatory interactions

with the surface representation in cortical area V4 of the object view

that it categorizes (Figure 2A). When this surface representation is

amplified, it triggers a surface-shroud resonance that most strongly

activates the object’s position via spatial attention in PPC, while

inhibiting other positions via recurrent inhibition across PPC. PPC

can then command looking, reaching, and other actions directed

toward the position of mommy’s face.

These interactions have beenmodeled by the ARTSCAN Search

model (Chang et al., 2014). Figure 2A provides a block diagram of

the Where-to-What and What-to-Where stream interactions for

learning invariant object recognition categories. Figure 2B shows

how categories that are currently valued can control actions to look

at and acquire them.

5. Joint attention: how looking at a
valued face triggers learned orienting
to an attended object

How does a baby learn to associate an attended view of

mommy’s face with the position in space where she is looking or

pointing? (Tomasello and Farrar, 1986; Emery et al., 1997; Deák

et al., 2000; Frischen et al., 2007; Materna et al., 2008). For starters,

as mommy moves her arm, and perhaps her body too, to point to

something for the baby to look at, spatial attention can flow from

mommy’s attended face representation along her arm to her hand.
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5.1. G-waves: long-range apparent motion
helps to track attended moving objects

I call such a flow of spatial attention a G-wave, or Gauss-

wave (Figures 4A–C), because it describes how attention

smoothly flows along successive positions on mommy’s

body, starting with an attended initial position and ending

at a moving target position. I discovered G-waves to model

psychophysical data about long-range apparent motion (Grossberg

and Rudd, 1989, 1992; Francis and Grossberg, 1996a,b; Grossberg,

2014).

The simplest example of long-range apparent motion occurs

when two flashes occur at different positions at successive times.

Within a range of spatial separations and temporal delays, observers

perceive a smooth motion from the first flash to the second.

This visual illusion is called beta motion (Exner, 1875; Kolers,

1972). Long-range apparent motion is not just a laboratory

curiosity. Many motion percepts that are important for survival

are long-range apparent motion percepts in naturalistic settings,

such as continuous tracking of a prey or predator as it darts

behind successive bushes or trees at variable speeds. G-waves

also exhibit these properties, including flowing behind occluding

objects to maintain attention on the moving target (Grossberg,

2021).

5.2. Learning an association from a view of
mommy’s face to the position of her hand
in space

As noted above, a G-wave can travel from mommy’s face to

her hand as she points at an object of interest. An association

can then be learned from the view-specific category of mommy’s

face to the final position of her hand in space. The TELOS model

simulates how such an association is learned (Brown et al., 2004).

This view-specific category can, during subsequent experiences, use

the learned association to predict where mommy is looking and

thus to enable a baby or child to look in the direction that mommy

is looking, whether or not she is pointing there.

The MOtion DEcision, or MODE, model of Grossberg and

Pilly (2008) defines and simulates on the computer the motion

processing stages that compute the direction of object motion

and convert it into saccadic eye movements that maintain fixation

upon a moving target. Figure 5 summarizes the multiple processing

stages in the Where stream whose interactions accomplish this.

The first problem that MODE solves is the aperture problem

(Guilford, 1929; Wallach, 1935 [English translation by Wuerger

et al., 1996]), whereby our brains transform directionally

ambiguous motion information received by our retinas into a

representation of an object’s motion direction and speed. Figure 6

illustrates this problem. Wallach (1935) noted that a moving line

that is seen within a circular aperture always looks like it is

moving in a direction perpendicular to its orientation, no matter

what its real motion direction is. That is because all local motion

signals are ambiguous (purple arrows). In a rectangular aperture,

feature tracking signals (green arrows) define a consistent direction.

MODE chooses this consistent motion direction while suppressing

ambiguous directions. This choice process is called motion capture

(Grossberg, 2021).

MODE also converts the direction of object motion into a

command in that direction. When a target unpredictably changes

its direction and speed of motion, additional interacting brain

regions coordinate saccadic and smooth pursuit eye movements to

maintain fixation (Grossberg et al., 2012).

6. Learning to associate seeing
mommy with her name: building on
circular reactions

As learning of mommy’s invariant face category stabilizes,

the baby can learn to associate it with an auditory production

of mommy’s name. This ability also requires a Piagetian circular

reaction. As noted in Section 2, this auditory circular reaction

occurs during its own babbling phase (Figure 1). During it, babies

endogenously babble the simple sounds that they can create. The

babies also hear the sounds that they create via auditory feedback.

The auditory representations of the heard sounds are associated

with the motor commands that caused these sounds.

A child uses the learned map to approximately imitate sounds

that they hear from adult speakers. Their approximations of

adult sounds may initially be coarse, but with the help of

adult feedback and passive hearing of other speakers’ utterances,

the map is incrementally refined, leading to adult speech and

language utterances.

As in the case of the visual circular reaction for looking and

reaching, the auditory circular reaction for speaking is also under

volitional control by the basal ganglia.

If mommy responds positively to hearing her name called,

the child’s resultant feelings can trigger cognitive-emotional

interactions that strengthen the learned association between seeing

mommy and saying mommy.

7. Learning categories of mommy’s
movements: illuminants, boundaries,
surfaces, and rebounds

Before a child can learn a short sentences such as “mommy

points” or “mommy walks”, the child must first learn to recognize

her movements and learn names for them. Suppose that a child

sees one side of mommy as she walks, how does the child’s brain

represent any object’s motion? How does it represent the motion of

a complex form like a human body?

Section 5 reviewed how a G-wave can track a moving object,

such as mommy’s hand as she points. It can also track mommy’s

moving body. Before an extended object like a body can be tracked,

however, the baby’s brain needs to preprocess the visual signals

that it receives on its retinas from the object to create a sufficiently

complete and stable representation of her body that can be tracked.

