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A novel technique for delineating 
the effect of variation in the 
learning rate on the neural 
correlates of reward prediction 
errors in model-based fMRI
Henry W. Chase *

Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States

Introduction: Computational models play an increasingly important role in 
describing variation in neural activation in human neuroimaging experiments, 
including evaluating individual differences in the context of psychiatric 
neuroimaging. In particular, reinforcement learning (RL) techniques have been 
widely adopted to examine neural responses to reward prediction errors and 
stimulus or action values, and how these might vary as a function of clinical status. 
However, there is a lack of consensus around the importance of the precision 
of free parameter estimation for these methods, particularly with regard to the 
learning rate. In the present study, I introduce a novel technique which may be 
used within a general linear model (GLM) to model the effect of mis-estimation 
of the learning rate on reward prediction error (RPE)-related neural responses.

Methods: Simulations employed a simple RL algorithm, which was used to 
generate hypothetical neural activations that would be expected to be observed 
in functional magnetic resonance imaging (fMRI) studies of RL. Similar RL models 
were incorporated within a GLM-based analysis method including derivatives, 
with individual differences in the resulting GLM-derived beta parameters being 
evaluated with respect to the free parameters of the RL model or being submitted 
to other validation analyses.

Results: Initial simulations demonstrated that the conventional approach to fitting 
RL models to RPE responses is more likely to reflect individual differences in a 
reinforcement efficacy construct (lambda) rather than learning rate (alpha). The 
proposed method, adding a derivative regressor to the GLM, provides a second 
regressor which reflects the learning rate. Validation analyses were performed 
including examining another comparable method which yielded highly similar 
results, and a demonstration of sensitivity of the method in presence of fMRI-like 
noise.

Conclusion: Overall, the findings underscore the importance of the lambda 
parameter for interpreting individual differences in RPE-coupled neural activity, 
and validate a novel neural metric of the modulation of such activity by individual 
differences in the learning rate. The method is expected to find application in 
understanding aberrant reinforcement learning across different psychiatric 
patient groups including major depression and substance use disorder.
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1 Introduction

Many simple mathematical psychological models make 
predictions for how a perceptual, emotional or cognitive process 
might vary on a trial to trial basis, in responses to stimuli presented 
within a given trial, as well as the history of stimuli that the 
individual has experienced. Examination of the trial by trial 
variation in neural correlates of these model predictions has had a 
substantial if not revolutionary effect on human neuroimaging 
methodology (O'Doherty et  al., 2007; Cohen et  al., 2017). One 
reason is an increase in sensitivity to detect coupling of a predicted 
psychological process with a neural one: it is often the case that 
neural responses to stimuli are expected to vary in a complex way. 
Without modeling this variation in terms of the model predictions, 
neural responses to a given stimulus would be treated as equivalent, 
or collapsed within arbitrary and inefficient categories. Another 
reason might be an increase in specificity, as suitable designs might 
allow different parametric terms to unpick independent processes 
which might be  confounded if simpler categorical approaches 
are used.

Building on the success of this method, the examination of how 
the neural correlates of these psychological processes might vary 
across patient groups has become a key methodological approach 
within the computational psychiatry field. For example, numerous 
recent studies have sought to describe the neural correlates of reward 
prediction errors (RPEs) derived from reinforcement learning (RL) 
models (Garrison et al., 2013; Chase et al., 2015b; Fouragnan et al., 
2018), and investigate individual differences with respect to psychiatric 
symptomatology. Within this framework, a typical study of this type 
might seek to describe the dynamics of neural activation within a 
conditioning paradigm in terms of an RL model, and then compare 
activations between patients and healthy controls (e.g., Kumar et al., 
2008; Murray et  al., 2008; Rose et  al., 2014; Culbreth et  al., 2016; 
Lawson et al., 2017). Within such studies, the analysis of trial by trial 
variation in neural activity following the predictions of RL is a 
central component.

There has been a steady increase in the number of studies applying 
these techniques, and more recently model-based approaches been 
applied to tasks which have been widely used in psychiatric research 
such as the monetary incentive delay task (MID: Cao et al., 2019). In 
the present work, I will address the construction of the RL model used 
for trial by trial modeling. Briefly, all RL models have at least one free 
parameter—the learning rate (alpha)—and there are three main 
strategies for estimating this parameter which are typically employed 
for the analysis of functional magnetic resonance imaging (fMRI) 
data. First, a reasonable estimate of the learning rate (e.g., 0.2) can 
be selected for all participants (e.g., Kumar et al., 2008; Lawson et al., 
2017). Second, a learning rate parameter for each individual can 
be estimated from each participant’s behavioral data, if such data are 
available (e.g., Schonberg et  al., 2010). A third method might 
be considered a hybrid of the previous two: a summary learning rate 
is obtained by fitting behavioral data for each individual subject, and 
which is then combined into a single estimate of the overall learning 
rate for the group, and then applied to all participants’ fMRI data (e.g., 
Cohen, 2007). Other methods which might concurrently fit neural 
and behavioral data have been developed (Turner et al., 2013) but have 
not, as yet, been widely adopted in the computational psychiatry field 
to my knowledge.

At first glance, these three different approaches (fixed, individual, 
group) would appear to make radically different assumptions about an 
underlying neural process, which might have a powerful impact on the 
resulting observations. In addition, the individual method might 
be expected to be differentially sensitive depending on the precision of 
the behavioral data available, adding another layer of interpretational 
complexity. However, a provocative analysis by Wilson and Niv (2015) 
questioned the extent to which the accuracy of learning rate parameter 
estimation was actually critical for the modeling of RPE-coupled 
neural responses. Briefly stated, their argument is that the overall shape 
of the learning curve, and thus of elicited RPEs (see Figure  1), is 
generally similar regardless of the magnitude of the learning rate 
parameter. Moreover, within typical model-based fMRI methodology, 
there is actually an extra free parameter in addition to the learning 
rate—the beta parameter from the general linear model (GLM) 
describing the coupling of the presumed psychological quantity (e.g., 
RPEs) to neural activity. This free parameter can, in many cases, 
successfully compensate for inaccuracies in the estimation of the 
learning rate parameter from behavioral data. Concretely, if the 
learning rate parameter is under-estimated—set lower than the ground 
truth value—the RPE-coupled beta parameter will generally 
be relatively small because the model will predict that larger RPEs will 
tend to be elicited for longer than they actually are, and vice versa if it 
is over-estimated. In the original demonstrations of the neural 
correlates of reward prediction errors (e.g., O'Doherty et al., 2003), the 
key question of interest was whether RPE-coupled beta parameters 
would be  greater than zero across a group of participants: within 
Wilson and Niv’s analysis, this type of test would be robust to even 
substantial misspecification of the learning rate.

However, a more recent study examined the question from an 
individual-differences perspective—more relevant for computational 
psychiatry—and here the exact magnitude of the beta parameter is 
more important (Katahira and Toyama, 2021). Of course, if RPEs are 
strongly represented in a given brain region in one group but absent in 
another, conventional methodology may be adequately sensitive to this 
difference. But any loss of precision will generally act to reduce 
sensitivity. Of the three methods of learning rate estimation already 
described, it is hard to know which is preferable overall: the advantage 
of the fixed model is that any bias should be  equivalent across 
participants, so individual differences might be reflected in the bias. 
Alternatively, there is potential for additional precision afforded by the 
individual fitting method, as well as a metric of individual learning 
rates which can help characterize the dimensions of behavioral and 
neural difference across individuals more thoroughly (Katahira and 
Toyama, 2021).

