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The componential nature of 
arithmetical cognition: some 
important questions
Ann Dowker *

Experimental Psychology, University of Oxford, Oxford, United Kingdom

Research on typically developing children and adults and people with 
developmental and acquired dyscalculia converges in indicating that arithmetical 
ability is not unitary but is made up of many different components. Categories 
of components include non-symbolic quantity representation and processing; 
symbolic quantity representation and processing; counting procedures and 
principles; arithmetic operations; arithmetical knowledge and understanding; 
multiple forms and applications of conceptual knowledge of arithmetic; and 
domain-general abilities such as attention, executive functions and working 
memory. There is much evidence that different components can and often do 
show considerable functional independence, not only in developmental and 
acquired dyscalculia, but in typically achieving children and adults. At the same 
time, it is possible to find complex interactions and bidirectional relationships 
between the different components, including between domain-specific and 
apparently domain-general abilities. There is a great deal that still needs to 
be discovered. In particular, we need to learn more about the origins in infancy 
of subitizing and approximate magnitude comparison, the extent to which these 
interact, the extent to which they may be further divisible, and the extent and ways 
in which they themselves may develop with age and the extent to which they 
may influence later-developing components. There also needs to be a lot more 
research on exactly how domain-general and domain-specific abilities contribute 
to mathematical development, and how they interact with one another.
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Introduction

Research on typically developing children and adults and people with developmental and 
acquired dyscalculia converges in indicating that arithmetical ability is not unitary but is made 
up of many different components (Dowker, 2005, 2015). For example, patients with brain 
disorders can show selective deficits in dealing with arithmetical facts and procedures, while 
showing unimpaired conceptual knowledge of arithmetic (Cappelletti et al., 2005). They may 
show impairment just in factual knowledge with unimpaired procedural and conceptual 
knowledge (Warrington, 1982). They may show preserved factual knowledge with impaired 
conceptual knowledge (Delazer and Benke, 1997). These are just a few of the discrepancies that 
can occur in patients. Perhaps more surprisingly, typically developing children and adults can 
show discrepancies that are almost as great.

OPEN ACCESS

EDITED BY

Claudia Repetto,  
Catholic University of the Sacred Heart, Italy

REVIEWED BY

Evelyn Kroesbergen,  
Radboud University, Netherlands  
Filipa Ferraz,  
University of Minho, Portugal

*CORRESPONDENCE

Ann Dowker  
 ann.dowker@psy.ox.ac.uk

RECEIVED 17 March 2023
ACCEPTED 30 August 2023
PUBLISHED 14 September 2023

CITATION

Dowker A (2023) The componential nature of 
arithmetical cognition: some important 
questions.
Front. Psychol. 14:1188271.
doi: 10.3389/fpsyg.2023.1188271

COPYRIGHT

© 2023 Dowker. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in this 
journal is cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

TYPE Review
PUBLISHED 14 September 2023
DOI 10.3389/fpsyg.2023.1188271

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2023.1188271&domain=pdf&date_stamp=2023-09-14
https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1188271/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1188271/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1188271/full
mailto:ann.dowker@psy.ox.ac.uk
https://doi.org/10.3389/fpsyg.2023.1188271
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2023.1188271


Dowker 10.3389/fpsyg.2023.1188271

Frontiers in Psychology 02 frontiersin.org

This paper will discuss some of the more important components 
of arithmetical cognition, and some of the ways in which they can 
dissociate in typical and atypical development and functioning. It is 
not intended to provide a complete list of these components, from the 
point of view of psychology, education or mathematics. Indeed it is 
questionable whether a full and definitive list of such components 
can exist.

The main components of arithmetical cognition are sometimes 
grouped into the categories of factual, procedural and conceptual 
knowledge (Delazer, 2003) but each of these categories may be further 
divided into numerous other categories. Thus, factual knowledge may 
include memory for different types of arithmetical facts, such as 
addition and multiplication; and also the names given to different 
operations Procedural knowledge includes written, oral and concrete 
calculation procedures. Conceptual knowledge, includes of the 
semantics of word problems; the meaning of the place value system; 
arithmetical principles such as commutativity, associativity and the 
addition-subtraction inverse principle, and at its foundations, 
principles that inform and guide counting.

There is indeed overwhelming evidence that arithmetical ability 
Is not unitary (e.g., Jordan et al., 2009; Cowan et al., 2011; Gifford and 
Rockliffe, 2012; Pieters et al., 2012; Dowker, 2015). Rather, it consists 
of multiple components, including counting principles, counting 
procedures, solving word problems, fact retrieval, calculation 
procedures, understanding and using arithmetical principles, and 
numerous others. Although the different components often correlate 
with one another, it is possible to demonstrate difficulties in almost 
any one component without corresponding difficulties in other 
components. It is, however, true that weaknesses in one component 
can ultimately affect performance in others. This is partly because 
difficulty with one component may sometimes lead to individuals 
failing to perceive, integrate and use relationships between different 
arithmetical processes; and partly because when children experience 
failure, even if just in very specific tasks, they may come to perceive 
themselves as “bad at maths” and develop negative attitudes to the 
whole subject.

Different components of arithmetic 
itself: different operations

Although this article focuses mainly on the componential nature 
of arithmetical cognition in a broad sense, there is evidence that 
different specific aspects of arithmetic itself can dissociate. Patients 
can demonstrate specific impairments in different arithmetical 
operations: addition, subtraction, multiplication or division. 
Dehaene and Cohen (1997) and McNeil and Warrington (1994) 
described patients, who were much more impaired in subtraction 
than in addition. This cannot bee explained simply in terms of 
subtraction being more difficult than addition, as Dagenbach and 
McCloskey (1992) described a patient, who was much more impaired 
in both addition and multiplication than in subtraction. Van 
Harskamp and Cipolotti (2001) reported three patients who had 
specific respective impairments in simple addition, simple 
subtraction and simple multiplication. Cipolotti and de Lacy 
Costello (1995) described a patient who had a specific impairment 
in simple division. Venneri and Semenza (2011) reported a patient 
who had specific difficulty with multiplication, despite preserved 

competence not only with addition and subtraction, but also with 
division, which had sometimes been regarded as dependent 
on multiplication.

Patients also sometimes show deficits in particular aspects of an 
arithmetical operation, such as carrying in addition or borrowing in 
subtraction. For example, Carota et al. (2013) report a patient who had 
no difficulty in solving large-number subtraction, provided that no 
borrowing was involved; but had considerable difficulty with smaller 
number problems that did involve borrowing.

Though most studies of specific weaknesses in arithmetical 
operations and their components have involved neuropsychological 
patients, such weaknesses also occur in apparently typically developing 
children and adults. For example, Dowker (2005) described a 
university student who had an A grade in mathematics A level and a 
scaled score of 14 on the Arithmetic subtest of the Wechsler Adult 
Intelligence Scale. She also obtained extremely high scores 
outstandingly well on all subtests of Hitch’s (1978) Numerical Abilities 
Tests, except for the test of Subtraction with Borrowing, on which she 
scored zero.