Objects are often seen in multiple lighting conditions. A baby

needs to compensate for them by discounting the illuminant to

prevent confusion of object form with ever-changing conditions of

object illumination. Discounting the illuminant is accomplished by

Frontiers in Psychology 07 frontiersin.org

https://doi.org/10.3389/fpsyg.2023.1216479
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Grossberg 10.3389/fpsyg.2023.1216479

FIGURE 4

Long-range apparent motion: (A) As a flash waxes and wanes through time, so too do the activities of the cells in its Gaussian receptive field. Because

the maximum of each Gaussian occurs at the same position, nothing is perceived to move. (B) If two flashes occur in succession, then the cell

activation that is caused by the first one can be waning while the activation due to the second one is waxing. (C) The sum of the waning Gaussian

activity profile due to the first flash and the waxing Gaussian activity profile due to the second flash has a maximum that moves like a traveling wave

from the first to the second flash [Adapted with permission from Grossberg (2021)].
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FIGURE 5

The MODE model (Grossberg and Pilly, 2008) uses motion preprocessing stages, collectively called the Motion BCS [green letters], as its front end,

followed by a saccadic target selection circuit in the model LIP region [red letters] that converts motion directions into movement directions. These

movement choices are also under basal ganglia (BG) control. MT, Middle Temporal area; MSTv, ventral Middle Superior Temporal area; LIP, Lateral

Intra-Parietal area [Reprinted with permission from Grossberg (2021)].

FIGURE 6

The perceived direction of an object is derived either from a small subset of feature tracking signals (green arrows), or by voting among ambiguous

signals when feature tracking signals are not available (purple arrows), to determine an estimate of object motion direction and speed (outline red

arrow) [Reprinted with permission from Grossberg (2021)].
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FIGURE 7

“Every line is an illusion” because regions of the line that are

occluded by the blind spot or retinal veins (top figure: the occluded

retinal input is a series of black colinear fragments) are completed at

higher levels of brain processing by boundary completion (second

figure down: dotted lines indicate boundary completion) and surface

filling-in (third figure down: bidirectional arrows indicate filling-in

within the completed boundaries), to yield a solid connected bar

(fourth figure down) [Reprinted from Grossberg (2021)].

a recurrent on-center off-surround network whose neurons obey

the membrane equations of neurophysiology, also called shunting

interactions (Grossberg, 1988; Grossberg and Todorovic, 1988;

Hong and Grossberg, 2004; Grossberg and Hong, 2006). Such a

recurrent competitive field (Grossberg, 2013) occurs at multiple

stages of neuronal processing, including the retina (Grossberg,

1987a,b; Grossberg and Hong, 2006).

After discounting the illuminant, multiple interacting

cortical processing stages complete the boundary and surface

representations that are used to recognize mommy. Boundaries and

surfaces are incomplete when registered by a retina because retinas

contain a blind spot where signals from retinal photodetectors

send their signals along axons to form the optic nerve. The blind

spot is as large as the fovea, but we never see it. The retina is also

covered by nourishing veins. These occlusions are also not seen

(Kolb, H. Webvision: The Organization of the Retina and Visual

System: http://webvision.med.utah.edu/book/part-i-foundations/

simple-anatomy-of-the-retina/).

These gaps in retinal processing do not interfere with conscious

vision because our eyes jiggle rapidly in their orbits, thereby

creating transient signals from even stationary objects. These

transients refresh the firing of retinal neurons. Because the blind

spot and retinal veins are attached to the retina, they create no

transients. Their inputs, therefore, fade, resulting in a retinal image

where light is occluded at multiple positions (Figure 7).

The visual cortex uses multiple processing stages to complete

boundaries and surfaces over these occluded positions. I call

this process hierarchical resolution of uncertainty (Grossberg and

Mingolla, 1985a,b; Grossberg, 1987a,b, 1994, 2021; Grossberg

and Todorovic, 1988). Completed boundary and surface

representations of mommy’s form are computed in cortical

FIGURE 8

A gated dipole opponent process can generate a sustained

habituative ON response in its ON channel in response to a steady

input, J, to it, and a transient antagonistic rebound from its OFF

channel in response to o�set of J [Reprinted with permission from

Grossberg (2021)].

area V4 of the What cortical stream (Grossberg, 1994, 1997, 2016;

Grossberg and Pessoa, 1998; Kelly and Grossberg, 2000; Grossberg

and Swaminathan, 2004).

Mommy’s motion could produce streaks of persisting

representations of her form at her earlier positions, much like

a moving comet leaves a tail. Such persisting streaks could

seriously degrade percepts of a scene, as well as recognition of

mommy’s form. Remarkably, these streaks are limited by the same

mechanism that generates a representation of mommy’s form,

notably a gated dipole opponent process (Figure 8). A gated dipole

ON channel selectively responds to the onset of mommy’s image at

its position(s). As mommy moves off a position, the gated dipole

OFF channel at that position triggers a transient antagonistic

rebound which inhibits the ON response to mommy, thereby

limiting its persistence (Francis et al., 1994; Francis and Grossberg,

1996a,b; Grossberg, 2021).

8. Learning categories of mommy’s
movements: What-to-Where
FORMOTION interactions

A series of changing positions of a moving form like mommy

is computed in the What cortical stream. Perceiving a series of

an object’s changing positions is not, however, the same thing as

perceiving its motion. Indeed, object motion is computed in the

Where cortical stream.

Frontiers in Psychology 10 frontiersin.org

https://doi.org/10.3389/fpsyg.2023.1216479
http://webvision.med.utah.edu/book/part-i-foundations/simple-anatomy-of-the-retina/
http://webvision.med.utah.edu/book/part-i-foundations/simple-anatomy-of-the-retina/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Grossberg 10.3389/fpsyg.2023.1216479

Computations of form andmotion are done in separate cortical

streams because object form is sensitive to the orientation of an

object’s boundaries, whereas object motion is sensitive to an object’s

direction of motion. A good estimate of motion direction pools

directional estimates from all an object’s boundaries, across all

their different orientations, that move in the same direction. A

computation of motion direction hereby destroys the information

that computes object orientation.

These parallel computations of object form and object

motion are computationally complementary (Grossberg, 1991).

The What stream uses representations of object form to learn

categories whereby to recognize objects. The Where stream uses

representations of object motion to navigate while avoiding

obstacles in cluttered scenes and to trackmoving targets (Grossberg

et al., 1999; Browning et al., 2009a,b; Elder et al., 2009; Grossberg,

2021).

