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Exploring the dynamics of
intentional sensorimotor
desynchronization using phasing
performance in music

Ji Chul Kim*

Department of Psychological Sciences, Center for the Ecological Study of Perception and Action,

Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States

Humans tend to synchronize spontaneously to rhythmic stimuli or with other

humans, but they can also desynchronize intentionally in certain situations. In this

study, we investigate the dynamics of intentional sensorimotor desynchronization

using phasing performance in music as an experimental paradigm. Phasing

is a compositional technique in modern music that requires musicians to

desynchronize from each other in a controlled manner. A previous case study

found systematic nonlinear trajectories in the phasing performance between

two expert musicians, which were explained by coordination dynamics arising

from the interaction between the intrinsic tendency of synchronization and the

intention of desynchronization. A recent exploratory study further examined the

dynamics of phasing performance using a simplified task of phasing against a

metronome. Here we present a further analysis and modeling of the data from

the exploratory study, focusing on the various types of phasing behavior found in

non-expert participants. Participants were instructed to perform one phasing lap,

and individual trials were classified as successful (1 lap), unsuccessful (> 1 laps), or

incomplete (0 lap) based on the number of laps made. It was found that successful

phasing required a gradual increment of relative phase and that di�erent types of

failure (unsuccessful vs. incomplete) were prevalent at slow vs. fast metronome

tempi. The results are explained from a dynamical systems perspective, and

a dynamical model of phasing performance is proposed which captures the

interaction of intrinsic dynamics and intentional control in an adaptive-frequency

oscillator coupled to a periodic external stimulus. It is shown that the model

can replicate the multiple types of phasing behavior as well as the e�ect of

tempo observed in the human experiment. This study provides further evidence

that phasing performance is governed by the nonlinear dynamics of rhythmic

coordination. It also demonstrates that the musical technique of phasing provides

a unique experimental paradigm for investigating human rhythmic behavior.

KEYWORDS

phasing, music performance, rhythmic coordination, coordination dynamics, oscillator

model, dynamical systems

1. Introduction

Synchronization is a natural phenomenon found widely in both living and non-living

systems (Pikovsky et al., 2001; Strogatz, 2003). Humans synchronize their movement to

external rhythms seemingly effortlessly and automatically (Repp, 2005; Repp and Su, 2013),

and interpersonal synchronization is fundamental to the coordination and communication

in social interaction (Schmidt and Richardson, 2008; Shockley et al., 2009; Keller et al.,

2014). Humans can also desynchronize intentionally under certain circumstances such as
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competitive sports (Yamamoto et al., 2013; McGarry and De Poel,

2016) and argumentative conversations (Paxton and Dale, 2013,

2017). Intentional desynchronization, however, is not a simple

switch of behavior but involves complex dynamics because humans,

despite the intention, tend to synchronize sometimes unknowingly.

For example, a study of music performance in an Afro-Brazilian

ritual showed that two independent groups playing different

music synchronized unintentionally when they were in close

proximity (Lucas et al., 2011). Intentional desynchronzation offers

an interesting setup for studying human coordinative behavior, but

little work has been done to study it systematically. Here, we aim to

study the dynamics of intentional sensorimotor desynchronization

in a controlled situation that originates from music performance,

called phasing.

Phasing is a compositional technique in contemporary art

music popularized by the composer Steve Reich. It is a

process in which two identical patterns are played in and

out of phase, with their relative phase (or phase difference)

varying over time (Cohn, 1992; Yust, 2021). In Steve Reich’s

Drumming (1971/2011), two drummers start a phasing process

by repeating the same six-beat pattern in phase, that is,

with their performance aligned in time (Figure 1A). Then,

they gradually desynchronize, with Drummer 2 (the moving

part) increasing tempo slightly while Drummer 1 (the steady

part) holds the original tempo, so that Drummer 2 is one

quarter note ahead of Drummer 1 after about 20 or 30 s

(Figure 1C; Reich, 1971/2011). Thus, according to the musical

score, the relative phase between the musicians should increase

linearly while phasing. Given that typical ensemble performance

requires synchronization between musicians, phasing asks for an

unusual (and somewhat unnatural and counterintuitive) skill of

intentional desynchronization.

In a previous case study, two world-renowned percussionists

performed the phasing section from Drumming (Hartenberger,

2016; Schutz, 2019). It was found that despite their intention

to follow the musical score (i.e., one increases tempo while the

other holds a constant tempo), both musicians sped up and

slowed down together throughout the phasing process. A further

analysis of the performance data revealed systematic nonlinear

trajectories in the tempi and the relative phase (Kim, manuscript

in preparation).1 The relative phase, instead of increasing in a

steady rate, advanced in a series of plateaus and abrupt transitions.

The relative phase plateaued when the combined rhythm formed

a simple pattern, such as the interlocking pattern where the note

onsets are aligned (Figure 1B) and the interleaved pattern where the

onsets form a steady sixteenth-note stream (e.g., halfway between

Figures 1A, B). The drummers increased tempo together while they

were engaged in one of these stable patterns until their tempi

eventually diverged, after which they quickly moved to the next

stable pattern.2

The nonlinear trajectories found in the expert data suggest

that phasing performance is governed by the nonlinear dynamics

1 Kim, J. C. (manuscript in preparation). Push and pull: The dynamics of

phasing performance in Steve Reich’s music.

2 The dynamical systems analysis andmodeling of the Drumming data was

first reported in Kim (2019).
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FIGURE 1

A phasing section from Steve Reich’s Drumming (1971/2011). The

basic six-beat pattern is shown in musical notation (top), and

di�erent alignments of two drummers are shown in piano-roll

representations (A–C). Vertical colored lines indicate the beginning

of each repetition of the pattern. (A) Two drummers’ beats are

aligned at the beginning of the phasing process. Drummer 2 is (B) a

half beat (an eighth note) ahead of Drummer 1 in the middle and (C)

one full beat (a quarter note) ahead at the end of phasing.

of rhythmic coordination. Previous research showed that

the coordination of rhythmic movements is stable when

individual movements are arranged in either in-phase or

antiphase relationship (Kelso, 1984, 1995). This means that

the coordinated movements, when described as a dynamical

system (Strogatz, 1994), have attractors at the in-phase and

the antiphase states (Haken et al., 1985; Kelso, 2008). For the

phasing performance in Drumming, the interlocking patterns

(Figures 1A–C) and the interleaved patterns (halfway between the

interlocking patterns) serve as attractors because the beats played

by two musicians are either aligned (in-phase) or interleaved

(antiphase) in these patterns. When one drummer increases

tempo while locked in one of these stable patterns, the other

drummer is also inclined to increase tempo involuntarily

(and unknowingly) due to the stability and attraction of the

coordinated pattern. Hence, the nonlinear trajectories found in

phasing performance can be interpreted as resulting from the

dynamic interaction between the intention of desynchronization

(phasing) and the involuntary tendency of synchronization. This

dynamical systems interpretation was supported by a model of
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two mutually coupled oscillators, which showed similar nonlinear

trajectories to those found in the expert performance (Kim, in

preparation).

The above case study suggests that phasing performance

offers a unique window into the dynamics of human rhythmic

coordination (see also Van Kerrebroeck et al., 2021, for an

interesting study of phasing in virtual reality) and this led us

to the idea of using phasing as an experimental paradigm. We

conducted an exploratory study with non-expert participants (i.e.,

no professional musicians) who performed phasing against a

metronome by finger tapping (Hall et al., 2023). The goal of

the study was to observe a wide range of phasing behaviors

beyond what is seen in the highly controlled performance of expert

musicians. Since phasing with a human partner is difficult even

for trained musicians (see Hartenberger, 2016, for suggestions for

practicing phasing) we began the investigation with a simplified

task of phasing against a metronome. This simplifies the task in two

ways: Phasing is performed (1) with a non-responsive partner who

does not react to the participant’s tempo change, and (2) using a

simple isochronous rhythm rather than a complex rhythmic pattern

(such as the one in Figure 1). We reported elsewhere the results of

multidimensional recurrence quantification analysis of the relative

phase data (Hall et al., 2023). The analysis showed that tapping

was more stable when the taps were near in-phase or antiphase

relation with the metronome, confirming the existence of in-phase

and antiphase attractors in phasing performance.