The focus of this article is on whole number arithmetic; but 
fractions and decimals, and the use of arithmetical operations in 
dealing with them, are usually more difficult for people to handle, 
both conceptually and procedurally (Hecht, 1998; Siegler et al., 2013; 
Lortie-Forgues et al., 2015).

Evidence from research in 
developmental psychology

In particular, studies of both atypical and typical mathematical 
development in children have indicated that from an early age, 
arithmetical cognition is already made up of multiple components 
(Russell and Ginsburg, 1984; Dowker, 2005; Desoete and Grégoire, 
2006; Jordan et al., 2009; Cowan et al., 2011; Gifford and Rockliffe, 
2012; Kaufmann et al., 2013; Santos et al., 2022). For example, these 
include counting, calculation, estimation, fact retrieval, arithmetical 
reasoning and word problem solving. Moreover, individuals may show 
strong discrepancies, in either direction, between almost any two 
components. Although different components usually correlate 
significantly with one another, and some components typically appear 
to be easier o than others, there does not seem to be a clear hierarchy 
of abilities.

Dowker (1998, 2005, 2014) studied 291 unselected primary school 
children between 5 years 2 months and 9 years 10 months and 
investigated their performance on three different types of addition 
task: calculation. Arithmetical estimation and derived fact strategy 
use. The difficulty of the arithmetic problems presented to individual 
children for the estimation and derived fact strategy tasks was adapted 
to their assessed calculation performance levels assessed in a pre-test. 
Nevertheless, children’s addition calculation performance level 
correlated significantly with both their estimation and their derived 
fact strategy use. A strong independent relationship between derived 
fact strategy use and estimation was also found, even after controlling 
for addition calculation level. Despite these overall correlations, there 
were individual children, at all ages and achievement levels, who 
showed marked discrepancies between scores on all possible pairs of 
arithmetic tasks. Such discrepancies occurred in all directions: it was 
not the case that some tasks were invariably more difficult than others.
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Dowker (2009) gave similar calculation, estimation and derived 
fact strategy tests to 204 children with arithmetical difficulties, as 
identified by their schools. These children were compared with 135 
unselected children of similar age and school background from the 
same schools. The unselected children performed very similarly. to 
those in the above-mentioned studies. Predictably, the children with 
mathematical difficulties performed worse on all tasks than the 
unselected children. Less predictably, they showed even greater 
functional independence between the different tasks than did the 
unselected children. Among the children with mathematical 
difficulties, unlike the unselected children, not only were derived fact 
strategy use and estimation not independently related; they did not 
even show a significant correlation before other factors were partialled 
out. Moreover, standardized arithmetic test performance correlated 
significantly with both derived fact strategy use and estimation in the 
unselected group, but not in the group with mathematical difficulties. 
This was not because of floor effects in the group with mathematical 
difficulties, as they showed considerable variance in their scores on 
all tasks.

It may be  that in typical mathematical development, the 
components inform and integrate with each other to a greater extent 
than they do in delayed or atypical mathematical development. In the 
latter situation, either the integrative process itself may not work as 
effectively, or it may be  impaired by weakness in the individual 
components. It would be  desirable to investigate whether these 
differences between children with and with and without mathematical 
difficulties, with regard to the level of association between 
components, would be replicated in different samples and age-groups. 
If so, do weaknesses in individual components impede integration, or 
does integration failure impede progress in the individual components, 
or both?

An interesting question is whether numeracy is already 
componential in the preschool years, with regard to counting 
procedures and concepts. Dowker (2008) found evidence that it is. She 
gave 80 four-year-old children an object counting task; Wynn (1992) 
counting-versus-grabbing task as a measure of understanding the 
cardinal word principle; an order-irrelevance task; a task where they 
repeatedly had to say, without counting. How many objects there were, 
after a new object was added (the task started with 5 objects and was 
repeated up to 12); and a task where they repeatedly had to say, 
without counting. How many objects there were, after an object was 
removed (the task started with 10 objects and was repeated down to 1).

Scores on most tasks correlated significantly, but discrepancies in 
both directions occurred between almost any two tasks. For almost 
any pair of tasks, there were children who could perform either one of 
the tasks but not the other. For example, proficiency in counting 
objects correlated significantly with performance on the cardinal word 
principle task, but 22% of proficient counters were “grabbers” on the 
cardinal word task, and 41% of nonproficient counters were “counters” 
on the cardinal word task.

Dowker and Grimer (in preparation) carried out a further study, 
investigating relationships between counting proficiency, the order 
irrelevance principle, repeated subtraction by 1, error detection and 
arithmetic in the early primary school years, and examined the 
possibility of differences in performance for biological and 
non-biological stimuli. The participants were seventy-five children 
between. 4 years 3 months and 8 years 5 months (mean age: 6 years 
3 months). Children improved significantly with age on all numerical 

abilities. Most numerical abilities correlated with one another. In 
particular, counting proficiency correlated significantly with order-
irrelevance, error detection, and arithmetic. Order irrelevance also 
correlated significantly with repeated subtraction by one. However, 
once again, discrepancies in both directions could be found, within 
individuals, between almost any two components of numerical ability. 
Children performed better on the error detection task for biological 
than non-biological stimuli; other tasks were not affected by 
this distinction.

Evidence from neuropsychology for 
the componential nature of 
arithmetical cognition: studies of 
patients

As indicated at the beginning of this article, some strong evidence 
for the componential nature of arithmetical cognition comes from 
selective impairments of specific aspects of arithmetical cognition in 
patients with brain damage. Patients have demonstrated double 
dissociations between factual and procedural knowledge (Warrington, 
1982; Dagenbach and McCloskey, 1992; Van Harskamp and Cipolotti, 
2001) and between factual/procedural and conceptual knowledge 
(Warrington, 1982; Hittmair-Delazer et al., 1994, 1995; Delazer and 
Benke, 1997; Pesenti et al., 2000; Delazer, 2003; Julien et al., 2010). For 
example, Puvanendran et  al. (2015) describe a patient with poor 
verbal working memory associated with Broca’s aphasia, who 
performed very poorly on fact retrieval tasks, but showed excellent use 
of derived fact strategies.

Dissociations between different components of arithmetical 
knowledge and processing have been found not only in patients with 
focal brain lesions but in those with neurodegenerative disorders. 
Kaufmann et  al. (2001) studied people in the early stages of 
Alzheimer’s disease and found that they showed a variety of 
dissociations between arithmetic facts, arithmetic procedures, and the 
understanding of relative magnitudes of numbers. No component was 
found to be a prerequisite for other components. Papagno et al. (2013) 
reported a patient with semantic dementia, who was severely impaired 
in arithmetic fact knowledge but showed preserved quantitative 
number knowledge as well as outstanding performance in numerical 
Sudoku. It is probably relevant that this patient showed substantial 
sparing of the parietal lobes despite severe atrophy of the temporal and 
frontal regions.

