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Testing the somatic marker
hypothesis in
decisions-from-experience with
non-stationary outcome
probabilities

Rebecca J. Wright and Tim Rakow*†

Department of Psychology, University of Essex, Colchester, United Kingdom

Introduction: The Somatic Marker Hypothesis (SMH) posits that in experience-

based choice, people develop physiological reactions that mark options as either

positive or negative. These somatic markers aid decision making because they

di�erentiate between “good” and “bad” options during pre-choice deliberation.

Methods: We examined this proposed role for somatic states in two decision-

from-experience tasks (eachN= 36) inwhich participants selected repeatedlywith

full feedback (i.e., for obtained and forgone outcomes) between two unlabeled

options that returned wins or losses, with half receiving an additional summary

of past outcomes. The probabilities of good and bad outcomes changed at an

unannounced point. Participants completed a 100-trial game with a switch in the

optimal option after trial 40 (Study 1) or a 200-trial game with switch points after

trial 40 and trial 120 (Study 2). Skin conductance (SC) was measured continuously

as an index of emotional intensity, from which we extracted measures of

anticipatory SC (pre-choice) and outcome SC (post-choice).

Results: Participants reliably selected the optimal option prior to any switches.

They also altered their choices appropriately when the payo�s changed, though

optimal play following payo� switches was reduced. Losses resulted in a greater

outcome SC than wins, but only in Study 1, as did the finding that the outcome

SC was greater when the forgone outcome was positive. Anticipatory SC did not

reliably predict optimal play in either study.

Discussion: These results provide little support for the SMH. Our studies point to

the importance of using diverse tasks and measures and very large sample sizes

when testing the role of somatic states in decision making.

KEYWORDS

risky choice, experiential choice, learning, reversal learning, skin conductance, outcome

response, anticipatory response

Introduction

In decisions-from-experience, one learns about the options by observing past outcomes

(Rakow and Newell, 2010). The research tasks used to investigate how people make such

decisions reflect a variety of everyday decisions. For example, Lejarraga et al. (2016) showed

participants the day-by-day outcomes for different treatment options that differed in their

(observed) rate of side effects. Lejarraga et al. (2016) compared participants’ treatment

preferences with choices for structurally equivalent decisions involving monetary outcomes.

Liang et al. (2022) used a microworld to examine decisions in response to rare disasters,
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comparing reactions to disasters experienced first-hand with

disasters observed at a distance (either near or far). In the

context of interpersonal decisions, Denrell (2005) noted that the

impressions we form about others often arise from samples of

observed interactions, which then guide our decisions about who

to interact with.

One feature of real-world decisions-from-experience is that the

world is not static: the climate changes, financial markets boom or

bust, and people or organizations change. Thus, while past events

can be a guide to what to expect in the future, the world may

change such that successful courses of action become suboptimal.

In this study, we use a laboratory task to examine whether and

how experience-based choices adapt to such changes, with a specific

focus on the role of somatic states in such choices. In doing so, we

build on previous investigations that have used the Iowa gambling

task to examine the somatic marker hypothesis.

Reversal learning in the Iowa gambling task
and other decision-from-experience tasks

The Iowa gambling task (IGT; Bechara et al., 1994) is an

example of decision-making from experience. In the IGT, wins and

losses from card draws from four decksmust be experienced to work

out which decks are advantageous. The IGT was devised to test the

somatic marker hypothesis (SMH), which posits that emotions play

a key role in decision-making under uncertainty (Damasio, 1994).

Specifically, as a result of their previous choices, people develop

physiological reactions that mark options as either positive or

negative. These somatic markers then differentiate “good” options

from “bad” ones when those options are considered again. In time,

this mechanism guides people away from making bad choices.

The original version of the IGT was set up so that the large

losses in a disadvantageous deck with infrequent losses occur

relatively late in the deck, thereby giving the initial impression of it

being an advantageous deck. To play optimally, participants must

therefore perform reversal learning—changing their behavior when

an ostensibly advantageous deck is seen to be disadvantageous.

Poor reversal learning has been found in patients with impairment

to the ventromedial prefrontal cortex (VMPFC). This could,

therefore, explain their poor performance on the IGT (Dunn et al.,

2006).

Successful (reversal) learning in decisions-from-experience

requires response inhibition. For example, to succeed at the IGT,

one must inhibit a win–stay/lose–shift response pattern (Restle,

1958) when experiencing a loss from an advantageous deck.

VMPFC patients’ failure to pick from the advantageous decks could

reflect the inability to inhibit this response. To investigate this,

Fellows and Farah (2005) shuffled the card order of the IGT decks

so that the disadvantageous decks were no longer initially the

better decks. Fellows and Farah found that the task performance

of VMPFC patients became similar to that of control participants.

They concluded that poor IGT performance in this patient group

was primarily due to impaired reversal learning. Consistent with

this, after examining participants’ conscious knowledge in the

IGT, Maia and McClelland (2004) concluded that—contrary to the

SMH—there was no need to use non-conscious somatic markers

to guide choice. Therefore, the poor IGT performance of VMPFC

patients could be better explained by poor reversal learning.

However, in response to Maia and McClelland (2004), Bechara

et al. (2005) argued that reversal learning is not the only

requirement for successful performance in the IGT. Rather,

they proposed that the SMH could explain reversal learning

via the development of a somatic “stop signal” in response to

experiencing bad outcomes from card draws. These markers are

greater before selecting from the disadvantageous decks, due to

the poorer outcomes experienced, and this facilitates the shift

to picking more from the advantageous decks. Further support

that reversal learning is not the only necessary skill for successful

IGT performance comes from Turnbull et al. (2006). People with

schizophrenia have been shown to have difficulty with flexible

behaviors, but performance in their emotion-based learning has

more mixed results. To assess both these types of abilities in

this patient group, Turnbull et al. (2006) employed the IGT.

Participants initially played 100 trials of the original IGT but the

good decks then shifted in three further 40-trial phases: Decks A

and D, A and B, and B and C successively became good decks

during the three shift periods. The participants with schizophrenia

played advantageously (comparable to controls) in the first 100

IGT trials. However, performance during the shift phases was near

chance-level for the patient group with the most severe negative

symptoms, thereby suggesting that good performance on the IGT

can be acquired in the presence of poor reversal learning.

In this study, we use a two-option decision-from-experience

task where the probability distribution is non-stationary. Thus, the

probabilities of good/poor outcomes change at pre-determined (but

unsignalled) points during the task. Additionally, we measure skin

conductance responses (SCRs) to examine the role of somatic states

in a task that requires reversal learning. Because it is debated how

much reversal learning is needed in the IGT (Maia andMcClelland,

2004, 2005; Bechara et al., 2005), utilizing a simpler decision task

with a defined point at which the optimum option changes should

help to identify the utility of somatic states in reversal learning.

In doing so, our investigation adds to the relatively small body of

research that uses a decision task other than the IGT to test the

SMH (e.g., Wright and Rakow, 2017). This is important because

any theory of everyday decision-making under uncertainty should

undergo tests using a range of tasks so that the generalizability and

boundary conditions of the theory are established. Another key

feature of our investigation is that we measure anticipatory SCRs to

test predictions from the SMH. Given the SMH’s proposed role for

somatic states in guiding choice prospectively and the importance

of the SCR data that—almost 30 years ago—brought the SMH to

prominence (e.g., Bechara et al., 1994), it reflects poorly on the

field that such data are relatively sparse. For example, a meta-

analysis by Simonovic et al. (2019) identified only 20 IGT studies

in non-clinical populations (published in 16 articles) that used

anticipatory SCRs to test the SMH (this, from 3,999 articles that

mentioned the IGT in the title or abstract). Therefore, our paper

is valuable because it adds two further studies using anticipatory

SCRs to this small but important body of SMH research. A further

key feature of our investigation is that we manipulate (between-

subjects) the presence of some descriptive information about the

option outcomes. This allows us to examine whether and how
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descriptive information moderates preference and/or the role of

somatic states in decisions-from-experience.

How decision processes di�er between
decisions-from-experience and
decisions-from-description

After considering a description of two options, Option A

offering a 90% chance of nothing and a 10% of £10 and Option

B offering £1 for certain, most individuals choose gamble A. This

choice reflects a general pattern: when faced with described gambles

having small probabilities for the most extreme outcome, most

individuals are risk-seeking for gains and risk-averse for losses.