In the present paper, a further analysis andmodeling of the data

from the exploratory study (Hall et al., 2023) is reported. Here we

examine various types of phasing behavior observed in non-expert

participants and analyze the effect of metronome tempo which was

the only parameter systematically varied in the study. It will be

shown that successful phasing depends on gradual advancement

of each tap relative to the metronome. This finding, along with

the effect of tempo on phasing performance, is replicated in a

dynamical model consisting of an adaptive-frequency oscillator

coupled to a periodic stimulus. To help the readers, a brief version

of the experimental procedure is given below (see Hall et al., 2023,

for the original description).

2. Materials and methods

2.1. Participants and materials

Twenty-five undergraduate students (17 females, 8 males;

18–21 years, M = 18.7 years) at the University of Connecticut

were recruited from the Department of Psychological Sciences

Experiment Participant Pool and received course credit for

participating in the experiment. Nineteen out of 25 participants

(12 females, 7 males) reported no experience in playing musical

instrument. Six participants (5 females, 1 male) reported 1 to 13

years of experience in playing musical instrument(s), but none of

them were music-major students.

Seven audio stimuli were created, each containing a series of

identical metronome beats (woodblock sound) at a constant tempo,

ranging from 80 BPM (beats per minute) to 140 BPM in 10-BPM

increments. Each stimulus was 2 minutes long and contained a bell

sound (serving as a cue signal) coinciding with a metronome beat

at around 7 s after the first metronome beat.

2.2. Procedure

The participants first filled out a demographic survey

including the length of experience in playing musical instruments

(in years). Then, the experimenter gave the instructions for

performing phasing against a metronome, accompanied by audio

and audiovisual demonstrations (audio: metronome and tapping

sounds; audiovisual: a video of a person performing phasing in

the same experimental setup). The participants were instructed

(Figure 2) to (1) start tapping to the metronome using a finger of

their choice and maintain in-phase (synchronous) tapping, and (2)

upon hearing the cue signal (bell sound), begin phasing in a steady

but self-paced manner by placing each tap increasingly ahead of the

metronome.3 (3) Once they completed one phasing lap by coming

back to in-phase tapping, they were asked to tap a few more times

in phase and stop (the audio stimulus stopped 5 seconds after

tapping stopped).

The participants then practiced phasing with an interactive

audiovisual display (Practice 1). The visual display included an

arrow on a circle (like a clock face) which indicated the relative

phase of each tap, with in-phase (relative phase = 0) at 12 o’clock

and antiphase (±π or 180◦) at 6 o’clock. Thus, the goal was to

make the arrow move clockwise from 12 o’clock and stop when

it comes back to 12 o’clock after one lap. The number of phasing

laps (i.e., the number of clockwise rounds made by the arrow) was

displayed on top of the display. After each practice trial, feedback

was given on the screen about the number of phasing laps made

in total (the target was one lap) and a score indicating whether the

phasing was gradual enough. The score of 100% was given when

the participant made at least 16 taps while phasing. This excluded

initial and final in-phase taps. This minimum required number of

taps was not known to the participants to encourage self-paced

tapping. The minimum number of phasing taps was not used in

data analysis. In Practice 2, the same feedback was given on the

screen after each trial, but no visual aid was provided. In both

practice sessions, three metronome tempi (90, 110, and 130 BPM)

were used to prepare the participants for the range of tempo used

in the main experiment (80–140 BPM).

The main experiment included 21 trials, three trials for each of

7 metronome tempi. Metronome tempo was the only independent

variable in this exploratory study. The order of the trials was

pseudo-randomized for each participant such that the same tempo

was not presented in any two consecutive trials. No feedback was

provided during the main experiment. The audio stimuli were

played at a comfortable listening level through two loudspeakers

3 The direction of phasing (getting ahead of the metronome, instead of

getting behind) follows the original phasing process in Reich’s Drumming in

which Drummer 2 places each note increasingly ahead of Drummer 1 who

tries to hold a constant tempo. Phasing in the opposite direction (i.e., by

falling behind a metronome) may prove more di�cult because it would be

harder to break away from in-phase synchronization when the metronome

precedes the tap. This would make an interesting follow-up study.
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FIGURE 2

The procedure of a phasing trial.

placed in front of the participant. The participants tapped their

finger on HandSonic HPD-15 Hand Percussion Pad (Roland

Corporation), and the MIDI signal was converted to keystrokes

using MIDI Translator Pro (Bome Software GmbH & Co. KG).

Hitting on the drum pad created an audible thud, and no additional

soundwas played in response to tapping. The timestamp of each tap

was recorded with custom code written in MATLAB (MathWorks,

Inc.) using Psychophysics Toolbox (Psychtoolbox) Version 3.0.15.

2.3. Analysis

The relative phase of the nth tap, ψn, was calculated from

the timestamp of the tap, tn, and the timestamp of the closest

metronome beat,mn, by

ψn =
2π(mn − tn)

T
, (1)

where T is the period of the metronome. Thus, the relative

phase ranged from −π to π (before upwrapping, see below),

and a positive relative phase resulted when the tap preceded

the metronome beat.4 The time series of relative phases in

an individual trial were then unwrapped (using MATLAB’s

unwrap function) so that the relative phase can increase

continuously beyond π toward 2π , instead of jumping down

to −π . This allowed counting the number of phasing laps as

described below.

From the relative phase data for each trial, we determined

(1) the number of phasing laps made (i.e., the number of 2π-

rounds made by the relative phase), and (2) the number of taps

made during phasing (i.e., taps made between initial and final in-

phase tapping). We first determined the range of relative phase

during initial in-phase tapping by taking the minimum and the

4 Note that relative phase defined this way has an opposite sign from

asynchrony commonly used in the sensorimotor synchronization literature.

Relative phase, favored in dynamical systems research, is based on system

states, while asynchrony is based on event times.When the tap is ahead of the

metronome, the tapper’s relative phase to themetronome is positive because

the tapper’s state (phase) is more advanced than the metronome’s state at a

given moment in time. The asynchrony is negative in this situation because

the tap time is earlier than the metronome tick time.

0 5 10 15 20

Time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

R
e

la
ti
v
e

 p
h

a
s
e

 (
u

n
w

ra
p

p
e

d
),

 
/2

Phasing window

Final
in-phase range

Initial
in-phase range

Cue

FIGURE 3

Parsing of a phasing trial. The unwrapped relative phase of each tap

is plotted vs. its timestamp. The vertical axis displays unwrapped

relative phase divided by 2π to show the number of phasing laps

clearly. In this particular trial, one phasing lap was made, with 15

taps within the phasing window. See text for details.

maximum relative phase during the second half of the pre-cue

interval (see Figure 3). The initial range was determined for each

trial because it is known that the mean asynchrony between

taps and metronome beats during in-phase synchronization varies

across individuals and also depends on tempo (Aschersleben, 2002;

Scheurich et al., 2018). The number of phasing laps was calculated

as the number of complete 2π-rounds made between the minimum

initial relative phase and the maximum unwrapped relative phase

in the trial.5 The number of taps during phasing was determined

by identifying the phasing window, which begins after the last

tap inside the initial in-phase range and ends before the first tap

inside the final in-phase range (indicated by the pink background

in Figure 3).