Warrington (1982) studied a patient who had suffered a stroke 
affecting the left posterior parieto-occipital region of the brain. This 
patient, “DRC,” had a selective impairment in number fact retrieval, 
and resulting in difficulties with several aspects of calculation. 
He performed poorly on Hitch (1978) Test 1, involving whole-number 
arithmetic. However, he performed similarly to controls on Test 2, 
involving fraction and decimal arithmetic and Test 3, involving 
numerical reasoning and numerical magnitude appreciation. He was 
also unimpaired in arithmetical estimation tasks, Somewhat similarly, 
Puvanendran et  al. (2015) report a patient with Broca’s aphasia 
resulting in poor verbal working memory, who demonstrated very 
poor fact retrieval, but excellent derived fact strategy use.

Dehaene and Cohen (1995) studied a patient “Mr. N” with a left 
subcortical lesion, who had much more extreme problems with 
calculation than the patients described above. Patient. He could not 
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carry out any exact calculations reliably, even involving very small 
numbers, such as adding 2 + 2. He could, however, deal accurately with 
approximations, for example, locating numbers approximately on a 
number line; comparing the value of two 2-digit numbers; and 
rejecting wildly inaccurate answers to addition problems. By contrast, 
another patient, with a left inferior parietal lesion, failed at such 
approximation tasks, but could still carry out some exact calculations 
through preserved rote knowledge of some arithmetic facts.

Cappelletti et al. (2012) gave a comprehensive battery of numerical 
and calculation tasks to 36 were patients with either neurodegenerative 
disorders or focal brain lesions and to forty healthy controls. All 
patients, including those with parietal lesions, had intact processing 
of number quantity. Impaired calculation skills were found in most 
patients with specific brain lesions, even when these did not involve 
the parietal lobes. However, most patients with dementia did not show 
impaired calculation.

People with hippocampal damage, either due to injury or to 
atrophy (the latter often associated with early Alzheimer’s disease) are 
often unimpaired in retrieval of well-learned arithmetical facts, such 
as multiplication tables. There may be a distinction, with regard to 
arithmetical facts as with regard to other types of factual information, 
between the ability to lay down arithmetical facts and the ability to 
retrieve well-consolidated arithmetical facts. Delazer et  al. (2019) 
found that13 out of 16 patients with hippocampal atrophy associated 
with Alzheimer’s disease showed intact retrieval of consolidated 
arithmetic facts from memory.

While there is no invariable one-to-one relationship between 
specific brain areas and specific aspects of numerical cognition, much 
research suggests the importance of parietal areas, and especially the 
intraparietal sulcus (IPS) in basic numerical tasks including quantity 
and numerical comparisons and single digit arithmetic. It may also 
be  important in more complex computational estimation. Ganor-
Stern et al. (2020) compared a patient with damage to the left IPS with 
age-matched controls in a computational estimation task involving 
estimating whether the results of multi-digit multiplication problems 
were smaller or larger than given reference numbers. The patient did 
not show the same distance and size effects as the controls. Moreover, 
most control participants used both the approximate calculation 
strategies involving rounding and calculation procedures, and an 
intuitive approximated magnitude representation of the results. The 
patient used only the approximate calculation strategies.

Evidence from neuroscience for the 
componential nature of arithmetical 
cognition: brain imaging studies

Brain imaging studies of healthy people also suggest that different 
brain networks may support different aspects of arithmetic and 
number processing. Dehaene and colleagues carried out functional 
MRI and ERP studies of approximation and exact calculation in 
healthy individuals (Dehaene et al., 1999; Cohen et al., 2000; Stanescu-
Cosson et al., 2000). Parietal and frontal areas were more active during 
approximation than exact calculation. By contrast a distributed set of 
areas, including a left anterior inferior frontal region and the bilateral 
angular gyri, showed greater activation during exact calculation. 
Grabner et al. (2007) carried out a functional MRI study of 28 adults 
doing mental arithmetic and found that the angular gyrus was most 

active for problems which they reported solving by retrieval, while a 
wider frontal–parietal network was activated by problems for which 
they reported using a calculation procedure.

Liu et al. (2019) carried out an fMRI study, which included an 
investigation of functional connectivity, and compared the brain areas 
involved in computation and in processing arithmetical principles, as 
well as in language processing Arithmetical principles were associated 
with stronger activation in the left middle temporal lobe and left 
orbital part of the inferior frontal gyrus than was the case for 
computation. Computation was associated with greater activation in 
the bilateral horizontal intraparietal sulcus than was the case for 
arithmetic principles or language processing. Left temporal–parietal 
connectivity was stronger for arithmetic principles than computation, 
while parietal-occipital connectivities were stronger for computation 
than arithmetic principles.

Amalric and Dehaene (2016) carried out fMRI studies with 
professional mathematicians, who were asked judge the truth value of 
mathematical and nonmathematical spoken statements. The bilateral 
intraparietal sulci and inferior temporal regions were consistently 
activated by sentences with mathematical content. The level of 
activation of classical language areas was related to syntactic 
complexity and not to mathematical content. This suggests that there 
is a distinct, non-linguistic cortical network associated with 
mathematical knowledge; though it is, of course, possible that 
non-mathematicians would have given different results.

Of course, activation of particular brain areas during a particular 
mathematical task does not necessarily mean that these areas are 
specialized for particular components of mathematics. They could 
be supporting non-numerical, domain-general processes relevant to 
the task in question. Gruber et al. (2001) used functional MRI to 
compare the areas of the brain that are active in calculation and in 
non-arithmetical tasks that involved language, visual–spatial 
processing, attention or memory. They concluded, on the basis of 
similarities between areas activated by arithmetical and 
non-arithmetical tasks, that most of the cortical areas that subserve 
arithmetic “do not exclusively represent modules for calculation but 
support more general cognitive operations that are instrumental but 
not specific to calculation.” However: the left dorsal angular gyrus and 
the medial parietal cortices were more specifically activated by 
arithmetical tasks.

Early non-symbolic number 
processing abilities: foundations for 
other numerical abilities?

In order to understand the componential nature of numerical 
ability, it is important to gain a greater understanding of its earliest 
foundations. We have evidence from developmental studies, discussed 
above, that numerical abilities are already componential in the 
preschool years. But are they so from the beginning? One unresolved 
question is whether symbolic number representation grows directly 
out of non-symbolic number representation or should be regarded as 
a separate skill or combination of skills. There is also the perhaps even 
more fundamental question of whether the primary foundational 
ability is subitizing or approximate number representation or whether, 
as seems most likely, both are crucial: i.e., numerical ability is 
componential from its foundations. Despite the likelihood that both 
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subitizing and the approximate number system are at the foundations 
of arithmetical development, there is evidence that later arithmetical 
abilities can show considerable functional independence from both.