The Where stream needs a complete visual representation of

an object’s form to successfully track it. Such a representation in

theWhat stream is topographically mapped into theWhere cortical

stream whose dynamics can track its motion through time. The 3D

FORMOTION model simulates how this happens (Berzhanskaya

et al., 2007).

When a complex object like mommy walks or points, different

parts of her body move with different directions and speeds. Leg

movements while walking, and arm movements while pointing,

are perceived relative to the reference frame of mommy’s moving

body that is tracked to keep her foveated. The MODE, or

Motion DEcision, model (Grossberg and Pilly, 2008) explains how

tracking happens (Figure 5). Grossberg et al. (2011a) and Grossberg

(2021) further explain how mommy’s body, and her arm and leg

movements relative to it, are simultaneously perceived.

9. Peak shift and behavioral contrast:
computing relative directions of
moving parts and wholes

How did evolution discover how to compute object reference

frames and the relative motion of object parts? An elementary

neural property that occurs in multiple parts of the brain is used.

It is called peak shift and behavioral contrast. This property occurs

in all recurrent shunting on-center off-surround networks whose

cells interact via Gaussian receptive fields when two inputs occur

with the following properties.

Suppose, in addition, that these neurons respond selectively to

different motion directions in a topographic map (Figure 9),

in particular, cells that are sensitive to oblique-upward

motion directions occur between cells that are sensitive to

upward and horizontal motion directions. Likewise, cells

that are sensitive to oblique-downward motion directions

occur between cells that are sensitive to downward and

horizontal directions.

Motion directional inputs from mommy’s body and her arm

to such a network lead to a vector decomposition under the

following conditions: suppose that the horizontal motion direction

of mommy’s body activates a horizontally tuned motion direction

cell in themiddle of its Gaussian on-center (Figure 9), while oblique

motion directions of mommy’s arm activate the Gaussian off-

surround of the horizontal motion direction cell. When the oblique

velocity vectors are subtracted from the horizontal velocity vector

through time, the resulting velocity vectors generate oscillatory

motion vectors of the arm’s motion directions relative to the

horizontally moving body.

Classical examples of such vector decompositions include the

in-and-out motion direction percepts of dots relative to the moving

frame that they define (Johansson, 1950) and rotational motion

percepts of a wheel’s spokes relative to the horizontal motion

of its axel (Duncker, 1929/1938). Figure 9 shows how peak shift

and behavioral contrast separate common motion direction from

relative motion direction in response to a Johansson (1950) display.

These percepts are explained and simulated in Grossberg et al.

(2011b) and reviewed in Grossberg (2021).

As mommy walks, her leg that is further from the child is

partly occluded to different degrees by the closer leg. A completed

percept of the partially occluded leg is created and maintained

using boundary and surface completion processes that realize

figure-ground separation (Grossberg, 1994, 1997, 2016, 2021; Kelly

and Grossberg, 2000). The completed representations can then be

recognized while the child’s brain computes their motion directions

and speeds.

The chopsticks illusion of Anstis (1990) illustrates these

properties using simpler stimuli; namely, a pair of rectangular black

chopsticks moving in opposite directions on a white background,

much as mommy’s legs do.

10. Learning to say “mommy walks
left” while observing her movements:
nouns and verbs

How does a child’s brain learn both a perceptual category and

a language category for “walk” and “walking”? In particular, how

is the perceptual representation of the verb in “mommy walk(s)”

represented in the brain?

To do this, a view, or succession of views, of mommy standing

up with her legs on the ground in a characteristic walking pose is

classified, despite variations in perceptual features that differ across

individuals who walk. Large receptive fields average across these

details to extract mommy’s overall shape and silhouette.

Multiple oriented scales, or filter sizes, from fine to coarse,

initially process all incoming visual information. Higher-order

processing stages select the scales that are most informative in

different situations by associating them all with their predictive

consequences. Only the informative scales will learn strong

associations. Thus, as finer scales learn to categorize mommy’s

facial views, coarser scales learn to categorize actions like walking.

Suppose that the co-occurrence of two perceptual categories—

of mommy’s face and her walk pose—together trigger learning of a

category that selectively fires when mommy walks, this conjunctive

category can be associated via learning with the heard utterance

“mommy walks” or “mommy is walking” via a bi-directional

associative map.

A single pose of walking is often enough to recognize walking,

just as a single pose of standing is enough to recognize that posture.
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FIGURE 9

(Left) The upper left black dot moves up and down while the lower right black dot moves left (blue arrow) and right. Under proper spatial separations

and motion speeds, the dots are perceived to be moving back and forth (red arrow) to and from each other, as their common motion moves

diagonally downwards (green arrow). (Right) This motion illusion is due to a directional peak shift (red Gaussian) in a directional hypercolumn

(spatially arrayed orientationally tuned cells). The common motion direction activates an inhibitory Gaussian receptive field (green), while the

horizontal part of motion activates an excitatory Gaussian receptive field (blue) over the directional hypercolumn. When these inhibitory and

excitatory Gaussians interact, the result is an excitatory Gaussian (red) whose maximal activity is shifted away from the inhibitory Gaussian (peak shift).

Because interactions across this recurrent shunting on-center o�-surround network are normalized, the red Gaussian, being narrower than the blue

Gaussian, has higher maximal activity, thereby causing behavioral contrast [Reprinted with permission from Grossberg (2021)].

Recognition of movements that cannot be effectively categorized

using a single pose requires the Where cortical stream.

11. Learning to recognize movement
direction and using it to track a
moving target

As I noted in Section 5, interacting brain regions control eye

movements that maintain the foveation of an attended moving

object like mommy. Suppose that the linear motion of mommy’s

body activates a long-range directional filter. Such a filter has an

elongated shape that adds inputs from an object’s motion signals

over time that move in its preferred direction when they cross

its receptive field (Figure 10). Arrays of such filters exist in the

Where cortical stream, each tuned to a different preferred direction

(Albright, 1984; Rodman and Albright, 1987). These filters compete

across directions at each position to choose the filter, or a nearby

subset of filters, that is most activated by the moving object. They

are a Where stream analog of the orientation columns in cortical

area V1 of the What stream (Hubel and Wiesel, 1962, 1968, 1977).