5 This was done by subtracting the minimum initial relative phase from the

maximum unwrapped relative phase reached in the trial, dividing the result

by 2π , and then applying the floor function.
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3. Results and discussion

3.1. Successful vs. unsuccessful trials:
gradualness of phasing

3.1.1. Classification of phasing outcomes
A phasing trial was counted as “successful” if the participant

was able to follow the instructions and perform only one phasing

lap (Figure 4A). Only 38% of all trials (200 out of 525 trials) were

successful trials, indicating the difficulty of the phasing task. The

trials with more than one phasing lap were named “unsuccessful”,

and they accounted for 41% of all trials (213 trials; Figure 4B).

The trials with no complete phasing lap were labeled “incomplete”,

accounting for 19% of all trials (102 trials, Figure 4C). The trials

in which the participant did not maintain in-phase tapping before

the cue signal were flagged as “noncompliant” (the remaining 2%,

10 trials) and excluded from subsequent analysis because initial

in-phase range could not be determined.6

3.1.2. Gradualness of phasing: number of taps per
phasing lap

A major difference found between the successful and the

unsuccessful trials was the gradualness of phasing, which was

quantified by the number of taps per phasing lap (only the taps in

phasing window were counted, excluding initial and final in-phase

taps). A high number of taps per lap indicates small increments

of relative phase by individual taps on average. It was found

that significantly fewer taps were made per phasing lap in the

unsuccessful trials (M = 8.77, SD = 4.44) than in the successful

trials (M = 21.15, SD = 13.16), t(241.2) = 12.65, p < .001, 95%

CI [10.45, 14.31] (Welch’s two sample t-test).7 The box plots in

Figure 5A show the distribution of the number of taps per lap in

individual trials grouped by the number of phasing laps made.

Note that the shaded notch for the successful trials (one phasing

lap, green background) does not overlap with the notches for the

unsuccessful trials (2 or more laps, red background). This indicates

that the median number of taps per lap was greater in the successful

trials than in the unsuccessful trials at a 95% confidence level

(McGill et al., 1978).

The same relationship was also found at the level of individual

participants. The average number of taps per phasing lap for

individual participants predicted the percentage of successful trials,

R2 = 0.275, F(1,23) = 8.70, p= 0.007 (Figure 5B). However, the years

of playing musical instruments (indicated by different markers in

Figure 5B) did not predict the success rate, R2 = 0.028, F(1,23) =

0.658, p= 0.426.

6 The classification of successful, unsuccessful, and incomplete trials was

initially reported in the original paper (Hall et al., 2023). All other results

described here are new.

7 The incomplete trials are not included in this analysis because taps per

lap could not be computed when no complete lap was made.

3.2. E�ect of tempo

3.2.1. Phasing outcome types by tempo
Figure 6A shows that the number of successful trials did not

vary significantly with the tempo, r(5) = −0.11, p = 0.807, but

clear and opposite trends were found for the unsuccessful and the

incomplete trials. The number of unsuccessful trials decreased as

the tempo increased, with a strong negative correlation, r(5) =

−0.94, p = 0.002, whereas the number of incomplete trials was

positively correlated with the metronome tempo, r(5) = 0.95, p =

0.001. This indicates different types of failure were prevalent at slow

vs. fast tempi. At slow metronome tempi, the participants often

failed to stop at the in-phase target after one phasing lap. At faster

tempi, on the other hand, more participants were not able to reach

the in-phase target.

3.2.2. Number of taps per lap by tempo
An effect of metronome tempo was also found in the number of

taps per phasing lap. For both the successful and the unsuccessful

trials, phasing was more gradual (i.e., more taps per lap) at higher

tempi (Figure 6B). A multiple linear regression indicated that

outcome type (successful = 1, unsuccessful = 2) and metronome

tempo explained a significant portion of the variance in the taps/lap

data, R2 = 0.30, F(2,410) = 89.4, p < 0.001. Both outcome type (B

= −12.03, t = −12.58, p < 0.001) and metronome tempo (B =

0.068, t = 2.80, p = 0.005) were significant predictors in the model.

This finding might be related to the decrease of unsuccessful trials

and the increase of incomplete trials with increasing tempo shown

above (Figure 6A). Gradual phasing at fast tempi may reduce the

chance of overshooting and skipping over the goal, but at the same

time, it may make it more difficult to leave the initial in-phase

tapping. Although this did not change the success rate across tempi,

this might have impacted the composition of failed trials (i.e.,

unsuccessful vs. incomplete). We discuss this possibility further in

Section 4.1.

3.3. Subtypes of incomplete trials

The above finding encouraged closer examination of the

incomplete trials as to how phasing failed when no complete

phasing lap was made. Multiple subtypes of the incomplete trials

were identified (Figure 7A). In the first subtype named “trapped”,

taps did not leave the initial in-phase range significantly. A trial was

determined to be trapped if the relative phases of all taps after the

cue signal were inside the initial range plus and minus one width of

the range (indicated by themagenta dotted lines). A second subtype

is called “return” because taps leave the initial in-phase range but

return to it without reaching the goal. In a third subtype, taps leave

the initial range but stop before reaching the goal, hence called

“halfway”. The last subtype is called “backward”, in which taps leave

the initial range but go in the wrong direction. Figure 7B shows

that return trials were the most common subtype of incomplete

trials for all tempi. It is noteworthy that all incomplete trials at the

lowest tempo (80 BPM) were return trials and that trapped trials

were found only at the mid to high tempi.
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Examples of di�erent phasing outcomes. (A) A successful trial (one phasing lap made as instructed), (B) an unsuccessful trial (more than one phasing

lap; 4 laps were made in this particular trial), and (C) an incomplete trial (no complete phasing lap made).
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(A) Box plots showing the number of taps per phasing lap for trials grouped by the total number of phasing laps (green background: successful trials,

red background: unsuccessful trials). The red dots show the mean taps per lap for each group. Nine trials with more than 50 taps/lap (the max at 84

taps, all successful trials) are beyond the plotting range and not shown. (B) Success rate (the percentage of successful trials) for individual participants

(N = 25) plotted against their average taps per phasing lap (for the successful and the unsuccessful trials combined). Participants with di�erent levels

of musical experience (in years of playing musical instruments) are indicated by di�erent markers (see the legend).

4. Dynamical systems modeling

4.1. Dynamical systems account of the
experimental results

Unlike the professional percussionists in the expert study

(Hartenberger, 2016; Schutz, 2019), the non-expert participants

in the exploratory study further analyzed here (Hall et al., 2023)

often failed to perform phasing as instructed (in unsuccessful

and incomplete trials). By recruiting non-expert participants, we

hoped to observe a diverse range of phasing behaviors (especially

failures), which can reveal more about the underlying dynamics

of phasing performance than the highly controlled performance

of expert musicians does. Here we discuss the findings of

the exploratory study from a dynamical systems perspective,

attempting to characterize the various phasing outcomes observed

in the experiment as different possible behaviors of a single

dynamical system. The ideas developed here are tested with model

simulations below.

Dynamical systems theory describes the behavior of complex

dynamical systems with mathematical equations which capture the

contribution and interaction of underlying forces and constraints

(Strogatz, 1994; Kelso, 1995; Schiavio et al., 2022). As was done

for phasing between human partners (see Section 1), the dynamics

of phasing against a metronome can be characterized in terms of

the interaction between the intrinsic tendency of synchronization

and the intention of desynchronization. In-phase coordination is

an intrinsically stable mode of rhythmic coordination,8 so that

a coordinated rhythmic movement such as finger tapping to a

metronome is attracted to the in-phase state when the current

state is near it (Kelso, 1984; Scholz et al., 1987). To perform

8 Intrinsic stability means that a pattern is stable and occurs spontaneously

in the absence of specific task requirements (Schöner and Kelso, 1988a).