Humans’ ability to enumerate visual stimuli involves not only 
verbal counting, but on two nonverbal quantity recognition processes: 
the Approximate Number System (ANS) (Dehaene, 1997), which 
involves the approximate estimation of quantities above 3 or 4 items, 
and subitizing, which involves the exact recognition of small quantities 
up to about 3 items. A key question, if we are to understand the nature 
and foundations of, the componential nature of arithmetical ability, is 
that of how subitizing and the approximate number system are related 
to one another in early and later development, and the extent to which 
later numerical abilities depend on them. When does numerical 
ability become componential? Do infants start out with a unitary 
foundation, which eventually diverges, or are the preverbal 
foundations of early numerical ability componential from the 
beginning? At present, the evidence, both from studies of infants and 
young children, and from studies of development and acquired 
dyscalculia, suggests that both subitizing and approximation are 
present from the beginning, and that both are important foundations 
for later arithmetical development. That would suggest that numerical 
abilities are componential not only in later development but at 
their foundation.

Subitizing: is it a foundation?

For example, some studies of both children and adults suggest that 
non-symbolic number comparison abilities are only weakly related to 
symbolic comparison and to arithmetic. Lyons et al. (2012) speak of 
“symbolic estrangement”: an increasing dissociation between symbolic 
and non-symbolic comparison abilities. Some studies of patients with 
brain damage suggest that there is no strong relationship between 
acquired deficits in subitizing and in arithmetic (Cappelletti et al., 
2012; Gosling et al., 2023). This section will discuss the degree and 
ways in which subitizing, and the approximate number system may 
be necessary to the development of other abilities; the limits to such 
relationships; and the reasons for these limits.

There are still some disagreements about the nature of subitizing 
and about how far the subitizing range extends. Kaufman et al. (1949), 
suggested that it extended up to 6 items. Most more recent researchers 
have suggested a smaller range, of 3 items (Mandler and Shebo, 1982) 
or 4 items (Trick and Pylyshyn, 1994). Within the subitizing range, 
adding an item only increases response time slightly, by between 50 ms 
and 80 ms (e.g., Mandler and Shebo, 1982). Beyond the subitizing 
range, adults typically adopt a counting strategy. Resulting in a near 
linear increase in response time with each item added to the visual 
scene. Studies have suggested that, after 4 items, response time 
increases by 250-350 ms per item (Chi and Klahr, 1975; Trick and 
Pylyshyn, 1994; Wender and Rothkegel, 2000).

Many studies of subitizing have involved infants. Most of these 
studies indicate that babies can distinguish quantities up to 3 (Strauss 
and Curtis, 1981; Starkey et al., 1990; Starkey and Cooper, 1995), 
though there are debates about the level of abstractness of babies’ 
quantity representations, and the extent to which they represent 
discrete quantities independently of the total area occupied (Clearfield 
and Mix, 1999). Even many non-human animal species appear to have 
some ability to recognize quantities up to 3Adults, and may have a 

slightly higher subitizing range than infants, either due to their greater 
experience. or because they are able to label quantities verbally, or 
both. Starkey and Cooper (1995) proposed a subitizing range of 3 in 
infants and young children and 5 in adults.

Many researchers consider that different underlying processes 
support subitizing and counting. Some researchers, such as 
Balakrishnan and Ashby (1991), have presented an opposite view. 
Subitizing is a result of rapid parallel processing whereas counting is 
a much slower serial process. There are several different models of 
enumeration, which involve different processes for counting and 
subitizing. For example, Trick and Pylyshyn (1994) proposed the 
FINST (Fingers of Instantiation) model of enumeration. Parallel 
indexing of items occurs using four FINST. Enumeration of up to 4 
items is therefore fast but after this, the process becomes much slower. 
The FINSTs must then be  serially reallocated to different spatial 
locations. This reflects a counting strategy being adopted and 
increased response times. In contrast, Logan and Zbrodoff (2003) 
believe that subitizing is purely pattern recognition and requires little 
processing. This debate remains unresolved. Some researchers, such 
as Clements (1999) have argued that subitizing as a perceptual process 
may lead to the development of “conceptual subitizing” where smaller 
readily perceivable quantities are strategically combined and grouped 
to facilitate the estimation of larger quantities.

Some neuropsychological evidence supports a dissociation 
between subitizing and counting. Demeyere et al. (2010, 2012) found 
that damage to the left posterior occipital cortex, bilateral lateral 
occipital and right superior frontal cortices resulted in deficits 
subitizing range while damage to the left intraparietal sulcus resulted 
in deficits in counting. This suggests that at least to some extent, 
subitizing and counting involve different processes and neural areas.

Evidence from brain imaging studies of healthy individuals is 
somewhat conflicting. Piazza et al. (2002) found that both subitizing 
and counting activate a common network involving both occipital and 
parietal areas. By contrast, Sathian et al. (1999) found that subitizing 
was associated with activation mainly in occipital areas, while 
counting was associated with activation mainly in frontal and parietal 
areas. Gosling et al. (2023) tested eleven healthy control participants 
and nine chronic patients with acquired brain injury on tasks focused 
on visual enumeration, addition and multiplication to investigate 
whether there were relationships between subitizing ability and 
calculation performance. They found no significant overall correlation 
between subitizing and either addition or multiplication speed. Two 
patients did show, a very clear subitizing impairment. One of them 
showed significant impairments in addition skills, while the other did 
not. Thus, it appears that, at least in adults who have already developed 
arithmetical skills, such skills are not invariably dependent 
on subitizing.

Despite the findings mentioned above, it is likely that the two 
processes are still linked to some degree. There is substantial evidence 
that counting relies on the accurate development of subitizing. This 
may be due to some underlying neuropsychological similarities or the 
foundational nature of abilities that support numerical representations, 
one of which is an innate capacity to represent small numerosities. 
This capacity is demonstrated in subitizing tasks; and Butterworth 
(2000) proposed that such subitizing ability lies at the foundation of 
mathematical ability. There are debates about whether subitizing or 
the ANS appears earliest in infancy and is most crucial to numerical 
development (see Dehaene, 1997). It is, however, now generally 
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considered that both are present at or near the beginning, and are 
applied to different sizes of quantities: subitizing to smaller quantities 
and the ANS to larger quantities.