Suppose that, when a directional filter is activated enough to

fire for a sufficiently long time, its signals trigger learning of a

directional motion category in the Where stream (Farivar, 2009).

This category can then be associated, through learning, with a word

or phrase in the What stream that best describes it, such as “left”.

When the perceptual categories for recognizing “mommy”,

“walks”, and “left” are learned, they can be associated with a phrase

like “mommy walks left” uttered by an adult speaker, as explained

in Section 14.

12. Learning to say “mommy throws
the ball” while observing her
movements

How does a baby or child learn to say “Mommy throws ball”

while observing mommy doing that? The first part of the sentence,

“Mommy throws” can be understood in much the same way as

“Mommy walks”. Suppose the child sees mommy in a profile view

pull her arm back before thrusting it forward. Either extreme arm

position may be sufficient to learn a category for “throw” in the

What stream. The movement’s motion can also be categorized in

the Where stream.

If the arm that mommy uses to throw the ball is further away

than her body, and thus partially occluded by her body during the

movement, then a G-wave from the pulled-back location of her arm

to its thrust forward position can flow “behind” her body, much as

G-waves can flow behind scenic clutter when tracking a predator or

prey (Grossberg, 1998, 2021).

As mommy completes the throw, a ball emerges from her hand

and moves in the same direction. Often, attention will first focus

on mommy’s face. When the ball is thrown, attention flows to her
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FIGURE 10

A directionally tuned motion-sensitive cell pools all possible

contrast-sensitive sources of information that are moving in its

preferred direction, and at similar motion directions. In this figure,

the black rectangle is moving diagonally upwards. The directional

motion cell (green ellipse) has a similar preferred motion direction. It

pools diagonal motion signals from both the black-to-white vertical

right-hand edge of the rectangle and the white-to-black horizontal

bottom edge of the rectangle [Reprinted with permission from

Grossberg (2021)].

arm, and then to the ball, via a G-wave. This temporal sequence

of recognition events is thus: mommy, throws, ball. Perceptual

categories that correspond to these events are activated and stored

in a perceptual working memory in their correct temporal order,

and trigger learning of a sequence category, or list chunk. A

heard sentence category of “mommy throws ball” can be stored

in a linguistic working memory, and trigger learning of its own

list chunk. The linguistic list chunk learns an association to the

perceptual list chunk, and conversely. These list chunks also send

learned top-down signals to the workingmemory patterns that they

categorize, which can be read out from working memory in the

correct order, under volitional control by a GO signal from the basal

ganglia. Seeing these events can hereby elicit a descriptive sentence

(see Sections 14 and 15 for details).

13. Learning to say “watch mommy
throw the ball” before or as she does
so: nouns and verbs

A sentence such as “watch mommy throw the ball” or “Look at

mommy throw the ball” can prime a child to orient to the mommy

to experience her throwing the ball. Such priming is based on

previous learning experiences.

First, a baby or child learns the meaning of the command to

“Watch” or “Look” from a teacher who points in the direction

that the baby or child should look while one of these words is

uttered. Learning this skill required the social cognitive ability to

share joint attention between the pointing teacher and the student.

How our brains accomplish this feat was discussed in Section 5. The

learner’s attention can hereby shift to foveate mommy in response

to the word “Watch” or “Look” while a teacher looks at and points

to mommy.

The teacher may also utter the word “mommy” to form the

sentence “Watch mommy”. How is the meaning of the sentence

“watch mommy” learned? The words “Watch” and “mommy” get

stored in working memory in the correct temporal order, and then

trigger learning of a list chunk. As this is occurring, the baby or

child is orienting toward mommy’s face.

The list chunk can learn to activate an invariant face category of
mommy, which reads out priming signals that subliminally activate

all the view-selective and position-selective categories of mommy’s
face. The view category that codes the view and position in the
visual field where mommy’s face is observed will be activated for

suprathreshold activities. Because of its position-selectivity, this
view category in theWhat cortical stream can then read out amotor
priming command to the corresponding positional representation
of mommy’s face in the Where cortical stream via a What-to-

Where interaction.

When the position of mommy’s face is primed, activation of
the list chunk that codes “watch mommy” can also activate a non-

specific GO signal from the basal ganglia to the Where cortical
stream. Taken together, the positional prime and the GO signal
fully activate the primed position and thereby elicit orienting

movements to foveate mommy.

With this background, we can ask what parts of the brain
are used to store and understand the sentence “Watch mommy

throw the ball”? For starters, note that the meanings of the
verbs “watch” and “throw” are understood by using cortical
representations in the Where stream. In contrast, the meanings of

nouns such as “mommy” and “ball” are understood by activating
cortical representations in the What, cortical stream. Both noun
and verb word representations are stored in the temporal and

prefrontal cortices.

Thus, understanding the meaning of the sentence “Watch

mommy throw the ball” requires alternate switching between the
noun and verb representations in the What and Where cortical
streams, respectively. Words like the article “the” that helps to

structure sentences are part of syntactics and are discussed in

Section 16.

In contrast, the branch of linguistics that is concerned with

meaning is called semantics. Unlike the present article, traditional

semantic studies do not link the language that embodies meanings

with the real-word perceptual and affective experiences that they

denote during language learning, e.g., Jackendoff (2006).

14. Temporary storage of linguistic
items in working memory and their
learned list chunks

Before continuing with our analysis of how a baby or

child can learn language meanings, I will review some basic

concepts about what working memories are and how they

work. Working memories, and models thereof, temporarily

store sequences of items or events as item chunks. An item

chunk responds selectively when the distributed features
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that it represents are presented (e.g., a phoneme or musical

note). Every time that we attentively listen to a sufficiently

short series of words, they can be stored in a linguistic

working memory, like the sentence: “Watch mommy throw

the ball”.

If certain sequences of words are repeated often enough,

they can be learned by a process that is alternately called

unitization or chunking. If a series of words can be unitized

into a single chunk that is called a list chunk, it selectively

responds to prescribed sequences of item chunks that are

stored in working memory (e.g., a word or the lyrics of a

familiar song). These processes occur in brain regions like the

ventrolateral prefrontal cortex (VLPFC) and dorsolateral prefrontal

cortex (DLPFC).