Task-specific intention interacts with the intrinsic dynamics of the system and

alters the attractor layout, inducing behavioral change.
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E�ect of metronome tempo. (A) The proportions of three di�erent phasing outcomes for each metronome tempo. (B) Average taps per phasing lap
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for the successful and the unsuccessful trials separately.
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(A) Subtypes of incomplete trials: trapped, return, halfway, and backward. The magenta dotted lines indicate the initial in-phase range ± one width of

the range, which was used to determine trapped trials. (B) The number of the subtypes of incomplete trials shown for each metronome tempo.

phasing, however, the tapper has to overcome the attraction of in-

phase coordination by increasing tapping tempo and place each

tap increasingly ahead of the metronome. This requires a precise

control of tapping tempo because if the tempo increase is not big

enough, taps would be pulled back toward the metronome beats

and hence unable to escape the in-phase attractor, as found in some

of incomplete trials. To use an analogy, this is like a car trapped in

a valley and unable to climb up the hill because it cannot overcome

the gravity (the car labeled “Incomplete” in Figure 8A).

If the tempo increase is too big, on the other hand, the tapper

would be able to escape the initial in-phase attractor but would

also be prone to miss the target by overshooting. An unsuccessful

trial can be depicted as a system with high kinetic energy enough

to escape the origin attractor but is unable to stop at the goal

attractor (like the car labeled “Unsuccessful” in Figure 8A). This

interpretation agrees with the finding that fewer taps per phasing

lap were made in the unsuccessful trials (Figure 5), which indicates

that the participants tended to miss the target and kept phasing

when they increased tapping tempo too much.

Successful phasing, however, requires more than just the

precise amount of tempo increase. The control of tapping

tempo has to be context-dependent because the attractor one

wants to escape from (i.e., in-phase coordination) is the

same attractor one wants to land on (Figure 8B). Hence,

tapping has to accelerate to start phasing and decelerate

when finishing, just as the “Successful” car in Figure 8A must

accelerate uphill and then decelerate downhill to stop at the

stop sign.
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A car analogy for the dynamic landscape of phasing performance. (A) An unwrapped flat representation. The in-phase attractor is depicted as a

valley. (B) The true circular landscape where phasing starts and ends at the same point. The dashed line depicts a perfect circle so that it is a valley if

the ground is below the dashed line and a hill if above the dashed line.

Another important finding that must be addressed in the

dynamical systems account is the effect of metronome tempo. It

was found that unsuccessful trials were more common at slow

tempi, while incomplete trials were found more often at fast tempi

(see Figure 6A). One possible interpretation that follows from

the dynamical systems account is that the attraction of in-phase

coordination might be stronger at fast tempi. A strong attractor

would be harder to escape, resulting in more incomplete trials,

whereas a weak attractor would be easy to escape but also easy

to overshoot, leading to more unsuccessful trials. This idea seems

consistent with the finding that more taps were made per phasing

lap at faster tempi (Figure 6B). The same amount of tempo increase

would result in a slower advancement of relative phase when

attempting to escape a stronger attractor (imagine a rocket launch

from a heavy planet).

But why would the in-phase attractor be stronger at fast

tempi? A clue can be found in the experiments of sensorimotor

synchronization in the presence of distractors (Repp, 2003, 2004).

In these experiments, participants were instructed to synchronize

finger taps with a target sequence of isochronous tones while

ignoring a sequence of distractor tones which were presented at

a different pitch. The results showed that the taps were attracted

toward the distractor tones when they were close in time. Repp

(2004) found that the strength of distractor effect depended on

the absolute temporal separation between the target and the

distractor (measured in milliseconds, for example) rather than the

relative phase between them (e.g., in radian). In dynamical systems

language, this means that the temporal basin of attraction for

in-phase coordination, where taps are pulled toward metronome

beats, may have a fixed width when measured in absolute time

regardless of metronome tempo. Then, the basin of in-phase

attraction would take up a bigger portion of the metronome period

when the tempo is fast (because the period is short), and this could

result in stronger in-phase attraction at fast tempi. We test this idea

below with a dynamical model of phasing performance.

Our goal is to construct a minimal dynamical model capable

of producing various phasing behaviors observed in the human

participants and test if the model can replicate the main findings

of the experiment. We start with a simple, well-known model of

periodically forced oscillation and discuss additional dynamical

features necessary tomodel human phasing behaviors (Section 4.2).

We then present a minimal model with such features and test if it

can replicate the experimental results (Section 4.3).

4.2. Model with fixed frequency detuning

Systems showing periodic activities, such as flashing fireflies

and the human sleep-wake cycle, can be modeled as oscillations

(Pikovsky et al., 2001; Winfree, 2001), and human rhythmic

movement such as periodic finger tapping has been studied with

oscillator models (Haken et al., 1985; Large and Kolen, 1994;

Large et al., 2015). Let us consider a phase oscillator coupled to

a periodic external stimulus as a model of phasing performance

against a metronome,

dφ

dt
= ω + c sin(θ − φ), (2)

where φ is the oscillator phase,9 t is time, ω is the oscillator’s

natural frequency, c is the coupling strength, and θ = ω0t is

the stimulus phase where ω0 is the stimulus frequency (hence

we assume θ = 0 at t = 0 without loss of generality). In the

absence of external stimulus (i.e., when c = 0), φ increases at the

constant rate of ω. (Hence, the phase φ obtained by integrating

the differential equation, Equation (2), is an unwrapped phase,

which is not confined to a 2π-range.) We assume that the oscillator

produces a “tap” whenever the wrapped φ crosses zero10 (or when

the unwrapped phase crosses a multiple of 2π), an arbitrary choice

that does not alter the overall results. Similarly, the stimulus is

9 “Phase” refers to the angular component of oscillation, not to be

confused with “phasing” which refers to the act of varying the phase relation

between patterns.

10 The wrapped phase is obtained by mapping the original unwrapped

phase onto the range from−π to π by adding or subtracting a multiple of 2π .
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assumed to produce a “tick” (like a metronome) whenever the

wrapped θ crosses zero.

The synchronization and desynchronization of the oscillator

with the external stimulus can be described by the relative phase

defined as ψ = φ − θ . Thus, ψ is positive when the oscillator is

ahead of the stimulus, as defined for the experimental data (see

Equation 1). Since dθ/dt = ω0, the relative phase is governed by

the differential equation,

dψ

dt
= 1ω − c sinψ , (3)

where 1ω = ω − ω0 is frequency detuning, the difference between

the oscillator’s natural frequency and the stimulus frequency. This

equation represents a vector field that determines the flow of ψ

over time (Figures 9A–C, the direction of flow is indicated by

arrows). The points where dψ/dt = 0 are called fixed points

because ψ does not change over time at these values (indicated

by circles). If the local flow is toward a fixed point, it is called a

stable fixed point or an attractor (filled circles). If the flow is away

from a fixed point, it is called an unstable fixed point or a repeller

(empty circles).

When 1ω = 0 (no frequency detuning), there is a stable fixed

point at ψ = 0 (Figure 9A), which indicates that ψ converges

to 0 over time. Thus, the oscillator synchronizes in phase with

the stimulus when its natural frequency matches the stimulus

frequency. In the presence of frequency detuning, the oscillator

may or may not synchronize with the stimulus depending on the

size of detuning. When the detuning is small compared to the

coupling strength (|1ω| < c, Figure 9B), ψ converges to a nonzero

steady-state value, indicating that the oscillator synchronizes (or

phase-locks) with the stimulus maintaining a constant nonzero

relative phase. When the frequency detuning is larger than the

coupling strength (|1ω| > c, Figure 9C), no fixed point exists,

and the flow is in one direction which depends on the sign of

1ω. This indicates that the oscillator desynchronizes with the

stimulus when the detuning is large enough. (See Section 4.5 of

Strogatz, 1994, for a more detailed and reader-friendly analysis of

the model).