A number of studies have shown links between subitizing and 
various other aspects of mathematical ability (Butterworth, 2000, 
2005; Moeller et al., 2009; Butterworth et al., 2011; Wilkins et al., 
2022). For example, Reeve and Reynolds (2004) found 6% of a 
randomly selected group of children in their first year of formal 
schooling did not demonstrate the ability to subitize. When tested 
1 year later and 2 years later, those who had not shown evidence of 
subitizing in infancy were much slower than the others at reading 
three-digit numbers. Desoete and Grégoire (2006) found subitizing 
ability at the end of kindergarten to be predictive of mathematical 
performance in first grade. Hannula Sormunen et al. (2015) found that 
preschool children’s subitizing predicted their mathematical 
performance 7 years later. Few studies have examined individual 
differences in subitizing in typical adults, but Sowinski (2013) did so 
and found that subitizing correlated with arithmetic fluency.

In line with these findings, problems in subitizing have been 
identified in some children and adults with developmental dyscalculia. 
Koontz and Berch (1996) found that children with dyscalculia had 
difficulties in subitizing. They appeared to use a counting strategy 
instead. Landerl et al. (2004) reported that those with subitizing deficits 
were also impaired in arithmetic tasks and in differentiating numbers. 
Similar results were obtained by Schleifer and Landerl (2011).

Reigosa-Crespo et al. (2012) studied 11, 652 children in Havana, 
Cuba in grades ranging from 2nd to 9th grade. 3.4% of these children 
showed deficits in basic numerical capacities, including subitizing. 
Almost all of these children also had difficulty in calculation. A further 
l 9.35% had deficits in calculation, but not in basic numerical abilities. 
Those with basic numerical difficulties tended to have more severe 
calculation difficulties than the others with poor calculation, and 
differed from them in some other important ways: for example, most 
were boys.

Estevez-Perez et al. (2019) followed up this study and also looked 
at typically developing children. They found that subitizing, verbal 
counting and numerical magnitude comparison all predicted early 
and later acquisition of arithmetic and were impaired in children with 
low arithmetic achievement and with developmental dyscalculia. They 
also found that children with both low arithmetic achievement and 
poor, subitizing, were slower at arithmetic and relied more on 
compensatory strategies than children with similarly low arithmetic 
scores, but no subitizing deficits.

If subitizing is important in the development of some or all aspects 
of arithmetic, one might expect that training in subitizing might 
improve mathematical performance (Clements, 1999; Matsumoto, 
2021). Özdem and Olkun (2019) did find that 640 min of training over 
an eight-week period in conceptual subitizing skills improved second- 
and third-grade children’s overall mathematical performance both 
immediately after the end of the intervention and a few months later.

Subitizing itself may be  componential and not a single entity. 
Anobile et  al. (2019a) found that simultaneous and sequential 
subitizing did not correlate significantly with one another in primary 
school children (Burr et al., 2010; Anobile et al., 2013, 2019a). Neither 
type of subitizing predicted either children’s mental calculation or 
their digit magnitude knowledge. By contrast, estimation of larger 
numerosities did predict children’s arithmetic.

Anobile et al. (2019b) also argue against the mainstream view 
that there are just two visual numerosity processing systems: one for 

small numerosities (subitizing) and one for larger numerosities 
(estimation). They consider that there may in fact be  three such 
systems: one for numerosities under 4; one for high numerosities, and 
one for intermediate numerosities such as those between 10 and 20. 
They suggest that the intermediate numerosity system may rely less 
on attention than either the low or high numerosity system. As 
evidence for this proposal, they use findings that performing a 
distracting concurrent task impaired typical adults’ numerosity 
judgment performance much more for low or high numerosities than 
for intermediate numerosities. They also studied a simultagnosic 
patient and found that his ability to compare either very low or very 
high numerosities was seriously impaired, while showing relatively 
preserved ability to compare intermediate numerosities.

Non-symbolic magnitude 
approximation and comparison

A crucial question is whether the ability to compare non-symbolic 
number magnitudes (e.g., quantities of dots) is a strong predictor of 
numerical abilities, as might be suggested by Dehaene’s (1997) theory. 
We can represent and compare number sizes both with regard to 
displays of sets of objects such as dots (3 dots are more than 2 dots; 50 
dots are more than 40 dots; etc.), and with regard to symbols such as 
numerals (3 is more than 2; 50 is more than 40; etc.). How much does 
the latter depend on the former? Some studies suggest that the ability 
to deal with and compare non-symbolic number magnitudes is related 
to mathematics achievement, but that the relationship is relatively 
weak, and in particular less strong than the relationship of symbolic 
number magnitude understanding to mathematics achievement 
(Gilmore et al., 2010; Fazio et al., 2014).

Lyons et  al. (2012) speak of “symbolic estrangement”: a 
dissociation, possibly increasing with age, between symbolic and 
non-symbolic comparison abilities. They suggest that symbolic 
number representation may initially be closely based on non-symbolic 
number representation, but that the two abilities become increasingly 
independent with age. A few studies have suggested that there is only 
a limited relationship between the two even at an early age. Soltész 
et al. (2010) looked at different numerical abilities in 4-to-7-year-olds 
and found that non-symbolic numerical magnitude discrimination 
did not correlate significantly with verbal counting or arithmetic even 
during that age range. Coolen et  al. (2022) gave children two 
computerized Approximate Number System tasks, two executive 
function tasks, a verbal skills task, two intelligence subscales, and a 
mathematics achievement task (involving global, formal, and 
informal mathematics achievement). Results demonstrated that, 
when controlling for intelligence and visuospatial memory, the 
relation between ANS acuity and mathematics achievement ceased 
to exist. Negen and Sarnecka (2015) argued that there is no real 
relationship between ANS acuity and any sort of exact number 
knowledge. In their view, such relationships only appear to exist 
because some studies have inadvertently allowed children to answer 
correctly based on the size rather than the number of dots in the 
display and because young children may not understand the phrase 
“more dots” to mean numerically more. In some studies where these 
potential problems have been controlled for, the correlation between 
children’s ANS acuity and their exact-number knowledge disappears.

Most studies do, however suggest a predictive role for 
non-symbolic number comparison with regard to later symbolic 
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arithmetical abilities (Halberda et al., 2008; Mazzocco et al., 2011; 
Libertus et al., 2012; Chen and Li, 2014; Libertus et al., 2016; Xenidou-
Dervou et al., 2017). In line with a multiple-component theory of 
arithmetic, non-symbolic quantity comparison seems to predict some 
components of mathematics better than others. Libertus et al. (2011) 
carried out a longitudinal study of the numerical abilities of children 
starting between the ages of 3 and 7, who were tested at four points 
during the following 2 years. Their ability to compare quantities of dots 
correlated with and predicted informal but not formal mathematical 
abilities. In particular, it predicted their verbal counting, their ability 
to compare numerical symbols, and to link arithmetic problems to 
concrete representations, but not their ability to retrieve number facts 
or to understand place value.