Prospect theory (Kahneman and Tversky, 1979) explains such

preferences via as-if decision weights, which are transformations

of the probabilities for each outcome. Each decision weight is

multiplied by its respective outcomes to compute an overall value

for each outcome. According to prospect theory, small probabilities

are as-if overweighted. This overweighting makes gambles with

a small probability of a large gain highly attractive and makes

gambles with a small probability of a large loss very unattractive.

However, this pattern of preference often reverses if the option

payoff distributions are experienced as a sequence of observations—

such as by drawing cards in the IGT or by selecting from on-

screen buttons or “money machines” to reveal outcomes. In such

decisions-from-experience, most individuals prefer Option B in

the above example. Barron and Erev (2003) highlighted this

“description–experience gap,” which implies the underweighting

of rare events in decisions-from-experience.1 This description–

experience gap has since been well-documented (Rakow and

Newell, 2010; Wulff et al., 2018) including for some choices that

do not involve small probabilities (Ludvig and Spetch, 2011).

However, the reasons for this description–experience gap remain

a point of debate (Wulff et al., 2018). One possibility is that

the neural or somatic representation of outcomes and/or options

differs between decisions-from-description and decisions-from-

experience (Glöckner et al., 2012). Thus, our tests of the distinctive

pattern of somatic responses that the SMH predicts for decisions-

from-experience have implications for a wider debate about the

processes at work in decisions-from-experience.

Decisions-from-experience with
non-stationary payo�s

The majority of studies examining repeated decisions-

from-experience utilize gambles for which the probabilities

of the outcomes remain stable across all trials (i.e., static

probabilities). However, some studies have employed non-

stationary distributions, where the probabilities of the payoffs

change within the task. These non-stationary payoff distributions

1 A preference for the disadvantageous Deck B in the IGT represents an

extreme example of such an underweighting of rare losses. This preference

has been observed among a sizeable proportion of participants in several IGT

studies (for a review, see Steingroever et al., 2013).

are akin to what happens in the original IGT, where Deck B initially

appears advantageous because no loss is experienced on the first few

deck selections.

Biele et al. (2009) examined dynamic decision environments

using one-armed restless bandit problems. Participants chose

between a stable safe prospect with a constant medium payoff

of 0 and an unstable risky prospect with a payoff of either

+1 or −1 depending on its state. The state was determined

using a two-state Markov process. If the state was positive at

trial t, it remained positive at t + 1 with probability p (either

0.95/0.50 in Study 1); and if the state was negative at trial

t, it remained negative at t +1 with probability q (0.05/0.50).

Participants were highly sensitive to the changing probabilities

of the payoffs, achieving near-optimal performance. Similar to

decisions-from-experience in static environments, underweighting

of small probabilities and payoff variability was also observed, as

inferred from models fitted to the data, suggesting a reliance on

small samples of experiences.

Rakow and Miler (2009) examined choices in repeated-choice

games with non-stationary payoff distributions. Their participants

chose between two “money machines” for either 60 or 100

trials, to obtain as many points as possible. The possible win

and loss amounts were stated at the start of the game, and

participants saw both the obtained and forgone outcomes of

each money machine. One game included a stationary option

with a 70% of winning 10 points, otherwise a 30% chance

of losing 20 points. The non-stationary option started with a

90% of winning 10 points (otherwise losing 20 points), which

reduced to 50% at trial 20 onwards. Participants were not

informed of the options’ probability distributions, although they

were informed that the options could change over the course

of the game. In each game, one machine’s probability changed

gradually at a rate of either 0.01 per trial over 40 trials (Study

1) or 0.02 per trial over 20 trials (Study 2). It varied between

games when this change began (trial 20 vs. 40) and its direction

(increasing vs. decreasing win-probability). In one condition,

participants also had a running history for past outcomes;

participants were shown cumulative totals for the number of

times each machine had delivered a win or loss amount. The

results demonstrated reasonably rapid initial learning whereby,

after the first few trials, participants generally selected the machine

with the better payoffs, but with a slower adaption to pick

from the better option after a switch in the payoffs. Providing

participants with a history improved the initial learning to pick the

optimal machine, but it sometimes hindered the adaption to the

subsequent changes in the payoffs compared with when no history

was provided.

Our two studies, reported here, follow a similar design to

examine the role of somatic markers when, initially, a non-

stationary option stochastically dominates a stationary option but

changes to be suboptimal relatively early in the game. This mimics

what happens with Deck B in the IGT. Study 1 uses a 100-trial

task with a switch in the optimal option at trial 40, and Study 2

uses a 200-trial task with switch points at trials 40 and 120. The

processes posited by the SMH predict successful initial learning and

subsequent reversal learning in such tasks, and this is tested in our

two studies.
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According to the SMH, people develop “hunches” about

the options they experience, and via somatic responses (which

we index via SCRs) mark these options as either positive/safe

or negative/risky. This promotes successful decision-making by

gradually guiding decision-makers away from repeating bad

decisions. In our two studies, we examine whether participants

develop a preference for the (current) optimal option and whether

this is aided by developing greater anticipatory markers for the

suboptimal option. We are also interested in whether participants

adapt to a change in an option’s payoff distribution, and whether

this is also reflected in the anticipatory, and outcome, skin

conductance (SC). The SMH predicts that somatic markers develop

and are greater for the inferior option. Therefore, after a change in

the payoff structure, the SMH predicts that somatic markers will

develop and be greater for the new, currently worse, option.

The task that we use presents participants with both the

outcome obtained from each choice and the forgone outcome

for each trial’s unselected option. This allows our participants

to experience regret because they can see what they would have

obtained from a different course of action. This is a valuable

feature of our study because experienced regret has been theorized

(Loomes and Sugden, 1982) and found to be an important driver

of various kinds of decisions (Zeelenberg and Beattie, 1997;

Zeelenberg and Pieters, 1999, 2004; Kareev et al., 2014). Zeelenberg

(1999) highlighted that the adaptive function of experienced regret

may be to exacerbate the misfortune felt from our mistakes, to help

us learn from them. This parallels the assumptions of the SMH

that emotional signals help to bias us away from repeating previous

poor decisions.

Study 1

Study 1 employs a 100-trial non-stationary decisions-from-

experience task adapted from Rakow and Miler (2009) with an

immediate switch point at trial 40, where the non-stationary option

changes from optimal to suboptimal choice. We also provide a

running history of past outcomes to half of the participants.

Based on Rakow and Miler (2009), we expect that participants

will have developed a clear preference for the optimal non-

stationary option within the first 40 trials but will adapt only

partially to the change in payoffs by the end of the task:

H1: There will be a preference for the optimal option by the

second block of 20 trials.

H2: The number of selections from the optimal option for trials

81–100 will be less for trials 21–40.

Rakow and Miler (2009) also found that providing a running

history of each option’s outcomes sometimes hindered participants’

adaption to a change in which option was optimal. We therefore

test whether:

H3: Participants provided with a history of the options’

outcomes adapt more slowly following the switch, and have fewer

selections of the optimal option in the last 60 trials than participants

without the history.

Hypothesis H1 supports the somatic marker hypothesis (SMH),

which also predicts reversal learning (though it is unclear to us

whether, as we predict in H2, this will be slower than the initial

learning). Because we collect skin conductance (SC) data, we can

also test the SMH’s explanation for how learning occurs. The

SMH posits that in response to positive and negative outcomes

experienced after selecting options, emotional biasing signals

mark options (Damasio, 1994). Participants should therefore have

outcome SCRs that are greater for losses (“punishments”) than for

wins (“rewards”). Therefore, based on the SMH, we predict:

H4: Outcome SC will be greater for negative outcomes (−10)

than for positive outcomes (+10).

As participants will also see the forgone outcome (for the option

they did not pick), we will also examine whether the outcome

of the chosen option relative to the forgone option’s outcome

affects the outcome SC. Obtaining a negative outcome (−10) when

the forgone option was positive (+10) should result in a higher

outcome SC, reflecting an elevated emotional response reflecting

the regret of a missed reward (e.g., Astor et al., 2011):

H5: Obtaining a negative outcome when the forgone outcome

is positive will result in greater outcome SC compared with other

combinations of obtained and forgone outcomes.