The above analysis suggests that different phasing behaviors

may be simulated by manipulating the model parameters 1ω and

c. Figure 9D shows two simulations with the different amounts

of detuning shown in Panels B and C. To simulate in-phase

tapping at the beginning of a phasing trial, the natural frequency

was first set identical to the stimulus frequency (i.e., 1ω =

0, Panel A). After the cue signal at 5 s, the natural frequency

was increased (i.e., detuned) by a fixed amount to simulate the

intention of phasing. When the frequency increase was small

(1ω < c, the circle markers in Panel D), the oscillator did

not perform phasing but remained phase-locked to the stimulus

with a positive relative phase. In other words, the oscillator

“tapped” ahead of the metronome but could not escape the

influence of the in-phase attractor. This behavior corresponds

to the incomplete trials found in the human experiment. When

the frequency increase was larger than the coupling strength

(1ω > c, the + markers), the oscillator desynchronized with the

stimulus. However, it did not resynchronize after one phasing lap

but continued phasing because the large frequency detuning had

eliminated the attractor (Figure 9C). This behavior corresponds

to the unsuccessful trials. Thus, the simulations show that the

model with a fixed amount of frequency detuning can produce only

the incomplete and the unsuccessful types of phasing behavior.11

The results suggest that a context-dependent control of frequency

detuning is required to simulate successful phasing as discussed in

the previous section.

4.3. Phasing model with
context-dependent frequency dynamics

Based on the above observations, we expanded the

simple oscillator model discussed above (Equation 2) with

additional features. The resulting model is described by two

differential equations,

dφ

dt
= ω + cf (φ, θ , ρ), (4)

dω

dt
= γ f (φ, θ , ρ)− λg(φ, θ , ρ)(ψ̇ −1), (5)

which determine the dynamics of the phase (φ) and the natural

frequency (ω) of the oscillator, respectively. Here we present

a synopsis of the model structure first (see Table 1 for a

summary) and describe the details of each model component below

(Section 4.3.1). (Readers may choose to skip the details and proceed

to the replication results.)

The phase equation (Equation 4) includes the natural frequency

(ω) and the coupling term (strength c). The pulse-like function

f is used as the coupling function (instead of the sine function

in Equation 2) so that phase attraction is strong only when the

tap and the metronome tick are close in time. We will keep the

temporal width of the coupling function constant across different

metronome tempi and test if this allows the model to replicate

the tempo effect found in the human data as discussed above

(Section 4.1).

The frequency equation (Equation 5) includes frequency

adaptation (adaptation rate γ ) and frequency bias (strength λ),

which have opposing effects. The former causes the natural

frequency to adapt to the stimulus frequency (promoting

synchronization), while the latter causes the natural frequency

to deviate (detune) from the stimulus frequency to keep the

relative phase increasing at the constant rate of 1 (promoting

desynchronization and phasing). The context-dependent gating

function g manipulates the balance between the two terms to

initiate and end phasing, by starting with strong frequency bias

and switching to weaker bias once the system escapes the initial

in-phase attractor. We will manipulate 1 (target change rate,

11 When1ω = c, the dψ/dt curve touches the ψ axis at π/2 or 90◦ (imagine

a case between Figures 9B, C). In this case, there is a half-stable fixed point

at ψ = π/2: it is stable when approaching from below (lower than π/2)

but unstable from above (higher than π/2). Thus, when the relative phase

is perturbed upward towards π (e.g., by stochastic noise), it would keep

increasing until it stops at the half-stable point, completing only one phasing

lap. However, phasing in this system ends at ψ = π/2, not at ψ = 0 (in-phase)

as required in the experiment. Thus, this system is implausible as a model of

phasing performance.
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FIGURE 9

Flow in the vector field defined by Equation (3) for (A) 1ω = 0, (B) 1ω = 0.5, and (C) 1ω = 1.5 for c = 1. The arrows indicate the direction of flow. The

filled and empty circles denote stable and unstable fixed points, respectively. (D) Simulations of the model with fixed detuning (Equation 2) with the

parameters in (B, C). Frequency detuning is introduced at t = 5 sec. The markers indicate the (unwrapped) relative phase of individual “taps” produced

by the oscillator (phase zero-crossing). Common parameter: ω0 = 4π rad/sec (i.e., 2 Hz or 120 BPM).

TABLE 1 Components of the context-dependent phasing model

(Equations 4–5).

Variables φ Oscillator phase

ω Oscillator natural frequency

θ Stimulus phase (external)

Parameters c Coupling strength (phase attraction)

γ Frequency adaptation rate

λ Frequency bias strength

1 Target change rate of relative phase (controls gradualness

of phasing)

ρ Parameter controlling the width of pulse-like functions

Functions f Pulse-like coupling function

g Context-dependent gating function (frequency bias

weakens once the system escapes the in-phase attractor)

which determines the gradualness of phasing) and γ (frequency

adaptation rate) to replicate the multiple phasing outcomes found

in the human experiment as well as the effect of metronome tempo

on the composition of phasing outcome types.

4.3.1. Detailed model description
The phase equation of the context-dependent model

(Equation 4) is identical to the simple model (Equation 2)

except the coupling function. f is a pulse-like coupling function

defined as

f (φ, θ , ρ) = Im
[

h(θ , ρ) · h(−φ, ρ)
]

, (6)

where Im[x] denotes the imaginary part of x, h is a complex analytic

function with a pulse-like shape defined in Appendix, and θ =

ω0t is the stimulus phase. The width of the pulse function h(x, ρ)

depends on the parameter ρ, becoming sharper as ρ increases

between 0 and 1 (Figure 10A; Appendix for more details). The

coupling function f is a product of two pulse-like functions, one

generated by the stimulus (θ) and the other by the oscillator (φ).

This is a more realistic coupling function for modeling tapping to a

metronome than sin(θ−φ) in Equation (2), given that the stimulus

sound used in the experiment (a woodblock sound) is a discrete

event and that taps are attracted toward stimulus tones when they

occur in temporal proximity (Repp, 2003, 2004). Figure 10B shows

that the coupling interaction is strong when both θ and φ are near

zero, in other words, when the metronome beats and the taps are

close in time.12 f can be considered a general coupling function

that encompasses the sine coupling in Equation (2) because when

ρ = 0, f (φ, θ , 0) = sin(θ − φ), that is, Equation (4) becomes

Equation (2) when ρ = 0 (see Appendix).

The second differential equation of the model (Equation 5)

describes the dynamics of the natural frequency of the oscillator

ω, which is now made a variable (it was a parameter in the first

model). The dynamics of ω is determined by two factors. The

12 Figure 10B is the two-dimensional vector field forψ whenω = ω0, which

can be compared to the one-dimensional vector field in Figure 9A.

Frontiers in Psychology 10 frontiersin.org

https://doi.org/10.3389/fpsyg.2023.1207646
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Kim 10.3389/fpsyg.2023.1207646

A

- - /2 0 /2
0

0.2

0.4

0.6

0.8

1
 = 0.0

 = 0.3

 = 0.6

 = 0.9

CB

- - /2 0 /2
-

- /2

0

/2

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

- - /2 0 /2
-

- /2

0

/2

0

0.2

0.4

0.6

0.8

1

FIGURE 10

(A) The amplitude of pulse-like function h(x, ρ) for ρ = 0, 0.3, 0.6, and 0.9 (see Appendix for the equation). (B) The coupling function f(θ ,φ, ρ) for

ρ = 0.7 (Equation 6). (C) The gating function g(θ ,φ, ρ) when ψ > ψθ for ρ = 0.7 (Equation 7). The diagonal indicates where the relative phase is zero

(ψ = φ − θ = 0).
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Simulations of the context-dependent model (Equations 4–7): (A) successful phasing (1 = 1 rad/sec), (B) unsuccessful phasing (1 = 3 rad/sec), and

(C) incomplete phasing (1 = 0.5 rad/sec). The top plots show the unwrapped relative phase at the time of each “tap” (zero crossing of the wrapped

oscillator phase). The bottom plots show the continuous time series of the natural frequency ω. Common parameters: c = 30, γ = 15, λ = 0 (t < 5

sec), λ = 3 (t ≥ 5 sec), ψθ = π/2, ω0 = 4π rad/sec (i.e., 2 Hz or 120 BPM), and ρ = 0.7012.

first term on the right-hand side introduces frequency adaptation,

similar to the period adaptation (or correction) in previous models

(Large and Kolen, 1994; Loehr et al., 2011; Jacoby and Repp, 2012),

so that the natural frequency is attracted toward the stimulus

frequency. The pulse-like coupling function f is used here too so

that frequency adaptation is strong when both θ and φ are near

zero (Figure 10B).