Several studies have shown that children with a diagnosis of 
dyscalculia are often impaired at approximate comparison of sets of 
dots (Price et  al., 2007; Piazza et  al., 2010). Some studies have, 
however, given conflicting results. For example, Rousselle & Noel 
found that children with a diagnosis of dyscalculia had problems in 
comparing numerals but not sets of dots. Iuculano et al. (2008) found 
that of two children with a diagnosis of dyscalculia, one had difficulties 
with subitizing but not approximation and one with approximation 
but not subitizing.

There is, indeed, increasing evidence that non-symbolic 
magnitude comparison may not be totally domain-specific, but may 
also depend on executive functions, such as inhibition, enabling one 
to focus on the dimension of quantity and to ignore other aspects of 
stimuli, such as contour and area. Indeed, numerosity-irrelevant 
perceptual properties of continuous quantity have been found to 
increase the difficulty of numerical processing not only in young 
children but even in adults.

Merkley and Scerif (2015) trained forty undergraduate students 
to associate novel abstract symbols with numerical magnitudes. The 
numerical arrays either involved numerosities that were congruent 
with surface area or incongruent with surface area. Comparisons of 
symbols associated with incongruent area and numerosity were the 
most difficult for the participants. Thus, the need to ignore irrelevant 
perceptual information may make demands on executive functions at 
all ages and levels. This brings us to the next main topic of this article: 
the role of domain general abilities in numerical cognition.

What is the role of domain-general 
versus domain-specific abilities?

Another important question to be discussed here, with regard to 
the componential nature of arithmetical and numerical abilities, is 
whether discrepancies between different numerical tasks are most 
likely to reflect strengths and weaknesses in domain-specific 
numerical abilities or to be secondary to strengths and weaknesses in 
domain-general cognitive abilities. This question arises both with 
regard to typically developing children and adults and with regard to 
people with developmental and acquired dyscalculia.

Domain-general abilities

Domain general abilities make a significant contribution to 
numerical and arithmetical cognition. At one time, the main domain-
general ability studied with regard to numerical cognition was logical 

reasoning. For example, Piaget (1952) considered the development of 
children’s understanding of number to depend on their stage of logical 
development. Logical reasoning is still considered to be important to 
arithmetical cognition, but current research on the influence of 
domain general abilities on arithmetic tends to focus on attention, 
executive functions and working memory. In addition, there is 
increasing evidence that pattern recognition and pattern construction 
are very important to early numerical development (Rittle-Johnson 
et al., 2019; Wijns et al., 2021; Di Lonardo Burr et al., 2022).

Domain general abilities may help to explain discrepancies 
between different components of arithmetic itself: for example, 
between different operations. There are often alternative possible 
explanations for discrepancies between different operations, which 
relate to more domain-general abilities. Multiplication may dissociate 
from other operations because it is usually learned in ways that 
emphasize verbal rote learning to a greater extent than other 
operations, and thus may rely more than other operation on verbal 
skills. Guez et  al. (2023) carried out a longitudinal study of 358 
American children from preschool (5; 5 years) to age 11. They found 
that preschool language skills, but not visuospatial skills, predicted 
multiplication skills at age 11, whereas preschool visuospatial skills, 
but not language skills, predicted addition and subtraction skills at age 
11. Carota et  al. (2013) proposed that their patient’s particular 
difficulty with borrowing in subtraction might be due to a deficit in 
the executive function of inhibition.

Domain general abilities appear to play an important role, and to 
interact with domain specific abilities, in an even more complex way 
with regard to components of arithmetical cognition in a broader 
sense. A number of studies have indicated the importance of both 
domain general and domain specific skills in early mathematical 
development. Attentional abilities are generally found to be important 
to arithmetical development (LeFevre et al., 2013). Hassinger-Das 
et al. (2014) studied 107 children, who performed poorly on number 
sense tests in kindergarten (5 to 6 years) and followed them up into 
first grade (6 to 7 years). Both attention problems and executive 
function in kindergarten predicted first grade outcomes. Attention 
problems in kindergarten were stronger predictors than executive 
function tests of calculation in first grade, while executive function 
tests were stronger predictors than attention problems of applied 
problem solving in first grade.

Most studies show that working memory is a significant predictor 
of arithmetic (Raghubar et al., 2010). Both verbal and visuospatial 
working memory are generally found to be important predictors of 
arithmetic, though there are conflicting findings about which is a 
stronger predictor and how this may relate to age. Wilson and 
Swanson (2001) found that arithmetical ability showed similar levels 
of correlation with working memory across a wide range of age 
groups. Including both children and adults. At all ages, arithmetic was 
more closely related to verbal working memory than to visual–spatial 
working memory. McKenzie et  al. (2003) found that 6-year-olds’ 
arithmetic performance was more disrupted by visual–spatial than 
verbal interference, interference whereas 8-year-olds’ arithmetic 
performance was more disrupted by verbal than visual–spatial 
interference. By contrast, some other studies suggest that as children 
grow older, the importance of visual–spatial working memory to their 
arithmetic increases. Henry and MacLean (2002) found that 7- and 
8-year-olds’ arithmetical reasoning was best predicted by “central 
executive” tasks, with some added contribution from word span and 
digit span. On the other hand, 11- and 12-year-olds’ arithmetical 
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reasoning was best predicted by visual memory, with some additional 
contribution from word span and digit span. A meta-analysis by 
Zhang et al. (2023) indicated that arithmetic correlated more with 
verbal working memory than with visual–spatial working memory. 
The role of verbal working memory declined with age during the 
primary school years, while correlations between arithmetic and 
aspects of spatial working memory remained stable over the age range.

Different aspects of working memory may predict different 
aspects of mathematical development and performance. Simmons 
et al. (2012) gave 90 British children a working memory battery and 
some tests of mathematical skills. 41 were in Year 1 (5–6 years of age) 
and 49 were in Year 3 (7–8 years of age). Working memory as a whole 
explained significant amounts of variance in number writing, 
magnitude judgment, and single-digit arithmetic. Different 
components of working memory had different relationships with the 
different mathematical skills. Visual–spatial sketchpad (VSSP) 
functioning predicted unique variance in magnitude judgments and 
number writing. Central executive functioning explained unique 
variance in the addition accuracy of Year 1 children. Phonological 
loop functioning came just short of significantly predicting Year 3 
multiplication. The results are consistent with the VSSP having a 
significant role in the development of number writing and magnitude 
judgments, but less of a role in early arithmetic.

Allen and Dowker (2022) found that derived fact strategy use was 
related to written arithmetic but not to mental arithmetic, and that 
visuospatial working memory predicted both oral and written 
arithmetic but did not predict use of derived fact strategies. These 
results must be treated with caution as the sample was quite small; it 
will be necessary to replicate them with a larger sample. Nonetheless, 
they do suggest that predictors may differ for different components of 
arithmetic. The meta-analysis by Zhang et al. (2023) indicated that 
verbal working memory was more closely related to addition and 
subtraction than to multiplication and division.