Interactions of list chunks with other brain regions, including

perirhinal cortex (PRC), parahippocampal cortex (PHC), amygdala

(AMYG), lateral hypothalamus (LH), hippocampus (HIPPO),

and basal ganglia (BG), enable predictions and actions to be

chosen that are most likely to succeed based on sequences

of previously rewarded experiences. Figure 11 summarizes

a model macrocircuit of the predictive Adaptive Resonance

Theory, or pART, model of cognitive and cognitive-emotional

dynamics that explains how these interactions work. The

seven relevant prefrontal regions that are involved in storing,

learning, and planning sequences of events are colored green in

Figure 11.

Grossberg (1978a,b) introduced a neural model of working

memory, which has been incrementally developed to the present

time. In it, a sequence of inputs that occurs one at a time is

stored as an evolving spatial pattern of activation of item chunks

that code the cell populations of the working memory (Figure 12).

This working memory model is called an Item-and-Order model

because individual cell populations represent list items, and their

temporal order of occurrence is stored by an activity gradient across

the populations (Figure 12).

A generalization of this model, called the Item-Order-Rank,

or IOR, model, enables lists of items to be stored in which some

of the items are repeated, such as repeated letters, as in the

sequence “ABACBD”, or repeated words, as in “my true love is

true” (Bradski et al., 1994; Grossberg and Pearson, 2008; Silver

et al., 2011; Grossberg, 2018, 2022). Other kinds of events can

also be temporarily stored in working memory, such as the turns

taken during navigation to a goal, the armmovements made during

a dance, or the notes played in a musical melody. Remarkably,

a single canonical circuit design, suitably specialized, can store

auditory, linguistic, spatial, ormotor sequences inmultiple working

memories that operate in parallel in the prefrontal cortex.

Why should we believe that IOR working memories exist in

the brain? As reviewed elsewhere (Grossberg, 2021, 2022), they

provide unified and principled explanations of many psychological

and neurobiological data about working memory and list chunk

dynamics. No less important is the fact that they explain why and

how sequences of items and events that are stored in working

memory are learned and stably remembered through time as

list chunks.

Item-and-Order working memories are a unique kind of

circuits that embody two simple postulates that enable their list

FIGURE 11

Macrocircuit of the main brain regions, and connections between

them, that are modeled in the predictive Adaptive Resonance

Theory (pART) of cognitive-emotional and cognitive working

memory dynamics. Abbreviations in red denote brain regions used

in cognitive-emotional dynamics and those in green denote brain

regions used in working memory dynamics. Black abbreviations

denote brain regions that carry out visual perception, learning, and

recognition of visual object categories, and motion perception,

spatial representation, and target tracking. Arrows denote

non-adaptive excitatory synapses. Hemidiscs denote adaptive

excitatory synapses. Many adaptive synapses are bidirectional,

thereby supporting synchronous resonant dynamics among

multiple cortical regions. The output signals from the basal ganglia

that regulate reinforcement learning and gating of multiple cortical

areas are not shown. Also not shown are output signals from

cortical areas to motor responses. V1, striate, or primary, visual

cortex; V2 and V4, areas of prestriate visual cortex; MT, middle

temporal cortex; MST, medial superior temporal area; ITp, posterior

inferotemporal cortex; ITa, anterior inferotemporal cortex; PPC,

posterior parietal cortex; LIP, lateral intraparietal area; VPA, ventral

prearcuate gyrus; FEF, frontal eye fields; PHC, parahippocampal

cortex; DLPFC, dorsolateral hippocampal cortex; HIPPO,

hippocampus; LH, lateral hypothalamus; BG, basal ganglia; AMGY,

amygdala; OFC, orbitofrontal cortex; PRC, perirhinal cortex; VPS,

ventral bank of the principal sulcus; VLPFC, ventrolateral prefrontal

cortex [Reprinted with permission from Grossberg (2021)].

chunks to be learned and stably remembered: the LTM Invariance

Principle and the Normalization Rule. These postulates were used

to derive mathematical equations for Item-and-Order working

memories when they were first introduced by Grossberg (1978a,b).

The LTM Invariance Principle prevents the storage of longer

lists of events in working memory (such as MYSELF) from causing

catastrophic forgetting of previously learned list chunks of its

shorter sublists (such as MY, SELF, and ELF). It guarantees that,

if bottom-up inputs lead to storage of a familiar list chunk, say for

the word MY, then storing the word SELF to complete storage of

the novel word MYSELF will not cause forgetting of the learned

weights that activated the list chunk of MY.

The Normalization Rule just says that the maximum total

activity that is stored across a working memory is independent of

the number of activated cells. This Rule follows from the fact that

the cells in an Item-and-Order working memory compete among

themselves via a recurrent shunting on-center off-surround network

(Figure 12; Section 7). Such networks occur ubiquitously in our
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FIGURE 12

Item-and-Order working memory model: Primacy gradient of

activity (hatched vertical rectangles) stored in working memory

within a recurrent shunting on-center (vertical curved green

recurrent arrows) o�-surround (horizontal recurrent dashed red

arrows) network. Rehearsal is controlled by a non-specific rehearsal

wave (diverging green diagonal arrows) followed by self-inhibitory

feedback of the item that is currently being rehearsed (vertical

dashed red arrow) [Reprinted with permission from Grossberg

(2021)].

brains because they solve what I have called the noise-saturation

dilemma (Grossberg, 1973, 2021). Simply put, the cells in such a

network can store the relative sizes, and thus importance, of inputs

in their activities without flattening the pattern of activity with

saturation, or obscuring them in cellular noise.

The LTM Invariance Principle and Normalization Rule also

imply that only short lists can be stored in working memory in a

way that enables their performance in the correct temporal order.

In particular, a stored primacy gradient of activity enables items to

be recalled in the correct temporal order. In a primacy gradient,

the first item in the sequence is stored in working memory with

the most activity, the second item in the sequence activates its item

chunk with the next largest activity, and so on, until all items are

stored (Figure 12). For example, the primacy gradient that stores a

sequence “A-B-C” of items stores “A” with the highest activity, “B”

with the second highest activity, and “C” with the least activity.

A stored spatial pattern in working memory is recalled as a

temporal sequence of items when a rehearsal wave uniformly, or

non-specifically, activates all the working memory cells (Figure 12).