At this stage, it is important to note that the learning curve has two 
key components: the asymptote, and the rate of rise to asymptote. The 
two are difficult to differentiate in many of the learning paradigms 
employed in fMRI, but clearly reflect different psychological constructs. 
Asymptotic behavioral output is a measurement of the efficacy of the 
reinforcer, as might be reflected in behavior within a progressive ratio 
paradigm, for example (Hursh and Silberberg, 2008; Bradshaw and 
Killeen, 2012), or in preferences between different reinforcer types 
(Madsen and Ahmed, 2015). Note that even in a preparation with a 
single response-reward relationship, responding for a reward would 
be relative to competing behaviors including relaxation, grooming and 
exploration (Rodgers et al., 2010). More efficacious reinforcers motivate 
a relatively greater level of responding to obtain the reinforcer, but not 
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in a state-independent way: reinforcement efficacy may be susceptible 
to manipulations such as deprivation/satiety (Balleine, 1992) or other 
contextual factors (Stoops et  al., 2005). In a classical conditioning 
paradigm, asymptotic output of other metrics of conditioning including 
autonomic measures (e.g., skin conductance or heart rate) might also 
depend on the efficacy of the reinforcer (Neumann and Waters, 2006). 
Reinforcer efficacy can be  defined in within-subject terms (e.g., a 
preference for one reinforcer over another in a given individual), and 
also between-subjects terms (e.g., a particular dimension of individual 
differences enhances or diminishes preference for a given outcome).

By contrast, the learning rate (alpha) determines the rate at which 
asymptotic output is reached. It has less influence over the asymptote 
itself (at least with sufficient numbers of trials). Within the Rescorla-
Wagner model (Rescorla and Wagner, 1972), reinforcement efficacy 
would be represented by the lambda parameter, with QAt representing 
the current value of the stimulus at time t and outcome being 1 for 
rewards and zero for no rewards.

 QA QA alpha RPEt t t+ = + ×( )1  (1)

 RPE lambda outcome QAt t t= ×( ) −  (2)

It is important to note however that lambda is often neglected in 
computational model fitting—probably for the reason described 
above—i.e. that it is difficult to distinguish alpha and lambda in typical 
paradigms employed in fMRI paradigms, and one or other is selected 

in the interests of parsimony. A further impediment is that lambda and 
a parameter reflecting the preference for exploration over exploitation 
(temperature—see Equation 3) have an essentially identical impact in 
the majority of two-alternative forced choice paradigms (Huys et al., 
2013), and are often not identifiable using typical behavioral methods. 
This does not mean, however, that temperature and lambda are not 
conceptually distinct constructs, but following from the above 
definition of lambda in terms of reinforcement efficacy, if behavioral 
output is dominated by the pursuit of a particular reinforcer, 
exploratory behavior will be reduced. It might be possible to dissociate 
lambda from temperature using preferences between distinct 
reinforcers rather than options which differentially predict the same 
reinforcer (e.g., Hogarth and Chase, 2012). Temperature is also 
unlikely to be relevant in a classical conditioning paradigm in which 
any exploratory behavior is non-existent or incidental.

It may be worth reconsidering lambda in the modeling of RPEs 
measured by fMRI for two main reasons. First, the distinction between 
alpha and lambda is germane to questions that are relevant to 
psychiatry—for example, whether individual differences in trait 
anhedonia are better understood as an altered acquisition of the 
incentive value of outcomes but similar asymptotic performance, or a 
more general suppression of incentive value (Chase, 2021). Second, 
I have argued that there are in fact two free parameters involved in the 
modeling of neural coupling to prediction errors, even though it is the 
learning rate which receives most attention. It may be that these two 
parameters are suboptimally identified by a typical fMRI study of 
RPE-correlates of learning, which has led to an emphasis on one or 
other. More generally, it is possible to imagine scenarios in which there 

FIGURE 1

Changes in RPE through trials including non-reward (1–9) and reward (10–20) outcomes for a simple conditioning paradigm. Initial Q set to 0.5, 
lambda set to 1. (A) Variation of RPE with fast (0.7: blue) and slow (0.2: orange) learning rates. Note the slower decline in RPEs in the slow learning rate 
from trial 10 onwards. (B) Variation in RPE with an intermediate learning rate (0.45: green), and its derivative obtained from the gradient function in 
MATLAB (purple). (C) The intermediate learning rate RPE displayed in (B), with the derivative added (blue) or subtracted (orange). Note that this broadly 
captures the predictions of an RPE model with a faster learning rate when added or slower learning rate when subtracted, albeit with some 
inaccuracies especially on trial 9. (D) Variation in the value of the cue (Q) for the fast (0.7: blue) and slow (0.2: orange) learning rates.
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is very rapid learning about a reinforcer which has very limited effects 
on behavior in terms of behavioral choice or other measures of incentive 
value (i.e., high alpha, low lambda). Alternatively, if predictive cues are 
not very discriminable, or have undergone pre-exposure manipulations 
(e.g., Granger et al., 2021), it is possible to imagine slowed learning 
about highly efficacious reinforcers (i.e., low alpha, high lambda).

The present work constitutes a reconsideration of the parameter 
fitting debate relevant for examination of individual differences in 
neural correlates of RL-derived prediction errors, within the context 
of a two parameter (lambda/alpha) rather than a one parameter 
(alpha) model. First, using simulations, I demonstrate that the beta 
parameters describing RPE/neural coupling produced by a GLM 
model are better associated with individual differences in lambda than 
alpha. Second, I show that adding a second regressor, a derivative 
term, into the GLM has a good specificity for individual differences in 
alpha. Further tests were conducted to evaluate the approach in the 
presence of fMRI-like signal and noise, and its psychometric 
properties (e.g., test–retest reliability).

2 Methods

2.1 Overview

Briefly the present work involves sets of simulations of two very 
simple conditioning paradigms, which is assumed to elicit reward 
prediction errors (RPEs) and corresponding neural activation (Schultz 
et  al., 1997). These simulated data serve as “ground truth” neural 

activity, and are modeled using a GLM-based strategy which is widely 
employed in neuroimaging research (Poline and Brett, 2012). Beta 
parameters derived from this general linear model fit were then tested 
to determine the extent to which they reflect individual differences in 
lambda and alpha. This analysis is based on the assumption that 
participants vary in the magnitude of their lambda and alpha, and that 
this reflects a meaningful individual difference relevant to psychiatry 
– a point which is considered further in the discussion.

2.2 Paradigm

The primary paradigm employed for the simulations was a simple 
classical conditioning paradigm with a single stimulus which is 
rewarded with a starting probability of 50% (see Figure  2). The 
probability of reward on a given trial drifted from trial-to-trial at a 
rate which is allowed to vary across individuals between 0 and 0.4 (so 
the probability of reward on trial n + 1 is the probability at trial n plus 
normally-distributed noise scaled by the drift rate). A second, 
instrumental paradigm was used for confirmation purposes. This 
included two stimuli which varied (independently) with the same 
starting probability of reward (0.5) and drift rate (0–0.4), and 
participants made a choice between them on each trial.