As well as working memory. Other executive functions are also 
highly important to mathematical skills Many studies indicate that 
executive functions are related both cross-sectionally and 
longitudinally to arithmetical performance (Mazzocco and Kover, 
2007; Passolunghi et al., 2007; Best et al., 2011; Clark et al., 2013; Bull 
and Lee, 2014). Several studies have indicated that among executive 
functions, inhibition and shifting appear to be stronger predictors and 
correlates of arithmetic than maintenance is Geary et al. (2012) and 
McDonald and Berg (2018). Inhibitory control seems to play a 
particularly important role: For example. Bull and Scerif (2001), Bull 
et al. (1999), and McKenzie et al. (2003) found that 6-to-8-year-olds’ 
performance on mathematical tasks was significantly related to the 
ability to attend to relevant information and ignore irrelevant 
information, while not correlating significantly with auditory verbal 
short-term memory, with visual sequential memory, or with dual 
task performance.

The role of inhibition might seem at first. to be particularly 
important for mathematical skills such as word problem solving, 
where it is necessary to sift text for relevant information. However, 
its importance is by no means confined to such verbal tasks and can 
even be  seen in very young children’s elementary numerical 
abilities. Merkley et  al. (2016) found a relationship between 
inhibition in the Animal Stroop Test and numerical abilities in 
pre-schoolers. Such findings are probably due to the fact that, as 
suggested above, even the most elementary numerical tasks require 
attending to those aspects of the stimulus that are relevant to 

number, and ignoring irrelevant cues such as area, contour, and the 
size of individual items.

There is also some evidence that executive functions in general, 
and inhibition in particular, are particularly important predictors of 
specific aspects of numerical ability., though the evidence is conflicting 
as regards which aspects they predict, and how these are related to one 
another. Fuhs et  al. (2016) found that that executive function in 
kindergarten children predicted their arithmetic 2 years later in 
second grade, but mostly in an indirect way. Executive function 
predicted set size recognition, which in turn predicted arithmetic. By 
contrast, Clayton and Gilmore (2015) found that executive function 
predicted both quantity estimation and arithmetical skills, but that 
there was almost no relationship between quantity estimation and 
arithmetical skills. There may be age differences with regard to the 
components of arithmetic that executive functions predict. Gilmore 
et al. (2015) found that inhibition predicted mainly procedural aspects 
of arithmetic in younger primary school children, and mainly 
conceptual aspects in older children.

There is now considerable interest in the associations between 
mathematical performance and both domain general and domain 
specific abilities. Most studies have dealt with the extent to which 
children’s mathematical performance and progress are predicted by 
such abilities. Overall, studies indicate that both are important, but it 
is difficult to draw firm conclusions about the relative importance of 
different predictors. This is because studies differ with regard to the 
exact domain-specific abilities being investigated; the exact domain-
general abilities being investigated; the mathematical performance 
measures being used; the children’s age group; and the culture and 
school curriculum in which they are operating.

Chu et al. (2016) Investigated the contributions of domain-general 
and domain-specific abilities to progress in mathematics from first 
grade (age 6 to 7) through eighth grade (age 13 to 14) Domain general 
measures included first grade IQ and working memory test scores and 
prior reading achievement Domain-specific measures included prior 
grade mathematics achievement and tests of prior grade number 
knowledge, addition skills, and fraction knowledge. Domain-general 
abilities as a whole were similarly important predictors of subsequent 
achievement in all grades; but working memory was an increasingly 
important predictor of achievement in later grades. Prior mathematical 
measures also became increasingly important to subsequent 
mathematics achievement in later grades. This seemed to be mainly 
due to fraction knowledge becoming increasingly important in later 
grades. The predictive importance of number knowledge and 
arithmetic skills did not vary with grade. In the early grades, progress 
in mathematics was predicted more strongly by domain-general 
abilities than by domain-specific abilities. In the later grades, domain- 
general and domain-specific abilities were equally strong predictors in 
the later grades. These findings could perhaps reflect the fact that the 
domain-specific abilities included school-taught skills and prior 
school mathematics achievement, whose role in subsequent 
mathematical achievement might be expected to increase during the 
school years.

Fuchs et al. (2010a,b) assessed children at the beginning of first 
grade (approximately 6 years old) on measures of both subitizing small 
numbers and approximate representation of large numbers, and also 
on measures of working memory (phonological loop, visual spatial 
sketchpad and central executive), processing speed, attentive behavior 
and listening comprehension. The children were tested at the end of 
first grade on procedural calculations and word problems. Both 
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domain-specific and domain-general skills were significant predictors 
of word problem solving, while only domain specific skills were 
significant predictors of procedural calculation.

Spencer et al. (2022) investigated domain-general and domain-
specific skills as predictors of both mathematics and reading, They 
assessed first-grade domain-general abilities (nonverbal reasoning, 
processing speed, working memory, and attentive behavior); domain-
specific mathematical abilities (calculation skill, word-problem 
solving, and numerical cognition) and domain-specific literacy-
related abilities (word-reading fluency and listening comprehension). 
They investigated the extent to which these predicted second-grade 
academic outcomes (calculations, word-problem solving, and 
word reading).

Path analysis mediation models indicated that all the predictors 
were significant, but that numerical cognition, mediated the effects of 
processing speed, working memory, calculation skill, word-problem 
solving, and attentive behavior on all three outcomes. Spencer et al. 
(2022) suggested that numerical cognition may not only serve as a 
domain-specific predictor of mathematical skills, but may also predict 
reading, perhaps because it reflects ease of forming symbol-
concept associations.

Most studies in the area have involved British or American pupils. 
It is possible that different countries and cultures might show different 
relationships between mathematical achievement and domain specific 
and domain general predictors, both because of differences in the 
curriculum and because of differences in out-of-school experiences 
and activities. Chan and Ho (2010) studied Chinese children with and 
without mathematical difficulties in two age groups: 7 to 8, and 9 to 
11. The children were tested on four domain-specific skills: arithmetic 
procedural skills, number fact retrieval, place value concept, and 
number sense, and two domain-general skills: working memory and 
processing speed. The children with mathematical difficulties 
performed worse than those without mathematical difficulties on all 
the skills tested. Stepwise discriminant analyzes showed that the 
domain specific skills of number fact retrieval and place value concept 
were particularly important in differentiating the children with and 
without mathematical difficulties. It needs to be remembered that, 
unlike many studies, this study involved not dimensional measures of 
mathematical achievement, but a binary comparison between groups 
with and without mathematical difficulties, and the results could 
be influenced by the ways in which children were assessed as having 
mathematical difficulties.