The SMH’s key prediction is that over the course of

the task, the outcome responses aid the development of

anticipatory SCRs that mark options. The SMH predicts

greater anticipatory SC before selecting disadvantageous

options than before selecting advantageous options. We

examine anticipatory SC and its role in optimal selections

in the two phases of the task—before and after the

switch. We, therefore, test this prediction derived from

the SMH:

H6: Anticipatory SC responses develop and are greater for

selections of the suboptimal option (whichever option that is for

a given phase of the task).

Method

Participants
Participants were recruited from the University of Essex,

Psychology Department’s Volunteer list,2 which included

university students (the majority) or staff. There were 36

participants (23 female) with a mean age of 24.33 years (SD

= 3.80, range 19–35, IQR 22–26). Two participants were

excluded due to either not following instructions correctly

or apparatus error and were replaced. This sample size is

typical for studies that test the SMH via SC data; a meta-

analysis by Simonovic et al. (2019) reports that IGT studies

2 Based on university entry requirements, we expect participants’

educational attainment and years of education to be above the average for

the general population. However, from measures taken in other studies,

we know that this population of volunteers from which our sample came

varies widely on specific cognitive abilities (e.g., abstract reasoning and

numeracy) that could be relevant to this task. For example, in a study with

160 participants from this research volunteer pool, (Heard et al., 2018)

assessed numeracy via the Berlin Numeracy Test which places individuals

into one of four quartiles determined by general population norms (Cokely

et al., 2012). Some participants were in each quartile, though around 72%

were in one of the lower two quartiles.
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with anticipatory SC data for non-clinical populations had a

median N = 40.5 (IQR 32–70).3

Apparatus
The SC activity was recorded using a Mind Media NeXus-10,

a multi-channel physiological monitoring and feedback platform,

with a sampling rate of 32 samples per second. SC activity was

recorded continuously throughout the study and for critical events

in each task, a trigger was sent via a button box to mark the SC

reading. The SC data were then analyzed using Ledalab, MATLAB-

based analysis software designed for SC data analysis (Benedek

and Kaernbach, 2010). Continuous decomposition analysis was

used, with no downsampling of the data. All data were optimized

(Ledalab optimizes data for each participant individually). The

minimum amplitude threshold was set to 0.01 muS. Data were

exported using SCR event-related activity, 1–4 s after an event

for the outcome SC and from 2 s before up until a trigger for

anticipatory SC.

Materials and design
A computerized decisions-from-experience task was created in

Real Studio, which sent event triggers compatible with the NeXus-

10 during the task. On each trial of the “game,” participants selected

between two “money machines” represented as on-screen buttons.

Both machines paid out a win of +10 or a loss of −10 but with

different probabilities of a win. One machine (stationary option)

had a probability of 0.5 of winning, fixed for all 100 trials. The other

machine (non-stationary) had a probability of 0.7 of winning for

the first 40 trials, which switched to a 0.3 probability at trial 41, at

which it remained for all subsequent trials. Participants completed

the task after two other risk-taking tasks (not reported here).

Participants were randomly assigned to either the experience-only

or experience-plus-history condition.

Procedure
On arrival at the laboratory, participants read a consent form

explaining the payment for their participation and details of

the NeXus-10 equipment. Once consent was obtained, using the

participants’ non-dominant hand, the electrodes were attached

to the distal phalange of the first and third digits. To do so,

participants cleaned the palm side of their first and third fingertips

with an alcohol wipe and the experimenter applied opaque adhesive

paste. The sensors were attached, and then, the participant placed

their hand palm upwards on a cushion on the desk aiming to keep

it as still as possible throughout the experiment. As recommended,

the sensors were given 5min to settle (Figner and Murphy, 2011).

A measure of baseline activity was taken to control for individual

differences in SC before the start of a task. This was calculated as

3 We are grateful to a reviewer for pointing out that sample sizes in SC

studies have increased in recent years. The meta-analysis by Simonovic et al.

(2019) provides some descriptive support for this evaluation. Across the 20

studies in the meta-analysis, the rank correlation between sample size and

publication year was rs = 0.16.

a ratio of 1:5 of the average time taken to complete the task, which

resulted in 3min of baseline activity recorded.

Before commencing the task, participants were given

standardized instructions (see Appendix) which outlined that

points could be won or lost on each “go” of the “game” and that

win/loss probability could change. The inter-trial interval of the

task was set to 6 s to allow for suitable SC recording. Participants

used the computer-mouse to select machines. Both machines

displayed the outcome (win or lose) on every trial; the machine

selected would display “You have won/lost 10 points.” The

unselected machine would display “You would have won/lost 10

points.” In the experience-plus-history condition, the win and loss

history for each machine was displayed above each machine. This

history displayed the previous number of times the machine had

won and lost and updated every trial. Once participants had played

all 100 trials, their total points remained on screen. The study

session lasted ∼50min, for which participants received UK£5 (or

course credit).

Measures and data analysis techniques
The measure of SC reported here, and in Study 2, was the mean

phasic driver within the response window. Ledalab documentation

states that this variable “represents phasic activity within the

response window most accurately, but does not fall back on classic

SCR amplitudes” (http://www.ledalab.de/documentation.htm, see

also Benedek and Kaernbach, 2010). The recording interval from

1 to 4 s after a trial outcome appeared was used for outcome

SC, and the 2-s interval before selecting the option was used

for the anticipatory SC. Due to the repeated-measures design,

all regressions were run using a multilevel random intercepts

regression model (Nezlek et al., 2006). Multilevel models are used

to assess data that contain a natural hierarchy or clustering of

cases within variables. This is appropriate with the current data

because the 100 selections (200 in Study 2) represent a cluster of

observations for each participant. Multilevel models differ from

standard regression models (e.g., ordinary least squares) due to

dividing the error variance into separate components. This allows

themodel to control for the patterns of the structured data: patterns

in the error from the model are assumed to have a reliable structure

and are not just noise. This technique allows the examination of

trial-by-trial data in a principled fashion (e.g., by not treating trials

as independent observations).

Research has shown both inter- and intra-individual variability

in the rise and recovery time of SCRs (Edelberg and Muller,

1981; Breault and Ducharme, 1993). The anticipated variation

between participants in SC (Figner and Murphy, 2011) was

accounted for by entering participants as a level 2 random intercept

within the multilevel model. Multilevel modeling was utilized

to distinguish within- and between-participant variations in SC

(Goldstein, 1995; Hox, 2010). The level 1 variables were at the

individual trial level (100 data points in Study 1 and 200 in Study

2) and included participants’ selections (e.g., which option they

picked and whether the selection was optimal) and SC measures

(outcome SC; anticipatory SC). We checked for skew in continuous

dependent variables for each participant individually. Outcome

SC was found to be positively skewed, so was log10 transformed
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for all participants, in both Study 1 and Study 2. Any marginal

means reported for outcome SC are log10-transformed marginal

means. We checked for outliers in all regressions using the Blocked

Adaptive Computationally efficient Outlier Nominator (BACON;

Billor et al., 2000) procedure, which identifies multivariate outliers

in a set of predictor variables and removed those outliers from all

regression analyses.

Results

For data presentation and analysis, we grouped trials into five

20-trial blocks. To examine whether participants were pickingmore

from the optimal (non-stationary) option by the second block (21–

40 trials), a one-sample t-test was conducted which found that

the mean number of selections from the optimal (non-stationary)

option in block 2 (M = 13.78) was significantly >10 (chance-level

performance), t(35) = 4.44, p < 0.001, d = 0.74. This fairly large

effect supports H1 that participants would develop a preference for

the optimal option within the first 40 trials. A paired-samples t-test

comparing the number of optimal selections (from the stationary

option) in block 5 (M = 10.36) to the optimal selections (from the

non-stationary option) in block 2 (M= 13.78) revealed—in support

of H2–significantly fewer optimal selections in block 5 than in block

2, t(35) = 2.56, p= 0.015, d = 0.43.

To examine the effect of having the running history in addition

to experiencing the outcomes, the number of times the optimal

option was selected was analyzed as five blocks of 20 trials (coding

specific to whichever option was optimal in a given block). A

repeated-measures ANOVA was performed with the number of

times the optimal option was picked as the dependent variable and

block and condition (experience-plus-history vs. experience-only)

entered as factors, see Figure 1. Mauchly’s test for sphericity was

statistically significant for block; we report Greenhouse–Geisser

corrected degrees of freedom for all ANOVA effects for block (also

in Study 2). The main effect of block was medium-to-large and

statistically significant, F(1.75,59.55) = 6.73, p = 0.003, η
2
p = 0.165.