In typical fMRI experiments, the effect of interest (in this case, 
RPE), is elicited within a more or less complex paradigm with various 
components including visual stimulus presentation, anticipation, 
motor responses, and so on. In this case, I  assumed that these 
components are perfectly modeled out, and only the RPE signal 
remained. In addition, I assumed that low frequency physiological or 

FIGURE 2

Schematic to show the simulated paradigms employed for the classical conditioning (top) and instrumental paradigms (bottom). In the conditioning 
paradigm, a cue (here represented as green) predicts an outcome [here represented as a monetary reward ($) or no monetary reward (red X)]. The 
probability of a rewarding outcome (as opposed to no reward) starts at 0.5, but drifts up or down through the experiment. The instrumental paradigm 
has a similar design, except that there are two cues which the simulated participant must choose between. These cues have the same cue-outcome 
probabilities as the conditioning paradigm. Interstimulus interval (ISI), the distance between the outcome events, is 14  s in all cases.
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scanner-related drifts, which are normally addressed by high pass 
filtering in fMRI analysis, were perfectly removed from the data. The 
“ground truth” timeseries was constructed where an RPE response 
was elicited once every 14 s, with the data being sampled at one data 
point every 2 s.

2.3 Simulations

2.3.1 Standard approach
For the basic simulations, “ground truth” fMRI data was simulated 

using the classical conditioning paradigm, varying alpha of the 
Rescorla-Wagner model (Equations 1 and 2) from 0.2–0.7, and lambda 
from 0.75 to 1.25. The range of alpha was designed to reflect the core 
predictions of reinforcement learning, i.e., incremental trial and error 
learning (Sutton and Barto, 2018). If the learning rate is very low (~0.1), 
the RPE regressor is effectively colinear with reward and no reward 
outcomes, so the differential predictions of reinforcement learning vs. 
responses to outcomes are unclear (Rohe et al., 2012). Moreover, if the 
learning rate is very high (~0.8–0.9), performance on an instrumental 
design would approximate a win-stay/lose-shift behavior, which can 
be conceptualized in terms of a working memory process (Frank et al., 
2007). The range of lambda was chosen to match that of alpha, to 
facilitate comparison, centered on 1 as that is the value which is 
typically used in the literature. It should be noted that the principles 
arising from the simulations are assumed to generalize outside of this 
range of parameters, but that the chosen range was thought to be of 
most theoretical and practical significance for reinforcement learning 
modeling. The outcome is set to 1 for wins and 0 for non-wins for all 
simulations. The stimulus value (“QAt” in Equation 1) was updated 
according to Equations 1 and 2, having been initialized for the first trial 
at 0.5. RPEs were held to represent the activity of midbrain dopamine 
neurons on a given trial (Schultz et al., 1997). With an inter-stimulus 
interval (ISI) of 14 s between each outcome and 200 trials (during 
which activation was set to zero), a timeseries of 1,400 data points was 
constructed. 5,000 participants’ worth of data were simulated.

These data were modeled at the participant level using another 
RPE timeseries of the same length. There are two major approaches 
which are typically used for analyzing such data in the literature: 
employing a fixed or an individualized learning rate. Lambda was set 
to 1 in all cases, while alpha was either approximated either by a fixed 
learning rate, or by obtaining an approximation for each participant 
(individual). Both approaches were tried: a fixed learning rate of 0.2, 
or a more (±0.05) or less (±0.1) precisely estimated individualized 
learning rate. The resulting RPE timeseries, generated using these 
parameters, was normalized for each participant. Thus, the ground 
truth fMRI timeseries acted as the dependent measure, and the RPE 
timeseries derived from the fixed or individualized learning rate was 
the independent measure within a regression model implemented in 
MATLAB (the regstats function). The resulting beta parameter 
describing this relationship (i.e., the RPE-coupled beta parameter) was 
used as a dependent measure within a multiple regression analysis, in 
which its magnitude was predicted by lambda, alpha and the drift rate 
across 5,000 simulated participants. 5,000 is much larger than the 
sample sizes which have typically been used in fMRI studies of 
individual differences in RPE activations, and this number was chosen 
to avoid concerns about unstable estimation of effect sizes in small 
samples (Grady et al., 2021).

A similar strategy was adopted for the instrumental version. Here, 
two stimuli (A and B) were reinforced with the same contingencies as 
above (a starting value of 50%, with the same drift rate: 0–0.4). On 
each trial, the simulated participant would select one of the options, 
and then receive the outcome, indicating whether they won or lost. A 
softmax function (Equation 3) was used to determine the probability 
of selection of one of the two options (in the example, the probability 
of selecting A at time t), with a parameter controlling the consistency 
of responding. To avoid confusion with the beta parameters derived 
from the GLM, this is termed “inverse temperature” for the purposes 
of the present work, and represented by Θ in Equation 3. This 
parameter was varied with a flat distribution from 0–5, and acted to 
multiply the values of A and B.

 
p A e

e e
t

QA

QA QB

t

t t
( ) =

+

Θ

Θ Θ  
(3)

2.3.2 Development of the derivative parameter
Two methods were designed to capture the independent effect of 

the learning rate on the shape of the RPE regressor. As described in 
the introduction, an additional regressor representing the rate of 
change of the RPE regressor across trials was expected to compensate 
for the effect of mis-estimation of the learning rate on the RPE 
regressor. In all cases, “ground truth” data were generated using the 
same parameters as in Section 2.2.1 (e.g., the same range of alpha 
and lambda).

The first approach, which is used primarily within the 
simulations, was a derivative term, obtained using the gradient 
function in MATLAB (see Figure 1). Here, a basic RPE regressor 
was generated with an alpha value of 0.45, which was then used to 
generate the derivative. Both were included in the GLM 
following normalization.

For the second approach, the difference between RPE 
timeseries for a given run generated with a high learning rate 
(alpha = 0.7) vs. a low learning rate (alpha = 0.2) was calculated, 
and this served as the derivative regressor. The main RPE 
regressor was the mean of these two timeseries. As the difference 
and the main RPE regressors were often substantially correlated 
using this method, an initial orthogonalization step was performed 
by regressing out the effect of the latter from the former. Different 
neuroimaging software has different methods of orthogonalizing 
regressors (Mumford et al., 2015), but this point is not considered 
further for these simulations.

In the two cases, as before, the main RPE regressor and the 
derivative regressor were normalized before inclusion in a multiple 
regression model as independent measures, and then the beta 
parameters derived from each were used as dependent measures for 
two subsequent analyses. First, the main RPE-coupled beta parameter 
was predicted by alpha, lambda, and drift rate, as before, but now the 
derivative-coupled beta parameter was also predicted by the same 
measures in a separate multiple regression model.

The first method—the derivative regressor—was also tested 
within the instrumental version described above. This analysis 
followed the same pattern as previously, with drift (0–0.4), alpha (0.2–
0.7), lambda (0.75–1.25), and inverse temperature (0–5) all being 
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varied across the 5,000 participants. 200 trials, with an ISI of 14 s, were 
included per participant as before.

A further analysis was performed with the derivative approach in 
which the outcome (win/no win) timeseries was also added to the 
(within-participant) regression model as a third regressor in the GLM 
(i.e., RPE, derivative, win/no win). Again, the same parameters were 
used as before.