Studies of patients also suggest that both domain-general and 
domain-specific abilities are important to performance in basic 
numerical tasks. Roquet et al. (2020) compared numerosity estimation 
on a dot array comparison task in 50 patients with Alzheimer’s disease 
and 48 healthy older adults. The patients with Alzheimer’s disease 
performed significantly worse than the healthy controls on the task, 
especially for small-ratio comparisons. They performed worse for 
incongruent items (where there was a mismatch between numerosity 
and area) than for congruent items (where there was no such 
mismatch), while the controls showed no such effects. The Alzheimer’s 
patients’ impaired performance on the dot array comparison task 
correlated with their performance on a 1 to 1,000 number line task, 
and also with a Simon task involving inhibition of cognitive 
interference. Thus, numerosity estimation is impaired in patients with 
Alzheimer’s disease and this seems to be related to impairments in 
both domain-general and domain-specific abilities.

Cognitive control may itself 
be multi-componential

Merkley et al. (2017) argue that cognitive control is important to 
early numerical development, and that cognitive control is itself multi-
componential. Two particularly important aspects of cognitive control 
are top-down executive control of attention and bottom-up saliency-
driven attention orienting. Merkley et  al. (2017) argue that two 
interact with each other, as well as with perception and memory over 
the course of development. They propose that the development of the 
concept of number is driven in part by the interaction between the 
development of selective attention to non-symbolic numerosity and 
the acquisition of the meaning of number words in early childhood.

Can we always distinguish sharply 
between domain-general and 
domain-specific?

The distinction between “domain-general” and “domain-specific” 
may itself be over-simplified, Merkley et  al. (2017) point out that 
cognitive control operates and develops not in isolation, but in 
conjunction with the development of relevant domain-specific 
knowledge (e.g., Johnson, 2011; Amso and Scerif, 2015). Wilkey et al. 
(2020) have pointed out that executive functions demonstrated in a 
numerical context are more predictive of arithmetic than those 
demonstrated outside such a context.

Some researchers are now investigating the role of such “number 
specific executive functions” separately from executive functions in a 
non-numerical context, and domain-specific numerical abilities. For 
example. Wongupparaj and Cohen Kadosh (2022) gave 6-and 7-year-
old children in Thailand, where formal schooling begins at 7, tests of 
domain-specific numerical abilities, number-specific executive 
functions and mathematical skills. In both preschool and primary 
school children, both domain-specific numerical abilities and 
number-specific executive functions predicted mathematical 
performance. Among domain-specific numerical abilities, number 
comparison and mental number line tasks were particularly important 
predictors. Findings of bidirectional longitudinal relationships 
between executive functions and numerical abilities also give support 
to the view that the domain-general and domain-specific cannot 
always be regarded as sharply distinct.

Conclusion

Components of arithmetical cognition come into several important 
categories, shown in Table 1. The categories include non-symbolic 
quantity representation and processing; symbolic quantity 
representation and processing; counting procedures and principles; 
arithmetic operations; arithmetical knowledge and understanding; 
multiple forms and applications of conceptual knowledge of arithmetic; 
and domain-general abilities such as attention, executive functions and 
working memory. There is much evidence that different components 
can and often do show considerable functional independence, not only 
in developmental and acquired dyscalculia, but in typically achieving 
children and adults. At the same time, it is possible to find complex 
interactions and bidirectional relationships between the different 
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components, including between domain-specific and apparently 
domain-general abilities.

Areas for further research

We have gained a lot of knowledge about numerical cognition and 
its componential nature; but there is a great deal that still needs to 
be discovered. In particular, we need to learn more about the origins 

in infancy of subitizing and approximate magnitude comparison, the 
extent to which these interact, the extent to which they may be further 
divisible, and the extent and ways in which they themselves may 
develop with age and the extent to which they may influence later-
developing components.

There also needs to be  a lot more research on exactly how 
domain-general and domain-specific abilities contribute to 
mathematical development, and how they interact with one another. 
It is certain that both domain-general and domain-specific abilities 
are involved. There are, however, many unanswered questions about 
how they relate to one another; the extent to which they may have 
differential effects on different arithmetical skills; the extent to which 
they may have differential effects at different ages; the extent to which 
they may play different roles in developmental dyscalculia and in 
typical development; and the relative importance of different domain-
general abilities. As regards the latter, the greatest focus in research 
has been on working memory. Other executive functions, attention, 
and spatial ability, but, as Agostini et al. (2022) point out, there is a 
need for further research on other cognitive functions, for example 
including long-term memory and phonological awareness (Jordan 
et  al., 2010). There also needs to be  more research on possible 
bidirectional relationships between arithmetical learning and both 
domain-specific and domain-general abilities, given the increasing 
evidence for a bidirectional relationship between the development of 
executive functions and numerical abilities in children (Welsh et al., 
2010; Fuhs et al., 2016; Wilkey et al., 2020; Coolen et al., 2021). A 
greater understanding of these issues could make a significant 
contribution to the development of educational interventions.

It is also important to study numerical development and cognition 
in a wider variety of environments, contexts and cultures (Santos 
et al., 2022).

Finally, although this article deals just with numerical cognition, 
it is important to study other aspects of mathematical cognition, 
including geometry, spatial cognition, pattern awareness and algebra-
related concepts. Most of these have received far less study than 
number. It is also important to gain a greater understanding of 
relationships between emotional and cognitive factors in mathematics 
(Cipora et al., 2022).
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TABLE 1 Important categories of components of arithmetical cognition.

Component 
category

Examples of components within 
category

Non-symbolic 

quantity 

representation and 

processing

Subitizing (small sets)

Magnitude approximation (larger sets)

Possible intermediate quantity recognition (Anobile et al., 

2019a,b)

Symbolic quantity 

representation and 

processing

Quantity representation by words

Quantity representation by numerals

Translation between words and numerals (transcoding)

Translation between words and non-symbolic quantities

Translation between numerals and non-symbolic quantities

Counting 

procedures and 

principles

Verbal counting procedures

Object counting procedures

Use of ordinal number

Cardinal word principle

Order irrelevance principle

Arithmetic 

operations

Addition

Subtraction

Multiplication

Division

Carrying procedures in addition

Carrying procedures in multiplication

Borrowing procedures in subtraction

Fraction and decimal arithmetic

Arithmetical 

knowledge and 

understanding

Factual knowledge

Procedural knowledge (related to arithmetical operations 

above)

Conceptual knowledge

Examples of 

conceptual 

knowledge

Arithmetical principles: e.g. commutativity; associativity; 

distributivity; addition-subtraction inverse principle; 

multiplication-division inverse principle

Use of arithmetical principles in derived fact strategies

Understanding the base 10 system

Arithmetical estimation

Comprehending and solving word problems

Conceptual understanding of fractions

Domain-general 

abilities

Pattern recognition and construction

Logical reasoning

Attention

Executive functions, including inhibition, shifting and 

maintenance

Verbal working memory

Visuospatial working memory

Interface with domain-specific abilities: ‘Number-specific 

executive functions’ (Wilkey et al., 2020)
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