The second term on the right-hand side of Equation (5)

describes a possible mechanism for context-dependent control

of tapping frequency during phasing. Here we assume that the

tapper tries to maintain a constant rate of relative phase increase,

1, and also that the tapper can sense the current change rate,

ψ̇ = dψ/dt. The term applies a positive frequency bias when

the current rate is slower than the target rate (i.e., ψ̇ < 1),

and the term becomes zero when the current rate matches the

target rate. Hence, small 1 would result in gradual phasing with

many taps per lap, and large 1 would lead to less gradual phasing

with fewer taps per lap. λ is the strength of frequency bias

resulting from the intentional control. g is a context-dependent

gating function that allows different behaviors when beginning and

ending phasing by controlling the strength of frequency bias. It is

defined as

g(φ, θ , ρ) =

{

1 if ψ ≤ ψθ

1−
∣

∣h(θ , ρ) · h(−φ, ρ)
∣

∣ if ψ > ψθ
, (7)

whereψθ is the thresholdψ for switching behaviors. When phasing

begins, the unwrapped relative phase is near zero and smaller

than a threshold, say, ψθ = π/2. In this case, g = 1 so that

the second term exerts full frequency bias to facilitate escaping

the initial in-phase attractor. Once the relative phase escapes the

vicinity of zero (satisfying ψ > ψθ ), g is made dependent on

φ and θ such that g gets small (i.e., weak frequency bias) when

the tap and the metronome beat are close in time again (i.e.,

when both φ and θ are near zero, see Figure 10C).13 With weak

13 Both the coupling function f and the gating function g are based on

the same complex pulse function h(θ , ρ) · h(−φ, ρ), but the former uses the

imaginary part while the latter uses the absolute value. See Figure A1 in

Appendix.
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frequency bias, frequency adaptation (the first term in Equation 5)

dominates the frequency dynamics, and this allows the oscillator

to slow down and end phasing successfully by converging to

stable in-phase coordination. Since the gating function is also

pulse-like, however, it is possible to overshoot and skip over

the in-phase goal if frequency bias is big enough, resulting in

unsuccessful phasing.

Note that given the difficulty and self-paced nature of

the phasing task, there could be multiple viable strategies for

successfully performing phasing. The mechanism of intentional

frequency control implemented in Equations (5) and (7) is not

proposed as the best or sole mechanism but as one of possible

strategies that may be employed by human tappers (see Section 5

General discussion).

4.3.2. Replication of successful, unsuccessful, and
incomplete trials

To demonstrate that the context-dependent model can show

all three phasing behaviors observed in the human experiment, the

model was run for three different values of 1 (the target change

rate of relative phase which quantifies the intended gradualness of

phasing) while other parameters were fixed. To start each “trial”

with in-phase tapping, λ was set to zero for the first 5 s of the

simulation and increased to a nonzero constant at t = 5 sec

(λ = 3 was used for all three simulations). For the intermediate

target rate (1 = 1 rad/sec), the model performed successful

phasing by breaking away from the initial in-phase tapping and

advancing the relative phase until it reached the in-phase tapping

after one phasing lap (Figure 11A). After the cue at 5 s, the natural

frequency (the bottom plot) increased gradually (but in a spiky

manner due to the pulse coupling) until the relative phase (the top

plot) escaped the in-phase attractor (notice the jump around t = 8

sec). After that, the natural frequency gradually decreased down to

the stimulus frequency (2 Hz) as the relative phase approached and

landed on the goal successfully.14

For the large target rate (1 = 3 rad/sec), the model replicated

an unsuccessful trial by continuing phasing without stopping after

one lap (Figure 11B). The natural frequency decreased when the

oscillator was near in-phase with the stimulus (this is when the

unwrapped relative phase ψ was near an integer multiple of 2π),

but the frequency bias was still too strong for the frequency

adaption to attract the oscillator to in-phase coordination. Finally,

with the small target rate (1 = 0.5 rad/sec), the oscillator failed to

14 Notice that after the model ended phasing successfully at around t = 13

sec, the natural frequency increased back by a small amount (Figure 11A).

This is because the pulse-like gating function g does not suppress frequency

bias completely even when the oscillator is stably entrained in phase with the

stimulus: g is zero only at the time of taps (phase zero-crossing) and nonzero

at other times (see Figure 10C, along the diagonal). In this simulation,

frequency bias is suppressed enough so that frequency adaptation can keep

the oscillator in phase with the stimulus. To model the switch of intention

after reaching the goal, we could introduce another mechanism that, for

example, eliminates frequency bias after the relative phase stops advancing at

the intended goal. To keep the model minimal, however, we did not explore

such additional features here.

escape the attraction of in-phase tapping, replicating an incomplete

trial (Figure 11C). The natural frequency increased after phasing

started at t = 5 sec, but the small 1 did not yield strong

frequency bias enough to overcome the frequency adaptation. The

simulations show that the strength of frequency bias, controlled by

1 in the model (along with λ), should be just right (not too weak

or not too strong) to perform successful phasing. The simulation

results for the intermediate and large values of 1 (Figures 11A, B)

are consistent with the human experimental finding that phasing

was more gradual with more taps per lap in the successful trials

than in the unsuccessful trials (Figure 5; see also the next section).

4.3.3. Replication of tempo e�ect
Next, we tested if the model can replicate the effect of

metronome tempo observed in the human experiment. As

discussed above (Section 4.1), our hypothesis is that the temporal

basin of in-phase attraction (i.e., the temporal range near

a metronome beat in which taps are attracted toward the

metronome) has a constant width in absolute time regardless

of tempo (Repp, 2003, 2004), which results in stronger in-phase

attraction at faster tempi. This effect is accounted for in the model

by keeping the temporal width of pulse-like function h constant

across different tempi. This is done by choosing a different ρ for

each tempo so that the full width at half max of |h| is constant in

duration across the tempi (the full width of 100 msec was used in

the following simulations; see Figure 12D).15

For each metronome tempo used in the human experiment,

we ran the context-dependent model for a range of combinations

of 1 and γ to sample different model behaviors. γ controls the

strength of frequency adaptation and, along with1, determines the

dynamics of the natural frequency (Equation 5). Previous research

on sensorimotor synchronization has shown that while phase

correction (phase attraction) is a largely automatic and involuntary

process, period correction (frequency adaptation) is in part under

voluntary control so that it can be suppressed intentionally (Repp,

2001; Repp and Keller, 2004). Here we assume that untrained

participants try different “parameters” for frequency dynamics as

they explore and tune their phasing skills. Then, the outcomes of

phasing trials during this calibration process could be replicated in

simulations with different values of 1 and γ . Here we examine a

fixed region of the parameter space (1, γ ) to obtain the distribution

of different phasing outcomes and see if this distribution changes

with tempo as found in the human experiment. The coupling

strength c is fixed in the simulations, assuming phase attraction is

not under voluntary control.