2.4 Generalization to more representative 
simulated fMRI data

These initial analyses represent only proof-of-concept analyses as 
the RPE timeseries does not capture any of the characteristics of real 
fMRI data. First, neural activity as measured by fMRI unfolds over 
time in a manner corresponding to the hemodynamic response 
function (HRF). Second, fMRI signal is affected by various sources of 
noise, including physiological and thermal components. These noise 
sources can be approximated by pink noise (Bullmore et al., 2001; 
Akhrif et  al., 2018). Thus, to simulate more realistic fMRI data 
(Equation 4), I convolved the “ground truth” fMRI RPE timeseries 
with the canonical HRF from SPM software (Friston et al., 1998), and 
then added pink noise to this timeseries (varying the autocorrelation 
of the noise (a in 1/fa) from 0.8 to 1.2, and the ratio of signal to noise 
(SNR) from 2 to 4, across simulated participants – SN = 0.66–0.8). This 
range of SNR was derived from a study of Frassle et al. (2017): I used 
a smaller range toward the lower end of their SNR range so as not to 
adopt an overly optimistic estimate of fMRI noise. The same 

parameters of alpha, lambda, drift rate, and the ISI were used as in 
previous sections.

 

Simulated fMRI timeseries SN

HRF convolved RPE timeseries

=
× ( )
+ 1−−( )× ( )SN Z tranformed noise  (4)

This physiological timeseries was modeled using a GLM including 
RPE and derivative (gradient method) regressors, as before, but also 
including a linear trend. For these new analyses however, both regressors 
were convolved with the HRF before normalization (see Figure 3 for 
example timeseries). In addition, an AR (2) regression model (Monti, 
2011) was fit for each subject using the ARIMA function in MATLAB.

The broader purpose of these analyses was to examine whether 
effect sizes of the type that might have been reported within the 
literature already might be seen in the presence of realistic fMRI noise. 
The effect sizes in question were those describing the coupling of 
lambda/alpha to the RPE/derivative time series. The analysis was run 
across five different task durations (25/50/100/200/400 trials), with 
5,000 simulated participants per cell. Two regression models were 
constructed in which the RPE or derivative-coupled beta parameters 
were predicted by alpha, lambda, drift rate, SNR and noise 
autocorrelation. In addition, Pearson’s correlations of associations 
between RPE/derivative and alpha/lambda were used to compute 
effect sizes, and to form the basis of an inferential test to compare the 
relative magnitude of these associations (Dunn and Clark, 1971) using 
the cocor method (Diedenhofen and Musch, 2015).

FIGURE 3

(A) Example of a simulated “ground truth” BOLD signal including RPE responses and fMRI-like noise. (B) Examples of RPE (black) and derivative (green) 
regressors that would be used to analyze the ground truth timeseries. (C) Figure shows an example of raw RPE signal and HRF-convolved signal for six 
trials/82  s worth of data for one participant.
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Using similar parameters, I evaluated the test–retest reliability of 
the method in the presence of realistic fMRI noise, generating 2 blocks 
of 100 trials using identical parameters per participant. Overall, the 
same ranges of parameters as previously within this section. The same 
AR (2) model was fit for both blocks, and the intra-class correlation 
(ICC (3,1)) of RPE-coupled and the derivative-coupled beta 
parameters for the two blocks was calculated across 5,000 participants. 
The same analysis was rerun on the same simulated data, but without 
the derivative regressor.

Two further analyses were run using similar parameters across the 
5 trial durations as previously. First, I sought to investigate the extent 
to which alpha or lambda could be determined from RPE-coupled or 
derivative-coupled beta parameters. However, for this analysis, I also 
relaxed the assumption that the HRF scaling was scaled at 1 and 
identical for all participants: here, I allowed it to vary from 0.5 to 1.5, 
in addition to the other parameters which were varied as before. Thus, 
if the HRF scaling parameter was 0.7 for one participant, the HRF 
would be  multiplied by 0.7 before convolution with the RPE 
timeseries. The impact of this change was assessed using zero-order 
Pearson’s correlations, and partial correlations in which the HRF 
scaling parameter was partialled out.

Finally, within this analysis framework, I  also sought to 
determine the extent to which adding the derivative parameter 
actually improved GLM fits at the subject level. This type of analysis 
is often not performed in fMRI data (but see Rohe et al., 2012), at 
least partly because the same GLM usually fit across all brain voxels. 
A model might therefore be  optimized for some voxels but not 
others. However, here I  was able to evaluate whether Bayesian 
Information Criterion (BIC) was improved for simulated 
participant’s data by adding the derivative parameter, and what 
experimental factors were related to any improvement. I predicted 
that in cases where the true alpha diverged more strongly from the 
fixed alpha used for the RPE regressor (0.45), a greater advantage 
of the model including the derivative would be seen. By contrast, 
when the true alpha was close to the fixed alpha, adding the 
derivative would have little benefit and would be  penalized by 
BIC. A dichotomous dependent measure was created which 
represented a binary improve/not improve metric, depending on 
whether BIC was lower for the RPE&derivative model relative to 
the RPE model. A logistic regression was then run in which the 
various variables (lambda, HRF scaling, drift rate, SNR, and noise 
autocorrelation) manipulated in the simulations were included as 
independent measures. In addition, rather than alpha being 
included, a measure of alpha’s distance from 0.45 was included 
(|alpha-0.45|). Further interaction measures were included between 
absolute distance of alpha from 0.45 with noise autocorrelation, and 
with SNR, respectively. For this analysis all independent measures 
were z transformed before running the model.

3 Results

3.1 Basic association of lambda vs. alpha 
with RPE-coupled beta parameter

In the initial simulation, I tested whether individual differences in 
alpha (0.2–0.7) or lambda (0.75–1.25) would predict the magnitude 
of the GLM-estimated RPE-to-neural beta parameter in the Pavlovian 

paradigm, fixing alpha to 0.2 and lambda to 1. Individual differences 
in lambda [t(4996) = 201.39, p < 0.001] and to a much less extent, alpha 
[t(4996) = −45.53, p < 0.001], but not the drift rate of the paradigm 
(t < 1) predicted the magnitude of the RPE beta parameter. See 
Supplementary Table S1 for a full overview of all the analyses.

A very similar set of findings were observed in the instrumental 
version of the paradigm. Using a fixed alpha of 0.2, a strong association 
between lambda and RPE-coupled beta parameter was seen 
[t(4995) = 174.52, p < 0.001], a weaker relationship with alpha 
[t(4995) = −31.041, p < 0.001] and absent associations with drift rate 
and inverse temperature (t < 1).

Next, I considered a case where an independent estimate of alpha 
is available: for example, from behavioral data. Two simulations were 
performed using the same parameters as previously, but with an 
accurately estimated alpha (estimated alpha differed from the ground 
truth alpha with a flat distribution bounded at ±0.05), and or a less 
accurately estimated alpha (error = ±0.1) for each simulated 
participant, rather than a fixed alpha. Again, the RPE beta parameter 
was strongly related to lambda in the high precision [t(4996) = 176.066, 
p < 0.001] and low precision [t(4996) = 181.023, p < 0.001] 
individualized alpha analyses, whereas the alpha was less strongly 
related to the RPE beta parameter [high t(4996) = 27.27, p < 0.001; low 
t(4996) = 31.45, p < 0.001], and the drift parameters were not (t < 1.45, 
p’s > 0.16).