Tukey’s post-hoc tests revealed a statistically significant increase in

optimal selections from block 1 (M= 11.06) to block 2 (M= 13.78).

There was a statistically significant decrease in optimal selections

from block 2 (M =13.78) to block 3 (M = 8.17), the first block of

trials after the switch had occurred. Selections of the optimal choice

remained significantly lower in block 4 (M = 9.31) and block 5

(M = 10.36) compared with block 2 (all p’s < 0.025). No other

differences were statistically significant. Neither the main effect of

condition nor the block-by-condition interaction was statistically

significant, for both F < 1. We, therefore, fail to find support for H3

that providing participants with a history of the options’ outcomes

leads to slower adaption following the switch.

Outcome SC
To examine H4, we first regressed SC outcome on the outcome

obtained (0 = −10, 1 = +10) and found that outcome SC was

greater following a negative outcome than a positive outcome,

b = −0.044, z = −2.38, p = 0.017. This supports the SMH

and H4, which predicted that outcome SC would be greater

FIGURE 1

Study 1: mean frequency of selection of the optimal option

(non-stationary option in blocks 1 and 2, stationary option in blocks

3–5) for each condition of the task. The error bars show the

standard error of the mean. The asterisk denotes that a switch in

payo�s occurred at the end of block 2.

following a negative outcome compared with a positive outcome.

To control for the length of time playing the task, and therefore the

amount of information obtained about the options, we included

the block and its interaction with the outcome obtained in the

next step of the regression. The block (variable centered) was now

the only significant predictor, with greater outcome SC as the

game progressed, b = 0.045, z = 4.65, p < 0.001. Both outcome

obtained and its interaction with the block were non-significant,

b = 0.025, z = 0.57, p = 0.568, and b = −0.017, z = −1.25,

p = 0.210, respectively. Thus, although losses resulted in greater

physiological responses, the effect of SC was no longer significant

once task experience was controlled for. Therefore, we find some,

but inconsistent, support for the predictions of the SMH that losses

result in greater physiological reactions than wins.

To examine hypothesis H5, that the forgone outcomes can

affect the size of outcome SCs, we initially regressed outcome

SC on outcome combination, i.e., the combination of obtained

and forgone outcomes, see Figure 2. The outcome combinations

were dummy coded with a reference category of negative

obtained/positive forgone (NO/PF), vs. positive obtained/positive

forgone (PO/PF), positive obtained/negative forgone (PO/NF), and

negative obtained/negative forgone (NO/NF). The outcome SC was

lower in all outcome combinations compared with the reference

category of negative obtained/positive forgone, indicating greater

physiological response when the option selected resulted in a

negative outcome and the forgone option resulted in a positive

outcome. These differences were significant when NO/PF was

compared with PO/PF, b = −0.073, z = −2.71, p = 0.007,

and to PO/NF, b = −0.067, z = −2.54, p = 0.011; but not

(quite) for comparison with NO/NF, b = −0.048, z = −1.84, p

= 0.066.4 Controlling for the amount of information obtained

by adding block (variable centered) and its interaction between

4 To check for any other di�erences, all outcomes obtained were entered

as the reference category, but no other significant di�erences were found.
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FIGURE 2

Study 1: mean outcome skin conductance (µSiemens/second) for

obtained and forgone outcome combinations: NO/PF, negative

obtained/positive forgone (reference category); PO/PF, positive

obtained/positive forgone; PO/NF, positive obtained/negative

forgone; NO/NF, negative obtained/negative forgone. The error bars

show the standard error of the mean.

FIGURE 3

Study 1: mean anticipatory skin conductance (µSiemens/second)

for optimal and suboptimal selections by block. The error bars show

the standard error of the mean. The asterisk denotes that a switch in

payo�s occurred at the end of block 2.

outcome combination (dummy coded) in the next step resulted in

outcome SC being significantly lower for all outcome combinations

compared with the reference category of NO/PF: vs. PO/PF, b =

−0.062, z = −2.24, p = 0.025; vs. PO/NF, b = −0.063, z = −2.38,

p = 0.017; and vs. NO/NF, b = −0.068, z = −2.55, p = 0.011. The

main effect of the block was also significant, b = 0.047, z = 3.42, p

= 0.001, indicating a tendency for outcome SC to increase across

the blocks of the game. The interactions between the outcome-

combination dummy variables and block were all non-significant

(all z < 1.46, all p > 0.145). Thus, consistent with claims that regret

is a powerful emotion, observing that a better outcome could have

been obtained leads to increased outcome SC compared with all the

other combinations of obtained and forgone outcomes.

Anticipatory SC
To examine whether anticipatory SC predicted optimal

selections in the task (H6), we ran two separate multilevel logistic

regressions for each of the two different optimal phases of the

task: the first phase included blocks 1 and 2 where the non-

stationary option was optimal, and the second phase included

blocks 3–5 which followed the switch to the stationary option

becoming optimal, see Figure 3. For the first phase, we regressed

optimal selection (0= suboptimal, 1= optimal), on anticipatory SC

(variable centered).We found that higher anticipatory SC predicted

selecting from the suboptimal option, with odds ratio = 0.60, z

= −2.38, and p = 0.017, in support of the SMH and H6. In the

next step, including block (variable centered) and its interaction

with anticipatory SC (variable centered) resulted in the effect of

anticipatory SC shrinking and becoming non-significant, with odds

ratio = 1.11, z = 0.16, and p = 0.871. The effect of the block was

significant, indicating that optimal selections increased from block

1 to block 2, odds ratio= 2.09, z = 5.18, p < 0.001. The interaction

between anticipatory SC and block was not significant, with odds

ratio= 1.40, z= 0.85, and p= 0.396. During the first 40 trials of the

task, participants learned to select more from the optimal option,

and although anticipatory SC was predictive of optimal selections,

controlling for task experience eliminated this effect.

In phase 2, we initially regressed optimal selection (0 =

suboptimal, 1 = optimal) on anticipatory SC (variable centered),

but found no significant effect of anticipatory SC, with odds ratio

= 0.93, z = −0.52, and p = 0.601. Following the payoff switch

which made the stationary option optimal, there was no difference

in anticipatory SC before selecting from either option. Including

block and its interaction with anticipatory SC (variable centered)

in the next step resulted in the block being the only significant

predictor, with optimal selections increasing from block 3 to block

5, odds ratio = 1.30, z = 4.32, p < 0.001—indicative of reversal

learning after the switch. Anticipatory SC remained non-significant

and the interaction with the block was also non-significant, with

odds ratio = 1.17, z = 0.98, and p = 0.327. In the last 60

trials of the task, anticipatory SC did not significantly predict

optimal selections.5

Discussion

Study 1 examined whether participants could adapt to changes

in the probabilities of payoffs and whether somatic states indexed

by SC plausibly played a role in aiding reversal learning of

the payoff structure. Initial learning in the task was successful,

participants’ rate of selection of the (non-stationary) optimal

option was significantly above chance after 21–40 trials. The

optimal option switched at trial 41. Despite the symmetry in our

design whereby expected value differences between options were

5 The same pattern of results was found running the analyses in phases but

using option chosen as the dependent variable.
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of equal size before and after this switch, participants did not

choose as successfully after 60 trials in this new environment

as they had after 40 trials in the original task environment.

We found no significant effect of showing participants a

running history of previous outcomes which has sometimes

been found to speed up initial learning but also to increase

inertia when the optimal option changes (Rakow and Miler,

2009).

Supporting the SMH, we found significantly greater outcome

SC to negative outcomes compared with positive outcomes for

the option chosen, though this effect reduced when the time

course of the task was taken into account. This limited effect

of outcome valence on outcome SC is perhaps surprising given

the role that the SMH ascribes to somatic outcome responses in

marking options and the subsequent development of successful

IGT performance. This could reflect differences between tasks

in the relative scale of losses and gains. In the IGT, the largest

losses in both disadvantageous decks are either 2.5 or 12.5

times the size of the $100 nominal reward, whereas, in our

non-stationary task, the losses and gains were equal. Although

the SMH does not predict greater outcome SC to the greater

punishments, the SCR data from the IGT reported by Bechara

et al. (1996) seem to show that punishment SCR only reliably

exceeds reward SCR in decks where the absolute size of rewards

exceeds that of punishments (Decks B and D). This is consistent

with the possibility that SC marks risk rather than reward

(Tomb et al., 2002). Another possibility is that—because our

participants observed both obtained and forgone outcomes—

obtained losses have a different status in our task because

participants see that, sometimes, they would not have done better

by selecting the other option. Indeed, consistent with that we

found greater outcome SC following a positive forgone outcome

when the obtained outcome was negative, compared with all other

combinations of positive and negative outcomes, a finding that

remained (in fact, strengthened slightly) when controlling for

block number.