Figures 12A–C show the simulation results for the slowest

(80 BPM), the middle (110 BPM), and the fastest tempi (140

BPM). For all seven tempi including the three shown in the

figure, incomplete phasing was found in the upper left region

of the (1, γ ) space where frequency bias is weak, and frequency

adaptation is strong. Unsuccessful phasing was found in the lower

15 For a fixed ρ, the temporal width of h is proportional to the metronome

period (i.e., it is wider at slow tempi) because h is a function of phase, not of

time (see Appendix). When the pulse width is fixed in measures of time, it is

wider at faster tempi in measures of phase.
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FIGURE 12

Tempo e�ect in the context-dependent model. (A–C) The classification of model simulations as successful (one phasing lap), unsuccessful (more

than one lap), and incomplete (0 lap). For each of seven tempi, 40,401 simulations were run for di�erent combinations of γ and 1 (201 × 201 =

40401). Only the results for the lowest, the middle, and the highest tempi (80, 110, and 140 BPM) are shown. Dashed lines demarcate the

anti-diagonal region used for Panels E and F. Parameters: c = 30, λ = 0 (before cue), λ = 3 (after cue), ψθ = π/2, and ρ = 0.7870 (80 BPM), 0.7643 (90

BPM), 0.7425 (100 BPM), 0.7214 (110 BPM), 0.7012 (120 BPM), 0.6817 (130 BPM), and 0.6630 (140 BPM). (D) The amplitude of the pulse-like function,

|h(θ , ρ)|, plotted as function of time for di�erent metronome tempi from 80 BPM (the lightest color) to 140 BPM (black). A di�erent ρ was chosen for

each tempo (listed above) so that the full width at half max is constant at 100 msec. (E) Simulated trial outcomes per metronome condition (only the

anti-diagonal area between the dashed lines was counted). (F) Average taps per phasing lap in the “successful” and the “unsuccessful” simulations for

each tempo.

right region, with strong frequency bias and weak frequency

adaptation. Successful phasing resulted in the region between the

incomplete and the unsuccessful regions where frequency bias and

frequency adaptation are balanced (see Figure 11 for examples of

individual simulations).

An effect of tempo was found in the proportion of different

phasing results, which was measured by the sizes of the successful,

unsuccessful, and incomplete regions in the (1, γ ) parameter space

(Figures 12A–C). The number of incomplete simulations increased

as the tempo increased whereas the number of unsuccessful

simulations decreased, both of which correspond to the trends

found in the human experiment (Figure 6A). A difference from the

human results was also found in that the proportion of successful

simulations increased significantly with tempo and occupied more

than half of the space at 140 BPM (Figures 12A, C), whereas the

human data did not show any clear trend for the successful trials

(Figure 6A). The discrepancy may be explained in part by the

rectangular region of the (1, γ ) space chosen for the analysis. Some

parts of the region may have not been explored much by the human

participants (e.g., where both1 and γ are very small or very large).

A better match with the human data was obtained when only

the anti-diagonal region of the parameter space was included in

the analysis (demarcated by the dashed lines in Figures 12A–C),

which appears to be a more reasonable choice because here the

balance between 1 and γ is varied while their sum is maintained

comparable. The proportion of successful simulations still increases

with tempo (Figure 12E), but all three types have comparable

proportions at the fastest tempo as in the human results (compare

with Figure 6A). Also, the number of taps per phasing lap in

simulations matched the trends in the human data. More taps

were made per phasing lap in the successful simulations than in

the unsuccessful simulations, and both the numbers increased with

tempo (Figure 12F, compare with Figure 6B).

5. General discussion

The present study investigated the dynamics of intentional

sensorimotor desychronization by analyzing and modeling the

experimental data obtained with a novel task of phasing against

a metronome. First, the data from an exploratory study (first

reported in Hall et al., 2023) were analyzed further to identify the

various types of phasing behavior observed in participants who

were unfamiliar with the task. Individual trials were categorized

as successful, unsuccessful, or incomplete based on the number

of phasing laps made in the trial, and the incomplete trials were

further categorized into four subtypes. It was found that the

number of taps per phasing lap was significantly greater in the
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successful trials as well as in the participants with higher success

rates, suggesting that the gradual increment of relative phase was

a key to successful phasing. A strong effect of metronome tempo

was found in the proportion of outcome types, with the number

of incomplete trials increasing with the increase of tempo while the

number of unsuccessful trials decreased with tempo increase. It was

also found that phasing was more gradual at fast tempi, with more

taps per phasing lap. A dynamical systems interpretation of the

results was given, which characterizes phasing performance as an

intentional goal-directed action under the constraints of intrinsic

attractor dynamics (i.e., the presence of in-phase attractor). Based

on this view, a minimal dynamical model was presented which

captures the interaction of intrinsic constraints and intentional

control in a periodically forced oscillator with context-dependent

frequency dynamics. It was shown that the single model can

produce all three types of phasing behavior as well as replicate the

tempo effect observed in the human experiment, supporting the

dynamical systems explanation of phasing performance.

The present study demonstrated that the musical technique of

phasing offers a unique setup for investigating human rhythmic

behavior. Phasing involves desynchronization from a sensory

stimulus. Thus, the processes underlying phasing performance

cannot be described as error correction, the mechanism commonly

attributed to sensorimotor synchronization (Mates, 1994; Jacoby

and Repp, 2012). Also, intentional desynchronization in phasing

is different from the experimental tasks that require participants

to intentionally ignore distractor tones (Repp, 2003, 2004) or

to suppress period correction after a tempo change (Repp and

Keller, 2004). Phasing requires a controlled manipulation of the

relative phase between the motor output (taps) and the sensory

stimulus (metronome beats). Therefore, participants cannot

perform successful phasing if they intend to ignore or suppress

the stimulus entirely. Gradual desynchronization during phasing is

also distinct from the intentional switching of coordination modes

studied in the coordination dynamics literature which requires

an instant change of behavioral patterns (Scholz and Kelso, 1990;

Serrien and Swinnen, 1999).

The present study showed that it is plausible to describe the

dynamics of phasing performance in terms of the interaction

between the intrinsic stability of in-phase synchronization and the

task-specific intention of desynchronization. Dynamical systems

theory provides the right language to describe such cooperation

and competition among multiple underlying constraints as

well as the pattern of behaviors emerging lawfully from such

interactions (Beek et al., 2000; Temprado and Salesse, 2004). In

the proposed model of phasing performance (Equations 4–5),

the intrinsic dynamics (the stability of in-phase coordination)

and the intentional control (context-dependent frequency bias)

are expressed as distinct terms in the differential equations, and

their collective dynamics determine the behavior of the model.

The dynamical systems approach presented in this study is not

limited to music performance but could be applied to intentional

desynchronization in other areas of human coordination such

as sports, conversation, and crowd behavior (Passos et al., 2016;

Paxton and Dale, 2017; Warren et al., 2023).

The context-dependent phasing model presented here is a

continuous-time model described by two differential equations

(Equations 4–5). The present continuous-time model can

be compared to previous discrete-time models of rhythmic

entrainment described by the difference equations for phase

attraction and period adaptation (Large and Kolen, 1994; Large

and Jones, 1999). More recently, the frequency adaptation in

continuous-time oscillators was analyzed (Righetti et al., 2006)

and studied as a model of the perception of musical rhythms

(Lambert et al., 2016). The present model can be considered

equivalent to these models (in qualitative dynamics) if the

frequency equation included only the frequency adaptation term.

Thus, the construction of the present model can be understood as

a new term for intentional frequency control added to the general

intrinsic dynamics underlying the synchronization and frequency

adaptation to an external rhythm. Such synergistic combination of

intrinsic and task-specific dynamics is also found in other models

of rhythmic coordination. For example, the process of learning a

new specified phase of bimanual coordination (other than in-phase

and antiphase, e.g., 90◦) can be modeled by introducing additional

terms that stabilize the new phase to a model describing the

intrinsic dynamics of bimanual coordination, such as the Haken–

Kelso–Bunz model (Haken et al., 1985) for which in-phase and

antiphase modes are stable (Schöner and Kelso, 1988b; Schöner

et al., 1992).