This initial finding suggests that individual differences in 
lambda track with the GLM-derived RPE beta to a much greater 
extent than alpha. Put simply, if an individual has a large lambda, 
they will show large fluctuations in neural responses to rewards, 
driven by RPEs. Likewise, an individual with a small lambda 
would show much smaller variation in neural responses to reward 
and consequently RPE-coupled beta. With respect to alpha, this 
has a smaller effect. At the very least, this analysis suggest that 
lambda deserves further attention as a determinant of 
GLM-coupled RPE betas, and might be seen as a primary candidate 
for a psychological construct which underlies variation in neural 
responses to RPEs.

3.2 Addition of an extra derivative 
parameter in the GLM

For a given lambda, alpha affects the rate at which the asymptote, 
specified by lambda, is reached. This means that there might only be a 
few trials for which its effect is clearly observed, and that adding an 
extra regressor to capture the variance which is not well modeled on 
these trials might enhance the specificity of the basic RPE regressor 
for variation in lambda, and generate a new regressor which might 
reflect variation in alpha more specifically.

Two methods were tested for doing this. The first employed the 
derivative of the RPE, obtained using the gradient function in 
MATLAB, in addition to the RPE. The same simulation parameters 
were employed as before, with a fixed alpha of 0.45 to obtain the RPE 
regressor. In this case, the RPE beta parameter was more specifically 
related to lambda [t(4996) = 120.88, p < 0.001], rather than alpha 
[t(4996) = 34.99, p < 0.001] or the drift rate (t < 1). By contrast, the beta 
parameter associated with the derivative was more specifically related 
to alpha [t(4996) = 395.44, p < 0.001] rather than lambda (t < 1.15) or 
the drift rate (t < 1).
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To provide evidence of a more specific relationship with RPE as 
opposed to simple responses to win outcomes, I  added a third 
regressor representing wins or no wins. Again, the RPE beta was 
related to variation in lambda [t(4996) = 155.66, p < 0.001], but less 
with alpha [t(4996) = 87.040, p < 0.001] and not with drift rate (t < 1), 
while the derivative beta was related to alpha [t(4996) = 343.66, 
p < 0.001] but only weakly with lambda [t(4996) = 7.34, p < 0.001] and 
not with drift rate (t < 1). The win/no win regressor was related to 
lambda [t(4996) = 8.69, p < 0.001] and alpha [t(4996) = −143.89, 
p < 0.001] but not drift rate [t(4996) = −1.85, p = 0.064].

I also generalized the method to a simulated instrumental 
paradigm. A very similar pattern of findings was seen, in which 
lambda was associated most strongly with the RPE beta parameter 
[t(4995) = 152.29, p < 0.001], but more weakly with alpha 
[t(4995) = 30.18, p < 0.001], and alpha was associated most strongly 
with the derivative beta parameter [t(4995) = 275.69, p < 0.001], while 
lambda was not strongly related to the derivative beta [t(4995) = 2.55, 
p = 0.011]. Neither the drift rate nor inverse temperature were strongly 
associated with either (t < 2.87, p’s > 0.004).

I also explored an alternative strategy for achieving the same 
result—a “high/low” method in which the mean and difference of two 
RPE time series obtained using a high and a low learning rate 
parameter, respectively. The beta parameter associated with the basic 
RPE time series, here represented by the mean, was again correlated 
with lambda [t(4996) = 183.28, p  < 0.001] but less with alpha 
[t(4996) = 20.98, p < 0.001] and not with the drift rate (t < 1), while the 
beta parameter associated with the difference regressor was correlated 
with alpha [t(4996) = 395.88, p < 0.001], and less with lambda 
[t(4996) = 6.80, p < 0.001] and not with drift rate (t < 1).

3.3 Generalization of method to realistic 
fMRI-like signal

The simulations above demonstrate the capacity for basic 
relationships between simulated RPE regressors and a ground truth 
generated across two types of conditioning paradigm, but do not 
demonstrate a potential for generalizations to more realistic neural 
signals nor across different durations of data collection. For example, 
they do not include appropriate methods for modeling timeseries 
autocorrelation (Davey et al., 2013). Finally, they also do not include a 
formal statistical comparison of the magnitude of different associations 
(i.e., the association of RPE-coupled beta parameters with alpha vs. 
lambda). Here, I generalized the ground truth (neural) time series to 
include fMRI-like noise, and for the ground truth RPE responses to 
be convolved with the HRF. A model including an RPE regressor and a 
derivative (both also convolved with the HRF) was fit to this simulated 
neural time series (see Figure 3 for an overview). The crucial point for 
these simulations is whether (1) the relationship between lambda and 
RPE beta parameter, and (2) the relationship between alpha and the 
derivative beta parameter are representative of the magnitudes of effect 
sizes that have been observed in individual differences studies. 
Simulations were performed across different acquisition durations (and 
thus trial numbers), as, in practice, this can vary markedly across studies.

Findings from these simulations are displayed in Figure 4. Briefly, 
relationships between lambda and RPE [t(4994) = 17.39, p < 0.001], 
and between alpha and the derivative [t(4994) = 11.74, p < 0.001], 
were associated with small/medium effect sizes at 25 trials 
(d = 0.48/d = 0.33 respectively), which increased into the large range 
with increasing paradigm duration (d = 2.31/d = 2.09 at 400 trials). 

FIGURE 4

(A) Zero-order relationships between lambda/alpha and RPE/derivative-coupled beta parameters, represented in terms of R2, across different task 
durations. Error bars reflect the standard error. (B) Figure displays an example of relationship between lambda and RPE-coupled betas, derived from an 
analysis including 100 trials worth of data in 5,000 simulated participants. (C) Figure displays an example of relationship between alpha and derivative-
coupled betas from the same analysis as (B).
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Significant differences were observed, by statistical comparison of 
correlations, between the strength of these respective associations 
even at 25 trials (i.e., lambda/RPE > alpha/RPE: z = 10.82, p < 0.001; 
alpha/derivative > lambda/derivative: z = 8.47, p < 0.001), and the 
statistical magnitude of these differences increased with increasing 
numbers of trials (up to z = 43.12/z = 39.63 respectively). Other 
relationships between the individual differences parameters (drift 
rate, SNR, and noise autocorrelation) with the RPE and derivative 
regressors were often non-significant and associated with small effect 
sizes, although significant associations between SNR/RPE-coupled 
beta parameter were observed across all trial durations [e.g., 
t(4994) = 6.33–28.54 for 25–400 trials]. Overall, the results of these 
simulations revealed a dependency on the number of trials in the 
paradigm, with effect sizes for the key associations of interest 
(lambda/RPE, alpha/derivative) increasing with increasing numbers 
of trials per participant.

I also considered whether the derived beta parameters were 
consistent across two separate “runs” of 100 trials, and thus what the 
test–retest reliability of the two regressors might be. Relatively low 
ICCs (i.e., in the “poor” range) were observed for the RPE-coupled 
[ICC (3,1) = 0.27: CI: 0.25–0.30] and for the derivative-coupled [ICC 
(3,1) = 0.17: CI: 0.15–0.20] beta parameters, across 5,000 simulated 
participants. ICCs were also calculated for the RPE-coupled beta 
parameter from the same data with the derivative parameter not 
included, with a very similar ICC being observed [ICC (3,1) = 0.27: CI: 
0.25–0.30].