The SMH’s key prediction is that after experiencing different

outcomes, anticipatory SC develops and is greater before selecting

from the disadvantageous options than advantageous options.

This facilitates advantageous decision-making by helping to

avoid previously experienced negative outcomes. We found that

anticipatory SC was greater before a non-optimal selection

(disadvantageous option) by the end of the first 40 trials. This

is in the direction the SMH would predict, with a greater

physiological response before picking from a disadvantageous

option. This effect was no longer significant once the block

number was included in the regression. We did not find any

support for a difference in anticipatory SC between the optimal

and non-optimal options developing after the switch, in the last

three blocks of the game with or without controlling for block

number. However, we note that, on average, decision-making

was not particularly successful in this latter phase that followed

the switch.

To further test the role of anticipatory SC to help guide optimal

decision-making, we ran a second study. In light of participants’

modest adaptation to changes in payoffs, we added more trials

post-switch to allow for more opportunity to adapt to change.

Additionally, to provide further opportunity to examine reversal

learning, we added a second switch-point at which the optimal

option changed. To accommodate these design changes, the length

of the game was doubled.

Study 2

Study 2 employs a similar non-stationary payoff game to Study

1 but uses a 200-trial version with two instantaneous switches. The

switches occur at trial 41 where the non-stationary option changes

from being the optimal to the suboptimal choice and at trial 121

when the non-stationary option changes to be the optimal choice

again. The payoff distributions for both the stationary and non-

stationary options are the same as in Study 1. Based on Rakow

and Miler (2009) and the results from Study 1, we expect that

participants will have developed a preference for the optimal (non-

stationary) option within the first 40 trials:

H1: There will be a preference for the optimal option by the

second block of 20 trials.

Based on Rakow andMiler (2009) and Study 1, we expect initial

learning to be more successful than reversal learning. Therefore,

even with an extra 20 trials after a switch compared with Study 1, we

predict fewer selections for the optimal option in the fourth 20-trial

block following a switch than in the second block from the start of

the game:

H2a : The number of selections from the optimal option for

trials 101–120 will be less than for trials 21–40.

H2b: The number of selections from the optimal option for

trials 181–200 will be less than for trials 21–40.

We again employ a between-subjects design providing

a running history to half of the participants and testing

whether it moderates participants’ adaptation to a change in the

payoff distributions:

H3: Participants provided with a history of the options’

outcomes adapt more slowly following the switches, making

fewer selections of the optimal option compared with participants

without the history.

We again test whether, as per the SMH, participants have

greater outcome SC for the negative outcomes in the task. We also

take advantage of our task design to test whether forgone outcomes

moderate outcome SC, reflecting affective impulses associated

with regret:

H4: Outcome SC will be greater for negative outcomes (−10)

than for positive outcomes (+10).

H5: Obtaining a negative outcome when the forgone outcome

is positive will result in greater outcome SC compared with other

combinations of obtained and forgone outcomes.

In Study 1, we found mixed support for the SMH’s key

prediction that decision makers develop anticipatory SCRs before

picking from the options, which are greater for disadvantageous

options than advantageous ones. We again examine whether,

consistent with the SMH, anticipatory SC predicts optimal

selections in each of the three phases of the task:

H6: Anticipatory SC responses develop and are greater for

selections of the suboptimal option (whichever option that is for

a given phase of the task).
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Method

Participants
There were 36 participants (19 women) recruited from the

University of Essex, Psychology Department’s Volunteer list. Their

mean age was 26.28 years (SD= 8.55, range 19–62, IQR 21–28).

Apparatus
The SC activity was recorded and analyzed as in Study 1

using Mind Media NeXus-10 and Ledalab software (Benedek and

Kaernbach, 2010).

Materials and design
The computerized “Money Machine Game” from Study 1 was

used, but the number of trials was increased to 200. The machines

delivered a win of +10 or a loss of −10. One machine (stationary)

had a fixed probability of 0.5 of winning for all 200 trials. The other

machine (non-stationary) had a probability of 0.7 of winning for

the first 40 trials, which switched to a 0.3 probability from trial

41 onwards to trial 120, and from trial 121 returned to 0.7 for the

remaining 80 trials. Participants were randomly assigned to either

the experience-only or experience-plus-history condition.

Procedure
The procedure and instructions were identical to Study 1,

except that a (longer) 5-min baseline was recorded for SC and the

instructions (see Appendix) were amended to state: “You will have

200 ‘goes’ to win points.” The study session lasted ∼40min, for

which participants received UK£4 (or course credit).

Results

A one-sample t-test testing H1 found that the mean number of

selections from the non-stationary option in block 2 (trials 21–40;

M = 14.58) was significantly >10 (at-chance performance), t(35) =

6.44, p < 0.001, d = 1.07. This large effect supports H1. A paired-

sample t-test comparing the number of optimal selections (from

the stationary option) in block 6 (trials 101–120;M = 12.42) to the

optimal selections (from the non-stationary option) in block 2 (M

= 14.58) revealed no significant difference, t(35) = 1.90, p = 0.066,

d = 0.32. Thus, while descriptively the means supported H2a, there

was no statistically significant support for this hypothesis. A paired-

samples t-test comparing the mean number of optimal selections

in block 2 (M = 14.58) to those in block 10 (trials 181–200; M =

12.53) revealed significantly fewer optimal selections in block 10

compared with block 2, t(35) = 2.08, p = 0.045, d = 0.35. This

provides significant support for H2b. We note that the means for

blocks 6 and 10 were similar and that the differences in significance

for the t-tests for H2a and H2b represent results falling narrowly

on opposite sides of the threshold for statistical significance. Taken

together, these data suggest some success in reversal learning, but

that preferences for the optimal option following a shift are less

clear than those that develop quickly at the start of the task, see

Figure 4.

FIGURE 4

Study 2: mean frequency of selection of the optimal option

(non-stationary option in blocks 1 and 2, stationary option in blocks

3–6, and non-stationary option in blocks 7–10) for both conditions

of the task (experience only and experience plus running history).

Switches occurred at the end of blocks marked with an asterisk. The

error bars show the standard error of the mean.

To examine the effect of providing participants with a running

history, the number of times the optimal choice was selected was

analyzed as 10 blocks of 20 trials. A repeated-measures ANOVAwas

performed with the number of times the optimal option was picked

as the dependent variable and block and condition (experience-

plus-history vs. experience-only) entered as factors. Themain effect

of block was medium-sized and statistically significant, F(3.86, 131.12)
= 5.17, p = 0.001, η2p = 0.132. Planned comparisons between the

adjacent phases in the game were conducted. Comparing the first

40 trials (blocks 1–2) when the non-stationary option was optimal,

vs. the next 80 trials (blocks 3–6) when the stationary option was

optimal, revealed significantly fewer optimal selections over the 80

trials following the first switch, F(1, 34) = 11.43, MSe = 410.28, p

= 0.002, d = 0.56. This supports H2a. Although not testing one of

our pre-defined hypotheses, comparing the 80 trials following the

first switch (blocks 3–6) vs. the next 80 trials following the second

switch (blocks 7–10) revealed no significant difference for the mean

number of optimal selections, F(1, 34) = 3.50, MSe = 272.22, p =

0.070, d = 0.31.

There was no main effect of condition, with no difference

between the participants who only experienced the outcome and

those who also had a history of previous trials, F < 1. The block-

by-condition interaction was not significant, F(3.86,131.12) = 1.94,

p = 0.111;6 thus, there is no significant support for H3 (slower

adaption to the switches in the optimal option when provided with

a running history). Thus, there is no clear support for the possibility

that adding some descriptive data changes task performance in this

decision-from-experience task.