In this paper, a continuous-time model was used to describe

the dynamics of phasing performance, but the same qualitative

dynamics should be achievable with a discrete-time model because

most interactions in the model (e.g., coupling and frequency

adaptation) are temporally confined. To capture the discrete nature

of the stimulus (metronome beats) and the motor output (taps),

a new analytic pulse-like function h was introduced which varies

the width with the parameter ρ (see Appendix). This allowed

replicating the tempo effect by keeping the pulse width constant

in absolute time. It was also shown that the coupling function

f , which is a product of two h functions (Equation 6), can

vary the form continuously between the sine coupling (used in

standard continuous-time phase models) and the impulse coupling

(equivalent to the coupling in discrete-time models). Hence, the

analytic form of the present model can be used to understand the

relation and transition between continuous-time and discrete-time

models, which is left for future studies.

The context-dependent frequency control in the present model

is a simple mechanism that is in no sense intended as the best or

only strategy for phasing performance. It was assumed that the

current change rate of relative phase is available to the tapper and

that the tapper tries to maintain a constant rate of change. With

this mechanism, the model can produce all three main types of

phasing behavior, but not all subtypes of the incomplete phasing.

The present model cannot produce the halfway subtype because it

does not have an attractor at the antiphase relation (ψ = ±π). As

in the Haken–Kelso–Bunzmodel (Haken et al., 1985), the antiphase

attractor can be introduced by adding higher-order coupling terms

to the model. With the antiphase attractor, the model would also

show the slowdown of phasing near the antiphase relation which

was observed in some trials in the human experiment (see the

plateau of relative phase near ψ/(2π) = 0.5 in Figure 4A). These

modeling possibilities, however, are beyond the scope of the present

paper and will be studied elsewhere. The backward subtype of

incomplete trials, in which the relative phase decreased over time,

suggests that the participants were sometimes confused about the
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direction of phasing. This behavior is not possible in the present

model because it assumes that the tapper knows the current change

rate of relative phase. To replicate the backward behavior, this

assumptionmust be relaxed bymaking the information available on

the current state less accurate or partial (e.g., with stochastic noise).

Such possibilities could be explored in future research to study the

initial stages of learning phasing performance as a new skill.

Here we focused our discussion on in-phase and antiphase

coordination, but it is known that humans can produce rhythms at

other phases as well. Bothmusicians and nonmusicians were shown

to be capable of producing rhythms made of two unequal intervals,

with produced rhythms attracted to a ratio near 1:2 or 120◦

phase (Repp et al., 2011, 2012). Also, it was shown that bimanual

coordination in 90◦ can be learned by training with pacing

signals (Zanone and Kelso, 1992). These coordination phases

may be related to different ratios of multifrequency coordination,

for example, 120◦ coordination related to 1:3 frequency ratio

(triple subdivision), and 90◦ coordination to 1:4 frequency ratio

(quadruple subdivision; Dotov and Trainor, 2021). As dynamical

systems analysis indicates (deGuzman and Kelso, 1991; Haken

et al., 1996; Kim and Large, 2019), and both perception and

production studies showed (Razdan and Patel, 2016; Mathias et al.,

2020), these coordination phases are less stable than in-phase and

antiphase relations, which may be related to the simple frequency

ratios of 1:1 and 1:2 respectively. Due to low dynamic stability

(especially in the presence of noise inherent to motor movements),

the attraction toward phases other than in-phase and antiphase

may not be clearly observed during phasing performance, where

intentional control competes with stronger attractors. One way to

study the attraction at other phases is to measure the stability of

sensorimotor coordination at a set of fixed phases in separate trials

(Yamanishi et al., 1980; Tuller and Kelso, 1989; Dotov and Trainor,

2021). Our ongoing study involving finger tapping to a metronome

at a specified phase suggested the presence of weaker attractors near

±120◦ as well as stronger attractors at in-phase (0◦) and antiphase

(180◦) relations.

The present study adds to the growing body of research that

employs dynamical systems theory to study music performance

(Demos et al., 2014; Schiavio et al., 2022; Tichko et al., 2022).

Early oscillator models focused on the perception and production

of musical rhythms in individuals (Large and Kolen, 1994; Large

and Palmer, 2002; Loehr et al., 2011). More recently, dynamical

systems analysis and modeling has extended to the interpersonal

coordination in musical dyads and ensembles (Demos et al., 2019;

Heggli et al., 2019; Roman et al., 2019; Bégel et al., 2022; Dotov

et al., 2022). The present study, motivated by a case study of

phasing between two expertmusicians (Hartenberger, 2016; Schutz,

2019), aimed to uncover the underlying dynamics of phasing

performance by studying non-expert participants with a simpler

task of phasing against a metronome. Both successful and failed

attempts at controlled phasing informed the identification of

underlying dynamics and the construction of a minimal dynamical

model. In contrast, the first model developed for the expert phasing

data was not able to miss the target (see text footnote 2), although

this can also happen to professional musicians (Hartenberger,

2016). A next step in this research would be to study interpersonal

phasing systematically in controlled experiments, with both expert

musicians and non-experts. Future studies could explore the

manipulation of sensory feedback and informational coupling

(Rosso et al., 2021, 2022) and the use of a virtual agent (governed

by a dynamical system) as a more controlled phasing partner

(Kelso et al., 2009; Van Kerrebroeck et al., 2021). The findings

of the present study will guide the design and analysis of future

experiments and modeling works.

The dynamical systems account presented in this paper

provides an intuitive explanation of what happens in phasing

performance. We described the dynamics of phasing performance

in terms of the cooperative and competitive interactions of different

underlying forces (intrinsic dynamics and intentional control).

Musicians and music scholars have long described the experience

of music listening and performance in terms of dynamic qualities

and forces (Zuckerkandl, 1956; Larson, 2012). For example, when

we listen to a tonal melody, we feel the attraction of the leading

tone toward the tonic (Lerdahl, 1996). Russell Hartenberger, one

of the expert percussionists in the case study, described in detail

the forces of attraction and resistance he experienced in phasing

performance (Hartenberger, 2016). The dynamical systems account

suggests that these subjective and bodily experiences are not merely

metaphors but actual forces involved in music making which can

be quantitatively measured and mathematically formalized. At the

same time, dynamical systems theory provides conceptual tools

that can help musicians to understand and describe their subjective

experience (Schiavio et al., 2022). An intuitive understanding of

performance dynamics may provide musicians with new insights

that can enrich their musical experience and help with performance

and practice strategies.
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Appendix

The pulse-like function h is a 2π-periodic complex analytic

function of phase x defined as

h(x, ρ) =
(1− ρ)eix

1− ρeix

= (1− ρ)
(

eix + ρe2ix + ρ2e3ix + · · ·
)

,

(8)

where 0 ≤ ρ < 1 is a parameter controlling the width of the
pulse (Figure A1), and i is the imaginary unit. It is an infinite

series containing a complex sinusoid eix and its harmonics. The

normalization factor (1 − ρ) is multiplied so that the maximum

amplitude |h(0, ρ)| is constant regardless of ρ. The n-th harmonic

has a coefficient proportional to ρn−1, so the strength of high-order

harmonics depends on ρ. On one extreme, h becomes a sinusoid
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FIGURE A1

(A) The amplitude and phase, and (B) the real and imaginary parts of the pulse function h(x, ρ) for ρ = 0, 0.3, 0.6, and 0.9.

when ρ = 0 (only the fundamental survives). On the other end,

h approaches the Kronecker delta function (an impulse function)

when ρ approaches 1. Between the two extremes, the shape of h

changes continuously between a perfect sinusoid and a discrete

impulse, depending on ρ (Figure A1).

As mentioned in Section 4.3, the pulse coupling f in

Equation (4) is a general coupling function that includes

the sine coupling in Equation (2) as a special case.

Since h(x, 0) = eix,

f (φ, θ , 0) = Im
[

h(θ , 0) · h(−φ, 0)
]

= Im
[

ei(θ−φ)
]

= sin(θ − φ).

(9)

This shows that Equation (4) becomes Equation (2) when ρ = 0.
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