Next, I  investigated allowing the HRF scaling to vary across 
individuals. This change affected the relationship between lambda and 
RPE-coupled betas, with somewhat smaller zero-order relationships 
being observed across the 5 paradigm durations [r’s increasing from 
r = 0.25 (25 trials) to r = 0.42 (400 trials)]. However, the magnitude of 
these relationships could be recovered by partialling out the HRF 
scaling parameter [partial r’s increasing from r = 0.29 (25 trials) to 
r = 0.74 (400 trials)]. By contrast, the relationship between alpha and 
the derivative-coupled betas were very similar whether the HRF 
scaling parameter was partialled out or not: zero-order correlation 
increased from r = 0.21 (25 trials) to r = 0.68 (400 trials); partial r’s 
increased from r = 0.21 (25 trials) to r = 0.70 (400 trials).

In terms of model comparisons, BIC generally favored the 
simpler RPE model rather than the RPE&derivative model, with 
only 11.52% of the 5,000 simulated runs for which BIC favored the 
latter model at 400 trials (1–2% for 25–100 trials; 4.82% for 200 
trials). However, consistent with my predictions, runs on which the 
RPE&derivative model was preferred were associated with alphas 
which were more different from 0.45. The basic pattern of findings 
was generally observed across all trial numbers, but unsurprisingly 
were much stronger for 400 trials, and these will be reported due to 
a reduced risk of instability with logistic regression. Absolute alpha 
difference from 0.45 increased preference for the RPE&derivative 
model [t(4991) = −13.65, p < 0.001], as did increasing lambda 
[t(4991) = −6.86, p < 0.001], increasing HRF scaling 
[t(4991) = −13.93, p < 0.001], increasing SNR [t(4991) = −9.14, 
p < 0.001] and noise autocorrelation [t(4991) = −4.39, p < 0.001]. 
However, absolute alpha difference from 0.45 did not interact 
significantly with noise autocorrelation or SNR (t’s < 1.2). In 
summary, the RPE&derivative model was generally not preferred 
compared to the simpler RPE across the great majority of 
simulations, consistent with Wilson and Niv (2015). However, it 

was more often preferred when alpha diverged more sharply from 
0.45, and in conditions which favored characterizing RPE signals 
relative to noise (e.g., more trials, high lambda, high SNR, high 
HRF scaling).

4 Discussion

The question of how best to fit models of psychological processes 
to neural data is an enduring one. Much of the work into this question 
in humans has been conducted within reinforcement learning 
paradigms (O'Doherty et al., 2007; Cohen et al., 2017), and has found 
areas of application in the study of psychiatric patients. In the present 
work, I  reconsider the question of the mapping of reinforcement 
learning output parameters, in this case the basic reward prediction 
error (RPE) signal, on to neural activation as measured using fMRI, 
and how the precision of estimation of the alpha value can affect this. 
The overall idea is that participants, for example, clinical participants, 
might vary in terms of a reinforcement-relevant parameter, which in 
turn may be  reflected in individual differences in RPE-related 
activation. Model fitting is important in this context insofar as it 
allows a more precise mapping between an underlying clinically-
relevant parameter and RPE-coupled neural activation.

In contrast to the majority of previous work, I considered the 
lambda parameter in the RW equation, in addition to the alpha 
parameter. Briefly, lambda controls the reinforcing efficacy of a 
particular reinforcer. It is often not considered for fMRI studies 
perhaps because it is not easily identifiable and distinguishable from 
learning rate or temperature parameters in behavioral paradigms, 
particularly in 2-alternative forced choice (2AFC) paradigms which 
are often employed (Daw, 2009; Huys et al., 2013; Chase, 2021). In 
practice, it controls asymptotic output, e.g., maximum behavioral 
response rate.

I found that the beta parameter derived from an RPE-regressor 
derived from a simple RL model with a fixed learning rate correlated 
much better with variation in lambda than with alpha. This state of 
affairs was very similar if alpha was estimated for each participant, 
either at a relatively lower or higher level of precision. Together, these 
represent the strategies typically adopted within the field for 
examining RPE-related activation (Cohen, 2007; Chase et al., 2015b). 
The fact that lambda is a powerful predictor of RPE-related activation 
implies that previous findings which have observed relationships of 
such activations with clinical measures, for example, may have done 
so because the clinical measures are associated with lambda (see 
Lebreton et al., 2019 for a critical detailed discussion of this point). 
Certainly, at least, the likelihood that the clinical measure is related to 
lambda is greater that the likelihood that it is related to alpha—in the 
absence of any other information.

This finding paved the way for a new hypothesis. In many tasks, 
although learning rate does play a role in influencing behavior of 
course, in many paradigms its effect can be diminished with extended 
training as the participant reaches asymptotic performance. The effect 
of variation in learning rate is mostly seen then in the first few trials 
as the participant starts to learn the reward contingencies, or following 
a change in the stimulus- or response-outcome contingencies. In 
simple terms, it controls the shape of the learning curve—its rate of 
change—while lambda controls the asymptote (Rescorla and Wagner, 
1972). In a neuroimaging context, this is analogous to the 
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hemodynamic response function (HRF) and the derivative of the 
HRF: the latter can be used as a supplementary predictor to explain 
variation in the shape of the HRF across individuals (Friston et al., 
1998). The inclusion of both the standard HRF and the derivative 
affords greater flexibility in modeling variation in the true HRF 
(Calhoun et al., 2004; Handwerker et al., 2004; Fournier et al., 2014). 
The overall logic of this strategy is akin to a Taylor series expansion 
(Friston et al., 1998).

In light of this, I hypothesized that a similar strategy of identifying 
a derivative of the RPE regressor might provide another regressor 
which reflects the shape of the learning curve, and show relationships 
with alpha. After computing a timeseries representing RPE for a given 
learning rate, I  calculated the derivative of that timeseries. Two 
different methods were tried (derivative/gradient method, high/low 
difference method), and both gave highly similar findings: namely that 
individual differences in lambda were strongly associated with the 
magnitude of the RPE-coupled beta parameter, while individual 
differences in alpha were associated with the derivative beta parameter. 
Alpha was also more modestly related to the RPE-coupled beta 
parameter, but lambda was unrelated to the derivative beta parameter.

I generalized this method to more realistic, synthetic fMRI data, 
modeling physiological and thermal noise as pink noise, and fitting an 
AR(2) general linear model to each participant’s data, finding 
compatible associations of lambda/alpha with RPE/derivatives. This 
approach was inspired by a previous review (Monti, 2011), and was 
used here because it is, to my knowledge, not implemented in any of 
the more popular GLM-based models used for fMRI data analysis 
(Chen et al., 2013; Corbin et al., 2018; Olszowy et al., 2019). Whether 
the derivative method works as expected within any fMRI analysis 
software is beyond the scope of the present work. What the findings 
do show is that the method can model meaningful variation of 
simulated physiological RPEs in the presence of fMRI-like noise, using 
a GLM model which can capture the autocorrelational properties of 
such noise.