This rehearsal wave is emitted by the basal ganglia, or BG

(Figure 11). The cell population with the highest activity is read

out fastest because it exceeds its output threshold fastest. While

it is read out, it self-inhibits its working memory representation

via a recurrent inhibitory interneuron (Figure 12), a process

that is called the inhibition-of-return in the cognitive science

literature (Posner et al., 1985). Inhibition-of-return prevents

the perseverative performance of the most recent item. Each

rehearsed item representation self-inhibits, therefore enabling the

cell population with the next largest activity to be read out until the

entire sequence is performed. Much data about working memory

dynamics are explained and quantitatively simulated using an Item-

and-Order model by Grossberg and Pearson (2008) and reviewed

by Grossberg (2021).

The flexibility of workingmemorymakes it possible to assemble

novel sentences on the fly, since all that matters, after multiple

sources may input to the working memory, is the final activity

gradient that determines the temporal order in which the words

in a phrase are performed. Phrases that are stored using a primacy

gradient can then be performed in the order that they are loaded

into workingmemory. As inmusical performance, such a grouping,

or phrase, is stored before being unitized into list chunks that enable

the automatic future performance of whole sequences of words.

Just three interacting processing levels are sufficient to store,

learn, and perform long sequences of items or events that include

repeats, such as in the lyric “our true love was true”. Our brains do

not need, nor do they have, many processing levels to store, learn,

and perform sequential behaviors. Figure 11 illustrates that each

brain region carries out different tasks with its own characteristic

anatomy, in contrast to Deep Learning models that may include

over 100 networks in a hierarchy, each with similar connectivity

(Srivastava et al., 2015).

15. The basal ganglia gate cortical
representations of percepts, concepts,
feelings, and actions

All parts of our brain, including cognitive and motor

working memories, are gated ON and OFF by the basal ganglia,

which are part of multiple feedback loops running through all

cortical representations of percepts, concepts, feelings, and actions

(Hikosaka andWurtz, 1983, 1989; Alexander et al., 1986; Alexander

and Crutcher, 1990; Brown et al., 1999, 2004; Middleton and Strick,

2000; Dubois et al., 2007; Grahn et al., 2009; Silver et al., 2011;

Grossberg, 2016, 2021). For example, in the control of planned

sequences of saccadic eye movements, three different basal ganglia

loops are used to store, choose, and perform saccades in the

movement sequence. They are modeled by Silver et al. (2011) and

reviewed by Grossberg (2021).

The volitional GO signal that has been mentioned in several

places above is an example of basal ganglia gating. Indeed, all brain

representations are gated ON and OFF by one or another basal

ganglia loop.

16. Learning definite and indefinite
articles and how to use them in
sentences

The sentences that have been considered so far have not

included definite or indefinite adjectives, also called articles (De

Villiers and Villiers, 1973). The full richness of English language

meanings cannot, however, be understood without articles. To

start, let us compare the meanings of the indefinite article “a” and

the definite article “the” in the phrases “a ball” and “the ball”.
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FIGURE 13

The blocking paradigm illustrates how cues that do not predict di�erent consequences may fail to be attended. During the training Phase I, a

conditioned stimulus (CS1) occurs shortly before an unconditioned stimulus (US), such as a shock, on enough learning trials for CS1 to become a

conditioned reinforcer whose activation elicits conditioned fear. During Phase II, CS1 is presented simultaneously with an equally salient, but

unconditioned stimulus, CS2, the same amount of time before the same unconditioned stimulus. This can be done on quite a few learning trials.

Despite this training protocol, CS2 does not learn to elicit fear. It has been attentionally blocked by CS1 [Reprinted with permission from Grossberg

(2021)].

The sentence “It is a ball” could refer to any ball. In contrast, the

sentence “Watch the ball” refers to a particular ball. The following

quote about Definite and Indefinite articles, from Study.com,

explains this distinction in greater detail.

“An article” is a word used to modify a noun, which is a person,

place, object, or idea. Technically, an article is an adjective, which

is any word that modifies a noun. Usually, adjectives modify nouns

through description, but articles are used instead to point out or

refer to nouns. There are two different types of articles that we use

in writing and conversation to point out or refer to a noun or group

of nouns: definite and indefinite articles.

“The definite article (the) is used before a noun to indicate that

the identity of the noun is known to the reader. The indefinite

article (a, an) is used before a noun that is general or when its

identity is not known. There are certain situations in which a noun

takes no article”.

17. Using definite and indefinite
articles with nouns and verbs

Consider the variations: “It is the ball” or “That is the ball” vs.

“It is a ball” or “That is a ball”, or the analogous sentences “Watch

the ball” vs. “Watch a ball”. The word “is” may be ambiguous in

more than one sense: It can precede a noun (object word) or a verb

(action word). For example, the phrase “is a” disambiguates “is” to

precede a noun. In contrast, “is throwing” illustrates how “is” can

precede a verb. You can say that “Mommy is throwing the ball” or

“Mommy is throwing a ball” depending on whether a particular ball

is intended.

How does a baby learn the difference between “Mommy throws

a ball” and “Mommy is throwing a ball”? Or the difference between

“Mommy throws the ball” and “Mommy is throwing the ball”?

Both kinds of sentences can refer to the same action. Replacing

“throws” with “is throwing” can emphasize that the action is

occurring now, and can be learned from a teacher while witnessing

the event.

18. Learning to separate articles from
nouns: attentional blocking and
unblocking

How does the child’s brain learn to translate the experience of

seeing a/the ball being thrown into saying a verbal phrase like “a/the

ball is being thrown”? Or saying a verbal phrase like “a big ball” or

“the green ball” is being thrown?

A number of scientific studies have used various kinds of

functional neuroimaging to study the brain activity patterns that

are elicited by adjective-noun phrases (e.g., Chang et al., 2009;

Lange et al., 2015; Fyshe et al., 2016, 2019; Kochari et al., 2021).

These studies, as well as other studies of how adjectives interact

with nouns (e.g., Sandhofer and Smith, 2007) do not, however,

describe how adjective-noun phrases interact with the perceptual

representations that embody their meaning in the world.