6 The interaction between condition and block was significant

when not using Greenhouse–Geisser corrected degrees of

freedom, F(9, 306) = 1.94, p = 0.047.
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Outcome SC
To examine H4, we first regressed outcome SC on outcome

obtained (0 = −10, 1 = +10), and found it was a significant

predictor, b = 0.028, z = 2.23, p = 0.025, with greater outcome SC

following a positive outcome (M+ve =−1.19;M−ve =−1.21). This

effect was in the opposite direction to that which was predicted, and

had been found in Study 1. We then included the block (variable

centered) and its interaction with the outcome obtained in the next

step. The block was a significant predictor, b=−0.0070, z=−2.13,

p = 0.033, while the outcome obtained remained significant and

in the same direction, b = 0.029, z = 2.44, p = 0.015 (unlike in

Study 1 where the effect was no longer significant). Outcome SC

decreased as the blocks progressed; however, the interaction with

block and outcome SC was not significant, b = 0.00065, z = 0.15,

p = 0.879. We again fail to find support for the predictions of the

SMH (and H4), which assumes that punishments should result in a

greater physiological reaction than rewards.

To examine hypothesis H5, that the forgone outcome plays a

role in SC responses, we initially regressed outcome SC on outcome

combination. The possible combinations of obtained and forgone

outcomes were dummy coded with a reference category of negative

obtained/positive forgone (NO/PF) vs. positive obtained/positive

forgone (PO/PF), positive obtained/negative forgone (PO/NF),

and negative obtained/negative forgone (NO/NF), see Figure 5.

Outcome SC was significantly lower for NO/PF compared with

PO/PF, b = 0.044, z = 2.61, p = 0.009, with no significant

effects for the comparisons with PO/NF, b = −0.0035, z =

−0.21, p = 0.837, and NO/NF, b = −0.012, z = −0.70, p =

0.484. This was different to Study 1 in which we found greater

outcome SC after obtaining a negative payoff while the forgone

was positive compared with all the other outcome combinations

(PO/NF and NO/NF).
7 We then added the block (variable centered)

and its interaction with the outcome combination in the next

step. Outcome SC remained significantly lower when the obtained

outcome was negative and the forgone was positive, compared

with when the outcome obtained and forgone were both positive.

The block was a significant predictor, b = −0.0095, z = −2.19,

p = 0.029, indicating that outcome SC decreased across the trial

blocks. The interactions between the dummy variable of outcome

combination and block were all non-significant (all z < 0.47,

all p > 0.420).

Anticipatory SC
To examine whether anticipatory SC predicted optimal

selections, we ran a separate multilevel logistic regression for each

of the three phases of the task (i.e., defined according to which

option was optimal), see Figure 6. For phase 1, we initially regressed

optimal selection8 (0 = suboptimal, 1 = optimal) on anticipatory

SC (variable centered), but there was no significant effect of SC,

7 Changing the reference category to be positive obtained/positive

forgone, outcome SC was significantly lower in all other outcome

comparisons to the reference category, p’s < 0.009.

8 As in Study 1, the same pattern of results was obtained for these analyses

when using option chosen (non-stationary versus stationary) instead of

coding for optimal option.

FIGURE 5

Study 2: mean outcome skin conductance (µSiemens/second) for

obtained and forgone outcomes: NO/PF, negative obtained/positive

forgone (reference category); PO/PF, positive obtained/positive

forgone; PO/NF, positive obtained/negative forgone; NO/NF,

negative obtained/negative forgone. The error bars show the

standard error of the mean.

FIGURE 6

Study 2: mean anticipatory skin conductance (µSiemens/second)

for optimal and suboptimal selections by block. Switches occurred

at the end of blocks marked with an asterisk. The error bars show

the standard error of the mean.

with odds ratio = 1.02, z = 0.07, and p = 0.943. In the next step,

we also included block (1–2; variable centered) and its interaction

with anticipatory SC. Only block was a significant predictor, with

the chances of picking the optimal option increasing from block 1

to block 2, with odds ratio= 1.88, z = 5.06, and p < 0.001.

In phase 2, regressing optimal selection (0 = suboptimal, 1 =

optimal) on anticipatory SC (variable centered), there was again no

significant effect of SC, with odds ratio = 0.78, z = −1.32, and p

= 0.188; though this was in the direction predicted by the SMH.

Including block (3–6; variable centered) and its interaction with

anticipatory SC as predictors in the next step, the block was the

only significant predictor, with the chances of picking the optimal

option increasing with a block number, with odds ratio= 1.33, z =

7.58, p < 0.001. The interaction between anticipatory SC and the
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block was not statistically significant, with odds ratio = 1.30, z =

1.74, p= 0.081.

In phase 3, when we regressed optimal selection (0 =

suboptimal, 1 = optimal) on anticipatory SC (variable centered),

there was again no significant effect of anticipatory SC, with odds

ratio = 1.10, z = 0.56, p = 0.578. With the addition of block

(7–10; variable centered) and its interaction with anticipatory SC

in the next step, again only block significantly predicted optimal

choice, with odds ratio = 1.13, z = 3.23, and p = 0.001. Following

the second switch, participants were increasingly likely to pick the

optimal option across the blocks, though the effect was descriptively

smaller than the equivalent effect in phase 2 (odds ratio 1.13 vs. 1.33

in phase 2).

Discussion

Study 2 examined whether participants could adapt to two

changes in the probabilities of outcomes, and whether physiological

signals indexed by SC played a role in aiding learning and reversal

learning. Taken together, our analyses reveal a pattern of quick

initial adaptation to the task followed by appropriate—though

slower—adaptation to changes in payoff structure. Thus, our

regression analyses revealed a significant increase in selecting the

optimal option across the four trial blocks following a switch in

the optimal option. However, at no point did the rate of optimal

selection match that of block 2 (just 21–40 trials into the task). We

again found no significant effect of providing a running history of

the outcomes of both options.

The outcome SC data in this study conflict with the hypotheses

we tested and the results obtained in Study 1. In Study 2, outcome

SC decreased as the game progressed, rather than increasing as in

Study 1. Moreover, when testing H4 we found a greater outcome SC

after a positive outcome compared with a negative outcome. Thus,

while SC marked positive and negative events differently, Study 2

did not support the SMH which assumes that punishments result

in greater SC than rewards. Examining outcome SC for different

combinations of obtained and forgone outcomes, we found that

outcome SC was significantly lower when the obtained outcome

was negative and the forgone was positive, compared with when the

outcome obtained and forgone were both positive. This contrasts

with Study 1 where we found that outcome SC was significantly

higher compared with all other possible outcome combinations.

In general, outcome SC in Study 2 was greater when the outcome

obtained was positive compared with when it was negative, with no

clear moderation attributable to forgone outcomes.

We assessed the SMH’s key prediction that SC should develop

and help guide decision-making through elevated anticipatory SC

before selecting a poor option relative to that of a good option.

However, examining the three different phases of the game, we

never found that anticipatory SC was a significant predictor of

picking optimally. Given that our participants evidenced successful

decision-making, including reasonably successful reversal learning,

anticipatory somatic markers may not be necessary to successfully

guide choice in decisions-from-experience. In sum, we found no

significant support for the predictions of the SMH in our SC data

for Study 2.

General discussion

In two studies, we used a decisions-from-experience task with

a non-stationary option to examine the predictions of the SMH.

The switch in which option was superior was analogous to what

happens with the disadvantageous IGT deck with low-frequency

punishments (“Deck B,” Bechara et al., 1994) where a loss is not

obtained until experiencing eight previous high rewards from that

deck. This deck has an average net loss but is still often selected

(Steingroever et al., 2013). This has led to suggestions that reversal

learning is key to optimal performance in the IGT—the ability to

“unlearn” that this deck is good. According to the SMH, learning

and reversal learning (i.e., “unlearning”) are guided by somatic

states that develop with task experience. These somatic states can be

indexed by measures of SC. The SMH predicts that SCs measured

after an outcome has been obtained should vary dependably

with outcome valence, and that SCs measured immediately

before a choice should vary with option quality because these

anticipatory SCs reflect developing “hunches” about which options

are (dis)advantageous. We examined these predictions of the SMH

in our SC data, as well as additional predictions about the role of

forgone outcomes in somatic responses to outcomes.