Crucially, effect sizes observed within these simulations are quite 
similar to those which would be expected for positive results in the 
literature. Although effect size estimation is difficult within fMRI, it is 
probably sensible to assume a priori that most effects identified by 
fMRI should be considered medium sized (Poldrack et al., 2017). 
Thus, much of the extant literature on reward function across different 
clinical groups (Radua et al., 2015; Luijten et al., 2017; Chase et al., 
2018; Keren et  al., 2018; Janouschek et  al., 2021) would then 
be somewhat underpowered given the sample sizes which are typically 
used (often in the range of 15–30 participants per group). However, 
the findings show that variation in lambda exerts a large effect on 
RPE-related activation given largely realistic assumptions (an 
assumption regarding HRF scaling was also assessed independently, 
and its effect is discussed subsequently). Given the expected 
correlation between RPE-coupled activation and win- or loss-coupled 
activation with many paradigms and analysis methods (Rohe et al., 
2012; Wilson and Niv, 2015), individual differences in lambda remains 
a possible explanation for a wide variety of individual differences 
effects in reward-related activity that have been reported in the 
literature, as well as in response to pharmacological manipulations 
(Pessiglione et al., 2006).

Further evidence that these simulations are neurophysiologically 
plausible was obtained from analysis of the test retest reliability of the 
RPE and derivative-coupled beta parameters. These were in the “poor” 

range—levels which would generally be  considered too low for 
psychometric work, but highly consistent with meta-analytic estimates 
from the literature (Elliott et  al., 2020). Although the simulations 
included considerable noise, it is somewhat surprising that such low 
values were seen, as identical parameters were used to generate the 
data for both runs (e.g., lambda, alpha). The large effect sizes relating 
individual differences in lambda to RPE-coupled beta parameters that 
were observed (see Section 3.3, Figure 4) can be supported with such 
low task reliability only because the underlying relationship between 
these two variables was very strong, and the reliability of lambda was 
perfect. In practice, it is likely that there would be further reductions 
in these associations due to natural state-related variation in lambda 
for example. Some arguments can be made that the simulations might 
slightly underestimate ICCs of fMRI data—perhaps efficient noise 
reduction or higher SNR sequences might be beneficial, and it is likely 
that the use of random reward probabilities contributed to the low 
ICCs. Overall, the findings are mostly consistent with the suggestion 
that brain/behavior relationships should be considered medium sized 
effects a priori (Poldrack et al., 2017), but that judicious paradigm 
design and efficient denoising might open the potential for large 
effects to be observed.

There are two main contributions of the work. The first is to 
show the importance of lambda, rather than alpha, in determining 
the magnitude of the basic RPE-response. While in practice, 
distinctions between the two parameters have not been widely 
investigated in human fMRI studies, they reflect fundamentally 
different aspects of reinforcement learning which may be relevant 
for psychiatry. For example, while purchasing alcohol is legal in most 
countries and the majority of individuals drink in some form, a 
minority of individuals go on to drink excessively and develop 
criteria for alcohol use disorder (AUD) (Grant et al., 2015). The 
difference between alpha and lambda can be used to understand this 
variation: all adult drinkers have the capacity to form predictive 
associations about alcoholic beverages, and the speed of formations 
of these associations would be controlled by alpha. In the case of 
dependent drinkers, average daily consumption would reach a much 
higher level—one which is likely to be associated with a variety of 
health-related problems. Here, the level of routine alcohol 
consumption—asymptotic drinking—would be  controlled by 
lambda. Similar arguments could be applied to other disorders such 
as obsessive-compulsive disorder (OCD: Gillan et al., 2014), anxiety 
disorders (Lissek et al., 2005) or major depressive disorder (MDD: 
Huys et al., 2013) in which learning about rewards or sources of 
harm are systematically altered, potentially across the lifespan.

The second contribution is to introduce the potential of a 
derivative for modeling the shape of the learning curve, which is quite 
specifically related to the learning rate, alpha. Overall, the simulations 
suggest the presence of powerful underlying relationships between 
learning rate and reinforcement efficacy parameters and RPE-related 
activity, so enhancing signal to noise and optimizing paradigm design 
in light of these simulations may be valuable for mitigating issues with 
the test–retest reliability of fMRI. Further experimentation is needed 
to determine whether the extant literature has been systematically 
mis-estimating a true large underlying effect size due to poor 
psychometric properties of fMRI design, or if positive findings have 
been driven mostly by analytic flexibility (Lebreton et al., 2019) and 
publication bias. The simulations in the present work suggest that the 
former scenario is at least possible.
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In terms of future applications, an exciting direction might be to 
try to identify different neural regions whose RPE responses appear 
to reflect the operation of different learning rates. Currently, it is 
typical to identify only one learning rate per participant, per task (but 
see Collins et  al., 2017). However, several psychological models 
suggest the presence of different learning systems, which have different 
properties. The most simple contrast is between fast and slow learning 
systems (e.g., Balleine and Dickinson, 1998; Ashby and Maddox, 2005; 
Daw et al., 2005; Pasupathy and Miller, 2005; Collins et al., 2014; Perez 
and Dickinson, 2020): broadly, fast learning systems are thought to 
mediate symbolic, detailed representations of goals, and may 
be dependent on working memory and other cognitive processes; slow 
learning systems are typically characterized as incremental and 
automatic, and support habitual behavior. The derivative-coupled beta 
parameter, in combination with the RPE-coupled beta parameter, 
might provide a simple metric of the learning rate of a given neural 
region, at least within an RL framework. This method might 
complement another method of estimating learning rate from neural 
data alone which is better established, namely the relative magnitude 
of anticipation- and outcome-locked neural activation (Chase et al., 
2015a; Luijten et al., 2017). How these different methods correspond 
to one another might be a fruitful area for future study.

However, at this stage I should note that using fMRI data for 
parameter estimation may not be straightforward in some scenarios—
in fact, the very scenarios in which I anticipate the present method 
will have most utility. The complication of estimation using fMRI 
data is that often researchers use a whole-brain analysis to define 
regions of interest. This initial inference step can lead to considerable 
bias from an estimation point of view: while voxels defined by this 
step may refute the null hypothesis of no difference, this inference 
step would select voxels with the strongest effects, potentially 
capitalizing on random variation. This might over-estimate the 
magnitude of underlying effects and have implications for replication 
(Cremers et al., 2017). Thus, while I show that the derivative will have 
most benefit in terms of improved model fitting in regions in which 
alpha is most divergent from the fixed alpha value used by the RPE 
regressor, parameter estimates from regions identified using a whole 
brain analysis may be over-estimated in practice, and ideally would 
be confirmed in a replication sample. However, once a specific region 
of interest has been identified independently, other methods of 
parameter estimation, that may be intractable at a voxelwise level 
(e.g., Friston et  al., 2003; Turner et  al., 2013), could be  brought 
to bear.