For example, Fyshe et al.’s (2016, p. 4458) wrote: “The

computational (rather than neuroscientific) study of language

semantics has been greatly influenced by the idea that word

meaning can be inferred by the context surrounding a given word,

averaged over many examples of the word’s usage. . . . For example,
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FIGURE 14

A system like Fuzzy ARTMAP can learn to associate learned categories in one ART network (yellow processing stages) with learned categories in a

second ART network (red processing stages). Because both bottom-up and top-down interactions occur in both networks, a bottom-up input

pattern to the first ART network (ARTa) can learn to generate a top-down output pattern from the second ART network (ARTb). In this way, an input

pattern to ARTa can elicit a predicted output from ARTb [Reprinted with permission from Grossberg (2021)].

we might see the word ball with verbs like kick, throw, and catch,

with adjectives like bouncy or with nouns like save and goal.

Context cues suggest meaning, so we can use large collections of

text to compile statistics about word usage (e.g., the frequency

of pairs of words), to build models of word meaning.” Although

“context cues suggest meaning”, they only do so because humans

who use these cues can link them to the perceptual representations

that they reference.

In particular, are the phrases ”a ball” or “the ball” learned as

list chunks, or unitized representations, in their own right when a

child listens tomommy speak about a perceptual event that involves

a ball? How, then, are articles ever dissociated from the particular

nouns with which they co-occur?

This can be explained by processes such as attentional blocking

(Pavlov, 1927; Kamin, 1968, 1969; Grossberg, 1975, 2018; Grossberg

and Levine, 1987; Grossberg and Schmajuk, 1989; Grossberg

and Merrill, 1992, 1996). Attentional blocking of a word or

perceptual object can occur when it is predictively irrelevant. It

is then suppressed and not attended (Figure 13). Unblocking of a

suppressed word or object can occur when it becomes predictively

relevant again.

Since the word “ball” is always associated with the perceptual

experience of a ball, it is predictively relevant in phrases like “a

ball” and “the ball”. But the articles “a” and “the” are not, at least

at first. Rather, they may co-occur with many other words and

are chosen via a one-to-many mapping from each article to the

many words with which it co-occurs in sentences.When the articles

are suppressed, the primacy gradient that stores the word “ball”

in working memory can trigger learning of a list chunk of the

word that can be associated with visual categories of the perceptual

experiences of seeing a/the ball.

An article can remain predictively irrelevant and blocked until

a predictive perceptual context, and thus a language meaning, is

associated with a phrase like “a ball”, when an unfamiliar ball is

experienced, or “the ball” when the ball is a particular or familiar

one. In these situations, the phrases “a ball” and “the ball” in

working memory may trigger learning of their own list chunks.

Behavioral interactions between a teacher and a learner like

the following may help to understand how the meanings of these

phrases are learned: suppose that a child says “Mommy throws

ball”, and mommy says in return “This is the ball daddy bought”.

If experiences like this happen enough, the child can learn that “the

ball” may refer to a particular or familiar ball and, as noted above,

the phrase “the ball” may be learned as a list chunk in response to its

recurring representation as a primacy gradient in workingmemory.

Keep in mind that the articles interact with both perceptual

and cognitive processes: on the perceptual side, the choice of which

article “a” or “the” to store in working memory depends upon first

perceiving, or at least imagining, the object that the article modifies.

The article “the” may refer to a particular, or familiar, ball, as in the

sentence: “Mommy threw the ball”. The article “a” may refer to any

ball, especially an unfamiliar one, as in the sentence: “Pick a ball

from the pile.” On the cognitive side, the appropriate articles are

inserted into phrases and sentences that are stored in a linguistic

workingmemory, along with the nouns that theymodify, before the

stored items are performed in response to a volitional GO signal.

Adjectives and adverbs can influence what is perceived when

constructing a sentence or imagined when hearing the sentence,
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e.g., “big ball”, “quickly running”, etc. Adjective-noun and adverb-

verb phrases can also correspond to experienced percepts and

hearing them can trigger visual, or other perceptual, memories of

such experiences. These words can be inserted in sentences inmuch

the same way as articles are.

Consistent with this analysis, Chang et al. (2009) note:

“Multiplicative composition models of the two-word phrase

outperform additive models, consistent with the assumption that

people use adjectives to modify the meaning of the noun, rather

than conjoining the meaning of the adjective and noun.” This type

of result indicates that adjectives are bound together with their

nouns to modify their meaning, but does not clarify how such

phrases learn to represent that meaning in the first place.

19. Learning to associate visual objects
with their auditory names

To know where in the brain, and how, an article like “a” or “the”

is inserted into a phrase or sentence, more detail is needed about the

processes whereby visual events like objects are unitized through

learning into object categories. These visual categories are then

associated with their learned auditory names in working memory.

Said in another way, a noun’s name can be learned when it is

associated through visual-to-auditory learning with a learned visual

category of the object that it represents (e.g., a ball). Biological

neural networks that are capable of such learned mappings are

described in greater detail below.

As this mapping is described in more detail below, it will

become clear that the ability to fluently recognize an object as a

ball does not, in itself, determine whether the name “ball” should

be modified by the article “a” (“That’s a ball”) or “the” (“That’s the

only ball that I have”). It is often not the ball-like features that

determine article choice about a previously learned object. Rather,

it is whether a particular combination of these ball-characterizing

features is familiar, say due to a particular texture or design on it,

or an unusual size-color combination, and the like; or whether an

object that is an exemplar of a previously learned category is being

used in a definite context, e.g., “Watch mommy throw the ball”.

To understand how these properties arise, let us review, and

ground in different brain regions, some of the steps that go

into learning an object’s visual recognition category, whether it

is for a ball, mommy’s face, or whatever: as noted in Section 7,

the functional units of 3D vision are perceptual boundaries and

surfaces. The visual boundaries and surfaces that are, for example,

used to perceive a ball are computed in the striate and prestriate

visual cortices, including cortical areas V1, V2, and V4, in the

What stream (Motter, 1993; Sereno et al., 1995; Gegenfurtner,

2003).