Learning and reversal learning

Participants in both studies, learned quickly which option was

superior—their choices revealed a clear preference for the option

with a 70% chance of winning over an option with a 50% chance

of winning. When the non-stationary option switched to only a

30% chance of winning, participants increased their frequency of

selections from the newly superior stationary option. However,

their preference for the optimal option was weaker than during

the first 40 trials. In general, our results accord with Rakow and

Miler (2009; Experiment 1): participants initially picked more

from the optimal options, but were slower to adapt, and picked

less from the optimal options following the switch. This pattern

suggests that outcomes seen in the first few trials of the task

remain influential many dozens of trials later. This is somewhat

surprising because models that assume decisions-from-experience

rely on a small sample of recent observations generally do a good

job of explaining these decisions if full feedback is provided as

it was in our study (Erev et al., 2010). One possibility is that

attention to outcomes reduces with task experience. Supporting

this possibility, an eye-tracking study by Ashby and Rakow (2016)

found that attention to both obtained and forgone outcomes

reduces (lengthy) decisions-from-experience tasks. Additionally,

a sizable minority of participants in binary choice tasks adopt a

“policy” of selecting the option they judge (or know) to be the best

bet on average for all trials from some point in the task (e.g., Newell

and Rakow, 2007; Rakow et al., 2010; Newell et al., 2013). Such a

“maximizing” strategy is, of course, optimal if payoff probabilities

are stationary. Consequently, in such environments, there is no

need to continuously monitor or tally outcomes or to update

beliefs about the options. Therefore, one explanation for themodest

reversal learning seen in our studies is that some participants gave

little thought to the possibility that outcome probabilities might
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change and so gave limited attention to outcomes in the later stages

of the game.9

Unlike Rakow and Miler (2009), we did not find that

providing a running history affected performance. This suggests

that experienced information takes precedence over descriptive

information in this kind of task. A small number of studies have

compared experience-only, description-only, and experience-plus-

description conditions. Perhaps the most instructive of these for

understanding our data is a series of studies conducted by Weiss-

Cohen and colleagues using variants of the IGT, which included

conditions that provided descriptions of each deck’s payoffs. These

descriptions improved task performance (i.e., increased selections

from good decks) but only under some conditions. When the IGT

was simplified to having two decks with two outcomes per deck,

descriptions made no difference to performance (Weiss-Cohen

et al., 2018). When descriptions were introduced after participants

already had 20, 40, 60, or 80 rounds of experience, the later the

descriptive information was introduced the less impact it had

(Weiss-Cohen et al., 2021). Our task was similarly simple and only

provided descriptive information that exceeded what participants

could remember once they had already accumulated some task

experience. Therefore, quite possibly, few participants saw any need

to use the history that was provided. We conclude that the effects of

history that Rakow andMiler (2009) reported are likely not reliable

with this kind of task.

Forgone outcomes and regret

The task we used differs from many other repeated-choice

tasks because we also presented the outcome that could have

been obtained from the unselected option. In Study 1, the SC

response to missing out on a potential positive outcome when the

obtained outcome was worse was significantly greater, compared

with the obtained outcomes that were either better or equally

poor compared with the forgone outcome. This elevated SC could

be a physiological representation of regret, similar to loser regret

reported in auction studies (Astor et al., 2011). However, we failed

to find this in Study 2, where, mirroring the elevated SC to a

positive rather than negative outcomes, SC was greater following

a positive obtained outcome when the forgone outcome was also

positive, compared with all other obtained and forgone outcome

combinations. These outcome SC results from Study 2 are not

indicative of regret but instead would indicate marking successes

with greater emotional arousal (“joy”). It seems that SC responses

to positive and negative events are variable.

9 Our participants’ modest adaptation to change may surprise readers

familiar with the reversal learning tasks used by neuroscientists to examine

cognitive flexibility (e.g., D’Cruz et al., 2011). However, in our task and the IGT,

suboptimal options can still deliver a win, and optimal options can still deliver

a loss, on an individual trial. In contrast, reversal learning tasks in neuroscience

are deterministic in that one option (which can switch) always delivers a

win. Therefore, our task and the IGT are more complex than the reversal-

learning tasks employed in neuroscience, therefore examining a di�erent

type of learning.

TABLE 1 Support for skin conductance (SC) hypotheses (H4 to H6) for

Study 1 and Study 2.

Hypotheses Study 1
(100 trials)

Study 2
(200 trials)

Outcome SC Regression Regression

H4 : Punishment > Reward ✓

H∗

5 : Negative obtained (NO)

with Positive forgone (PF) >

{PO/PF, PO/NF, NO/NF}

✓

Anticipatory SC Regression Regression

H6 : Phase 1: Suboptimal >

Optimal

✓

H6 : Phase 2: Suboptimal >

Optimal

H6 : Phase 3: Suboptimal >

Optimal

N/A

∗H5 is not a hypothesis derived from the SMH.

This variability in the findings across our studies reflects a

corresponding variability across studies in the apparent impact of

forgone outcomes. Providing forgone outcomes in decisions-from-

experience has not always been found to have a strong impact

on selections (e.g., as summarized by Yechiam and Busemeyer,

2006). Data from Rakow et al. (2015) clarify that the impact of

forgone outcomes of choice is likely context-specific, with forgone

outcomes having a greater impact when all options are poor than

when all options are good. Put simply, if one is satisfied with the

outcome of one’s choice (as is likely the case when all options are

good), there is less need to consider whether one could have done

better by selecting a different option.

Skin conductance and the SMH

Our study provided an important re-examination of the SMH

using skin conductance (SC) data, something which has been

surprisingly uncommon (see Dunn et al., 2006; Simonovic et al.,

2019) given the importance of SC data in the initial tests of the SMH

(e.g., Bechara et al., 1996). Table 1 summarizes our SC hypotheses

and results for both studies. The outcome SC following a positive or

negative outcome provided mixed support for the SMH. In Study

1, participants had elevated SC to losses, as predicted by the SMH,

but controlling for the amount of information acquired in the task

(block number) removed this effect. However, in Study 2, gains

resulted in elevated SC, in the opposite direction predicted by the

SMH and, overall, SC decreased over the course of the game. It is

unclear whether outcome SC should persist throughout the task

at a similar magnitude or could decrease over time. For example,

Bechara et al. (1997) did not report outcome SC but commented

that anticipatory SC reduced across the game for the advantageous

decks. This mixed pattern of physiological responses to positive and

negative outcomes suggests caution is needed when interpreting

SC measurement.

Greater anticipatory SC has sometimes been reported before

selecting good options in the IGT. One example comes from Tomb
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et al. (2002) who found elevated anticipatory SC before selecting

their modified good decks (high reward and high punishment)

and suggested anticipatory SC was driven by high rewards, rather

than “goodness” or “badness” as suggested by the SMH. However,

Damasio et al. (2002) believe that the result from Tomb et al. can

still be interpreted within the assumptions of the SMH because

somatic markers can also be positive and therefore help in the

selection and promotion of approach strategies. Damasio et al.

suggest that the higher anticipatory SC before the good decks in

Tomb et al.’s modified task may reflect a positive somatic state

that promotes the approach. Tomb et al. (2002) did not report the

outcome SC, so it is unclear whether the modified good decks also

resulted in significantly greater outcome SC. The elevated SC to

positive decks in Tomb et al.’s modified version was claimed to be a

result of the immediate reward, which was much greater compared

with the rewards of the bad decks. The rewards and punishments in

our decisions-from-experience task did not change between Study

1 and Study 2, however, we still found greater outcome SC to the

positive outcomes (+10) in Study 2, but the reverse (and expected)

pattern was found in Study 1, see Table 1. Notably, we find these

differences between our two studies despite their very similar

design, procedures, and participant recruitment. We will resist the

temptation to “explain” the between-study variance in our findings

by appealing to what small differences did exist between our two

studies because only with formal within-experiment manipulation

could we be confident about such attributions.

The lack of strong support for the role of anticipatory

SC in our decisions-from-experience tasks further questions the

generalizability of the SMH. Only in the first 40 trials of Study

1 did anticipatory SC predict optimal choice, in support of the

SMH; however, when block number was included in analyses, this

effect was no longer significant and we failed to detect differences

in anticipatory SC after the switch, or in any phases of Study

2. Although optimal play was lower after a switch occurred, and

remained lower compared with the initial 40 trials, participants did

show statistically significant adaption to the new optimal option in

both studies (as evidenced by the regression analyses). However,

our SC measurement could not identify any way in which this

reversal learning was accompanied by changes in anticipatory

somatic states.