Further relevant findings from an estimation point of view are the 
potential to use RPE or derivative beta maps to estimate lambda or 
alpha for a given subject, perhaps to corroborate findings obtained 
with another task—although this mapping may be difficult in some 
cases (Eckstein et al., 2021). A potential possibility here might be to 
obtain distributed predictions across the whole brain using a method 
such as ridge regression (e.g., Ooi et al., 2022) to reduce the impact of 
noise from a given voxel or region. The present findings suggest that 
this type of analysis may be more effect for alpha than for lambda, 
given that the relationship between RPE-coupled activation and 
lambda is obscured when the scaling of the HRF allowed to vary 
randomly across individuals. However, this can be recovered if the 
HRF scaling parameter is included in the analysis—this may 
be analogous to the capacity of amplitude of low frequency fluctuations 
(ALFF) measures to predict variation in task-related activation 

(Mennes et al., 2011; Di et al., 2013; Zou et al., 2013). Putting this 
together then, the present techniques may provide ways to estimate 
RL parameters (i.e., alpha, lambda) from neural data, but this may 
require (1) training and test samples, (2) information from distributed 
neural regions and (3) independent estimates of regional 
hemodynamic properties.

In terms of recommendations for future methodological work, the 
method employing derivatives may be the preferred option over the 
high/low difference method. This is because it is straightforward to 
implement which opens possibilities for generalization to other tasks, 
and, at least in these simulations, orthogonal to the RPE regressor 
(mean HRF-convolved RPE/derivative r ~ = − 0.01). It also 
distinguishes alpha-related loading on the derivative-coupled beta 
parameter from lambda-related loading on the main RPE-coupled 
beta parameter, although alpha did show some correlation with the 
latter. In practice, this was a modest effect size, but it does underscore 
the difficulty of distinguishing alpha and lambda (Chase, 2021). An 
important benefit of the derivative approach is that it would seem 
straightforwardly applicable to other types of parametric modulator: 
one could even imagine it being used for reaction times.

While the difference method gave the same pattern of findings 
overall as the derivative method, the correlation between the difference 
and the mean regressors was quite high, which necessitated 
orthogonalization. Widely-used fMRI software differ with regard to 
the orthogonalization of parametric regressors, and there are 
drawbacks regarding interpretability of this procedure when the 
correlations between regressors is high (Mumford et al., 2015). A 
second weakness of this approach is that the selection of values for the 
high and low learning rates was essentially arbitrary. This need not 
be  the case for the derivative method: for example, a group or 
individual estimation of alpha could be performed to estimate the 
initial learning rate, rather than a fixed learning rate, before the 
derivatives are calculated.

5 Limitations

One underlying assumption of this work is the notion that more 
RPE neural activation is associated with a greater psychological RPE 
signal. While this assumption—of an absolute scale—might appear 
plausible, even obvious, it may not in fact hold for RPE signals: a 
point discussed in detail by Lebreton et al. (2019). Specifically, studies 
of prediction error responses in the midbrain have demonstrated a 
rescaling of RPE signals in midbrain dopamine neurons with local 
reward distributions (Tobler et  al., 2005). RPEs are therefore 
computed relative to local reward distributions, so that the maximum 
neural RPE elicited scales approximately with the range of rewards 
available in that context. This type of finding is divergent from our 
assumption of an absolute scaling between psychological and neural 
RPE. In an individual differences context, it remains unclear how 
lambda might be  reflected in neural activity (although see, e.g., 
Kirschner et al., 2016). If neural activation is perfectly normalized 
within individuals to a relative scale, any between-subject variation 
in reward activation might simply be  reflective of an irrelevant 
dimension such as the shape or hemodynamic properties of the 
region. Nevertheless, it remains possible that there might be within-
subject relative scaling, but between-subject absolute scaling (i.e., that 
more reward sensitive individuals can show a wider range of 
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RPE-coupled BOLD signal, but that RPE signals will still adapt to 
contextual reward rates). It should be noted that recent evidence has 
suggested that intrinsic motivation may lead to an analogous set of 
findings to those predicted by adaptive coding models (Molinaro and 
Collins, 2023). The capacity for intrinsic motivation also might vary 
across individuals (Blain et al., 2023), leading to an alternative set of 
predictions generated by intrinsic motivation models, which could 
be pursued in future work.

Another scenario I did not consider was whether alpha influences 
the magnitude of the neural RPE signal directly (as opposed to 
indirectly by affecting prior expectations). This assumption is consistent 
with evidence from midbrain dopamine neurons (Fiorillo et al., 2003), 
in which RPE magnitude was intermediate at 50% contingencies. 
Overall, it would seem possible to generalize the present method to 
incorporate the predictions of different learning models, including 
those in which cue-outcome uncertainty can modulate learning rates 
(Mackintosh, 1975; Yu and Dayan, 2005; Le Pelley et al., 2016).

In general, for the purposes of the present work, I have tried to 
adopt a straightforward and widely used modeling throughout, and 
made only basic assumptions. One area where this is particularly 
evident is the simplicity of the biophysical basis of the simulated 
neuronal activation: a simple linear function of the model-derived 
RPE, which is then convolved with the HRF to simulate the BOLD 
signal. This approach was chosen as it aligns with typical fMRI 
analyses which are widely used throughout the literature (Poline and 
Brett, 2012). More sophisticated biophysical modeling of the BOLD 
signal is being developed (Daunizeau et  al., 2011), and it would 
be intriguing to see the extent to which further biophysically plausible 
constraints added to the sensitivity of the method in the context of real 
fMRI data. Importantly however, I argue that the basic form of the 
RPE model should be similar regardless of such constraints, given the 
accurate relationship of RPE model predictions and real 
electrophysiological data (Schultz et  al., 1997). Nevertheless, one 
obvious biophysical constraint not considered in the present work is 
the smaller dynamic range for negative deflections of dopamine firing 
(“dips”) than for positive deflections (Tobler et al., 2003). A valuable 
future direction might be to try to generalize the present modeling 
approach to capture such non-linearities resulting from the biophysical 
realization of dopaminergic neurons.

A final important point is the extent to which the findings are 
specific to the paradigm used for these simulations. 50% contingencies 
were chosen as they are expected to generate many prediction error 
events across a variety of learning rates (although in practice learned 
irrelevance effects might become significant: Le Pelley et al., 2016). 
While many RPE events per paradigm ensures that the GLM model 
fit would not generally hinge on a few critical trials, the random 
design might be in part responsible for the low ICCs which were 
observed. Intriguingly, Wilson and Niv (2015) present simulations to 
suggest that some designs might be more sensitive to misspecification 
of alpha than others. In this light, whether the derivatives method can 
provide additional benefit in more “alpha-sensitive” paradigms, and 
indeed what the design features of such paradigms are, might be a 
worthwhile topic for future investigation. The findings do show that 
the session duration and/or number of trials is an important 
determinant of the strength of the associations between the 
psychological variables (lambda/alpha) and the simulated neural 
responses, consistent with prior work (Nee, 2019), although 
substantial effect sizes are still present with low trial numbers.

6 Summary

While fitting predictions of reinforcement learning models to 
neuroimaging data has become widely adopted, the importance of 
accurate estimation of the learning rate parameter remains 
unclear. In the present work, I present a novel approach for use 
with GLM models, in which a derivative regressor is included with 
the standard RPE regressor. This regressor can capture unmodeled 
variation resulting from the misspecification of the learning rate 
parameter when modeling neural RPE-coupled signals, and 
clarifies the relationship of individual differences in reinforcement 
learning rate parameters with neural activation. This approach 
may provide utility for studies of reinforcement learning which 
are focused on individual differences, including studies of clinical 
populations characterized by aberrant reinforcement learning 
such as major depression, OCD, anxiety and substance 
use disorders.
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