After the processing of visual boundaries and surfaces is

complete (e.g., in cortical area V4), they are then categorized at

subsequent cortical processing stages. As noted in Section 3, a

particular view of a surface like mommy’s face can be learned

and recognized by a category within the posterior inferotemporal

cortex, or ITp. An invariant category that selectively responds

to multiple views of mommy’s face can be learned within

the anterior inferotemporal cortex, or ITa. Such an invariant

category may reciprocally interact via bi-directional adaptive

connections with all the view categories of mommy’s face in

ITp (Figure 2A; for further discussion and supportive data, see

Grossberg, 2021).

These visual object recognition categories, in turn, activate

additional processes at higher cortical areas, such as those that

code familiarity about objects, including the anterior temporal

cortex, anterior occipitotemporal sulcus, anterior fusiform gyrus,

posterior superior temporal sulcus, and the precentral gyrus over

the frontal cortex (Chao et al., 1999; Bar et al., 2001; Haxby et al.,

2001; Rajimehr et al., 2009; Sugiura et al., 2011; Huth et al., 2012;

Bonner and Price, 2013; Ramon and Gobbini, 2018; Kovács, 2020).

Auditory object name categories, and facts about them, maybe

computed in the anterior temporal cortex, among other cortical

areas (Hamberger et al., 2005; Bemis and Pylkkänen, 2013).

Visual recognition categories and auditory name categories

can be linked through learning by an associative map. Neural

network models of intermodality map learning include ARTMAP,

for learning binary mappings; and fuzzy ARTMAP for learning

binary or analog mappings, among other variants (Figure 14)

(Carpenter et al., 1991, 1992, 1995, 1997, 1998, 2005; Asfour

et al., 1993; Bradski and Grossberg, 1995; Carpenter, 1997, 2003;

Grossberg and Williamson, 1999; Granger et al., 2000; Carpenter

and Ravindran, 2008).

Figure 15A depicts two different kinds of associative maps:

Many-to-one maps and one-to-many maps. The example in

Figure 15A of a many-to-one map shows how visual images of

multiple different kinds of fruit are mapped into the same name

“fruit”. The example of a one-to-many map in Figure 15B shows

how a single image of a dog can be associated with many different

words to describe the dog, ranging from the general word “animal”

to the specific name of this particular dog “Rover”. As more names

are associated with the dog’s image, our “knowledge” about the dog

expands.

Figure 15B illustrates that learning amany-to-onemap requires

two different stages of learning. In this example of visual-to-

auditory learning, multiple fonts of a letter A drive the learning

of multiple visual categories that selectively respond to variations

of each letter font. Because the letter fonts A and a are composed

of such different visual features, they learn to activate different

visual categories. Then, these visual categories are all associated

with the same auditory name of the letter via a Map Field

(Figure 14).

20. Map fields are working memories

The discussions above have clarified how observing a visually

experienced sequence of events during which mommy throws

a ball can lead to that sequence of events being stored, in

the same order, in linguistic working memory as a sequence

of words describing that sequence. The sentence “mommy

throws the ball” was mentioned as one example. Putting

together the discussions of working memories and Map Fields

leads to the conclusion that a Map Field is also a working

memory where linguistic sequences can be stored in response

to sequential activation of their visual categories through time.

It is also possible that a Map Field topographically inputs to

a working memory, but that the Map Field itself does not
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FIGURE 15

(A) Humans and other autonomous adaptive intelligent agents need to be able to learn both many-to-one maps and one-to-many maps. (B)

Learning a many-to-one map from multiple visual fonts of a letter to the letter’s name requires a stage of visual category learning that is linked to a

stage of auditory name learning via a learned associative map. Figure 14 shows that a Map Field is needed to link learned visual categories with

learned auditory categories via associative learning [Reprinted with permission from Grossberg (2021)].

have the recurrent interactions or GO signal modulation of a

working memory.

How to think of the choice of articles “a” or “the” in

such sequences depends upon whether they are in response

to hearing speech that is uttered by someone else, as in a

sentence like “Watch mommy throw the ball”, or self-generated

speech in response to an externally viewed, or internally

remembered, perceptual experience like “Mommy threw a ball”.

Since children learn at least their first languages by listening

to teachers who know the language, the choice of the article

will depend on the perceptual experiences to which the teachers’

utterances correspond.

21. Resonance between bottom-up
adaptive filters and top-down learned
expectations: ART

Figure 15B shows only bottom-up adaptive pathways between

the distributed feature pattern of each letter and its visual category.

In the brain, as well as in Adaptive Resonance Theory, or ART,

models of object category learning, there are both bottom-up and

top-down adaptive pathways (Figures 2, 11, 14). The bottom-up

pathways form an adaptive filter because the ends of these pathways

contain adaptive weights, or long-term memory (LTM) traces, that

can learn the feature patterns that characterize each font category.

The top-down pathways activate a prototype, or expectation, that

can also learn the same feature pattern. This feature pattern is called

a critical feature pattern because it includes only those features that

past learning has shown to control learning and correct predictions.

Outlier features are suppressed during learning because they are

predictively irrelevant.

When both bottom-up and top-down pathways are

simultaneously active, the signals that they read out synchronize,

amplify, and focus attention on the critical feature pattern that

reliably codes the correct category. The synchronous resonance

between features and categories also triggers fast learning within

the bottom-up and top-down adaptive weights that lead to and

from the currently active category. That is why the resonance

is called an adaptive resonance. No less important, top-down

matching by a learned expectation protects the learned adaptive

weights from being destabilized by catastrophic forgetting. They

hereby solve the fundamental stability-plasticity dilemma. Namely,

they support fast learning (plasticity) while protecting these learned

weights from experiencing catastrophic forgetting (stability) (see

Grossberg, 2021 for further details).

22. Concluding remarks: “the limits of
my language mean the limits of my
world”

The famous quote in this section’s header is by Ludwig

Wittgenstein in his classic Tractatus Logigo-Philosophicus

(Wittgenstein, 1922). This simple sentence summarizes both the

main contribution of the present article and its main limitation:

The main contribution is to create a theoretical foundation for

understanding how humans learn in real time to link language

utterances to real-world experiences that give them meaning. The

main limitation is that the open-ended nature of language enables

it to bridge “the limits of [our] world”. Providing an analysis of how

we learn all the language meanings that we can express about our

world will require many scientists working for years to complete.
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