The SMH represents one of several prominent accounts of

decision-making that assumes a key role for affect in decision-

making (Loewenstein et al., 2001). A key consideration in this

literature is the balance between cognitive and affective processes in

different kinds of decisions (Slovic et al., 2004; Figner et al., 2009).

Reflecting these considerations, and relevant to our data, Glöckner

et al. (2012) assessed physiological arousal in both decisions-from-

description and decisions-from-experience to examine whether

the different situations activate different affective or cognitive

processes. Examining arousal by using SC,10 they found that the

difference in the expected value between the two gambles predicted

peak arousal in SC in the description condition but not in the

experience condition. In the description condition, as the difference

10 SC was assessed as the maximum peak arousal within the

entire sampling phase, rather than on an individual trial-by-trial basis

as reported here.

between the expected value of the gambles increased, SC decreased

when considering the description of the gambles. Thus, the data

from Glöckner et al. (2012) raise the possibility that emotional

responsesmay differentiate optionsmore clearly in decisions-from-

description than they do in decisions-from-experience.

Important data from Fernie and Tunney (2013) provide

another perspective on the balance between cognitive and affective

processes in experience-based choice. Fernie and Tunney collected

SC measures for the IGT and asked their participants to report on

their task knowledge every 10 trials. Participants performed well at

the task. However, counter to the SMH, Fernie and Tunney found

no evidence that anticipatory SC differentiated between the decks.

This was true at all stages of the task, both before and after the point

where participants could articulate knowledge of deck quality.

Although Fernie and Tunney reported that participants’ conceptual

knowledge of the task was weak, most participants demonstrated

partial task knowledge. Typically, this began to emerge around

the 20th trial. In sum, these data did not support the claim that

somatic markers are important for choosing well in the IGT. But

also, an advanced state of knowledge was not required for good

task performance.

Limitations, alternative interpretations, and
future directions

Our investigation used skin conductance measures collected

from a choice task with non-stationary payoffs to test the SMH.

Across several such tests, our data failed to corroborate the

SMH. One might conclude from this that the SMH is wrong.

Relevant to such an interpretation, however, Chalmers (1999, p. 89)

summarizes the conundrum faced by the scientist who has collected

observations that contradict the predictions of a theory:

“It may be that the theory under test is at fault, but

alternatively it may be that an auxiliary assumption or some

part of the description of the initial conditions that is

responsible for the incorrect prediction. A theory cannot be

conclusively falsified, because the possibility cannot be ruled

out that some part of the complex test situation, other than the

theory under test, is responsible for an erroneous prediction.”

This problem (known as the Duhem–Quine thesis) points to

alternative interpretations of our data, several of which are linked

to our choice of methods or study limitations.

First, our failure to corroborate the SMH may be attributable

to our choice of research task. In contrast to the IGT, we provided

forgone feedback from the non-chosen outcome. Such tasks afford

learning processes that circumvent the need to evaluate options

independently. For example, one can do well at the task by

switching options after a relative loss (i.e., obtained outcome <

forgone outcome) but otherwise sticking with the same option

(Kareev et al., 2014). If the task were approached in this way, mental

representations of individual option quality are unnecessary. This

would make somatic markers redundant for learning. Therefore,

one possibility is that the SMH describes processes that aid learning

in tasks that require independent evaluations of different options,
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but which are irrelevant to some other types of choice task (such as

ours). Future research should test this conjecture by manipulating

task structure or task conditions experimentally (e.g., manipulating

the presence of forgone feedback).

Second, it may be that the “failure” of the SMH in our studies

was due to how we measured somatic responses. Skin conductance

is a well-established index of affective response for decision research

(Figner and Murphy, 2011). However, as discussed above, there are

difficulties identifying exactly what aspect(s) of affect SC reflects

(e.g., Tomb et al., 2002). These difficulties may be compounded

by the fact that there are different ways to extract and analyze

SC responses, which we cannot guarantee will always result in the

same conclusion. Moreover, even though we used recommended

procedures consistently in both studies, our SC data varied between

studies in ways that we cannot easily account for. Therefore,

to clarify the role of somatic markers and affective processes in

risky choice, it would be wise to employ a range of measures

(e.g., heart rate and pupil dilation) that afford additional tests

of the SMH.

A further problem with our measurement was the limited

statistical power of our investigation. Our sample sizes (N = 36

per study) were chosen to be similar to those in some of the SC

studies that informed our investigation and were constrained by

our available resources of time andmoney.With the benefit of what

we have since learned, we now appreciate that our studies had far

less statistical power than was desirable. Moreover, it seems this

is true of most (perhaps all) studies that have used SC to test the

SMH. The meta-analysis by Simonovic et al. (2019) examined two

effects that the SMH predicts for the IGT, which are measurable

by anticipatory SC. They report a mean effect of r = 0.22 (k =

15, total N = 1,147) for the relationship between anticipatory SCR

magnitude and IGT performance, and a mean effect of r = 0.10 (k

= 8, total N = 678) for the difference in anticipatory SCR between

good and bad decks. It is this latter small effect that we examined

in our anticipatory SC data (hypothesis H6). To achieve 80% power

with α = 0.05 (two-tailed), a sample ofN = 783 is required to detect

an effect of r = 0.1 (Cohen, 1992). This rises to N = 1289 for 95%

power (e.g., as required by Nature Human Behavior for Registered

Reports). Even for r = 0.2, achieving 80 or 95% power requires

sample sizes of N = 189 or N = 314, respectively. Moreover,

testing the boundary conditions of a theory often requires testing

differences between effects (Nieuwenhuis et al., 2011). An example

of this would be when testing whether the relationship between

anticipatory SC and option selection differs between tasks with

and without forgone outcome feedback. For such designs, N =

1,573 is required for 80% power to detect a difference of 0.1

between two correlations. Given this state of affairs, the meta-

analysis by Simonovic et al. (2019) suggests that only one published

IGT study in a non-clinical population can be said to approach

adequate statistical power to test the SMH via SC data. Specifically,

Ottaviani and Vandone (2015) tested N = 445 participants,

and no other study in the meta-analysis tested more than

135 participants.

In sum, despite 30 years of research into the SMH, it appears

that further research is required to provide adequate direct tests

of its key claims about how somatic markers guide decisions.

Such tests should include multiple measures of affective response

and anticipatory affect, including—but not restricted to—skin

conductance measures. Some of these studies should also include

different tasks (within the same study) and manipulate the

conditions for the study task(s) so that any boundary conditions

of the SMH can be mapped out. To meet current expectations

for reproducible behavioral science, we recommend a minimum

sample size of 750 per condition. For example, an investigation of

two tasks, each examined via two measures of affect, would require

N > 3,000 if the measures cannot be collected concurrently and

the tasks are compared between-subjects. Such studies are likely

beyond the resources of any one research lab and only achievable

through collective research efforts, such as those afforded by

collaborative networks such as the Psychological Science Accelerator

(Beshears et al., 2022) or the Reproducibility Project in Psychology

(Chan et al., 2022).

Summary

In two studies, we examined decisions-from-experience in a

two-option task with non-stationary payoffs. The non-stationary

nature of the task mirrors the set-up of the initially appealing,

disadvantageous Deck B in the IGT, for which the SMH proposes

that somatic states develop after experiencing severe losses in

some of the later card selections. The SMH further proposes

that somatic markers help guide players away from selecting

it—to avoid repeating previous mistakes. Our SC measurements

showed little support for these hypothesized roles of somatic

states in the successful initial learning and moderately successful

reversal learning displayed by our participants. We conclude

that this type of task is suitable for testing the SMH, while

acknowledging that there is scope for better tests of the SMH in

future studies.
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Appendix

Verbatim participant instructions for
study 1

You will play a game. In this game you will see two “money

machines” like those shown below. When you click on a machine

you will win or lose points. Your target is to obtain as many

points as possible. You will have 100 “goes” to win points. On

each go, you should decide which machine you want to get

points from. On each go, the probability of winning or losing

points is fixed in advance. However, this probability may change

from one go to the next. When you click on a machine, you

will see how many points you obtained. You will also see how

many points you would have obtained from the other machine.

Pay close attention to this information so that you can decide

which machine is the best one to play. You will also see your

new points total after every go. If you have any questions,

ask the experimenter. Press “Ready to begin” to start the

first game.
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