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Metaphors that describe an abstract concept in terms of a motion concept are 
widely used to enhance our understanding of abstract concepts. These metaphors 
are used not only in our daily language but also in learning mathematics. As 
an example, in the process of understanding the abstract representation of a 
mathematical concept, a graphical representation may play the role of a mediatory 
domain. This graphical representation could have a high degree of perceptual 
and action effector strength. This is particularly the case when a gestures (as 
a motion) is used to depict the graphical representation. After looking at this 
example, we discuss perceptual and action effector strength of the base domains 
of several mathematical metaphors that describe mathematical concepts in 
terms of spatial and motion concepts. Then, based on the data in the Lancaster 
Sensorimotor Norms, it is suggested that high degrees of perceptual and action 
effector strength of the base domains of these metaphors play an important role 
in the grounding of abstract mathematical concepts in the physical environment.
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1. Introduction

Metaphors, the ubiquitous feature of language, are tools for better expressing our ideas and 
communicating more efficiently. When it is difficult for us to literally talk about our ideas, we use 
metaphors to offer a clearer picture of what we are talking about. Metaphors are also a way for 
acquiring a better understanding of others’ ideas. Lakoff and Johnson (2003) define metaphor 
as a tool for understanding one concept (usually an unfamiliar abstract one) in terms of another 
concept (usually a familiar concrete one). The familiar concrete concept is the base and the 
abstract one is the target of the metaphor. Metaphors are used not only in daily language to talk 
and communicate about ordinary subjects, but also in scientific discussions to talk about highly 
technical subjects, such as mathematical ideas (e.g., Núñez and Lakoff, 1998; Lakoff and Núñez, 
2000; Marghetis and Núñez, 2013).

An important question about the role of metaphors in enhancing mathematical thought is 
how metaphors help us to acquire a deeper understanding of mathematical concepts. It has been 
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suggested that using metaphors allows us to employ a wider range of 
cognitive resources in the process of understanding and learning 
(Khatin-Zadeh et al., 2021b; Khatin-Zadeh, 2022; Khatin-Zadeh et al., 
2023b). This argument is based on the strong version of embodied 
cognition, according to which the same neural networks and cognitive 
resources that are involved in the processing of the base of a metaphor 
are employed to process the target of the metaphor. The strong version 
of embodiment holds that conceptual representations are primarily 
formed through sensorimotor systems and processes (e.g., Glenberg 
et al., 2008; Lakoff, 2008; Connell and Lynott, 2016), while the weaker 
versions assume a partial role for sensorimotor, emotional, and 
modality-independent systems (e.g., Binder and Desai, 2011; Hauk 
and Tschentscher, 2013; Lambon-Ralph, 2013; Zwaan, 2014; for a 
review, see Khatin-Zadeh et al., 2021a). For example, when abstract 
numbers are metaphorically described in terms of spatial concepts, 
the cognitive resources that are involved in the processing of spatial 
concepts are employed to process abstract numbers. In this 
metaphorical description, abstract numbers are understood in terms 
of highly concrete spatial concepts. In this paper, we intend to provide 
a more comprehensive answer for the question of how metaphors 
enhance our understanding of mathematical concepts. To answer this 
question, we first discuss metaphorical description of mathematical 
functions in terms of graphs in the Cartesian coordinate system as one 
category of mathematical metaphors.

2. Metaphorical description of 
mathematical functions in terms of 
graphs

The description of mathematical concepts such as a function 
through graphs in a Cartesian plane or in a three-dimensional 
Cartesian coordinate system is one category of mathematical 
metaphors that a highly abstract mathematical concept can 
be grounded in concrete concepts through the sensory-motor system. 
A recent work has suggested that not only mathematical concepts but 
also ordinary concepts can be processed in terms of embodied graphs 
(Woodin et al., 2022). Transforming abstract mathematical concepts 
and problems into visual representations is a common strategy in 
mathematics. When a mathematical concept is represented by a graph 
in a Cartesian plane, its behavior can clearly be examined. Here, a 
mathematical concept can be  grounded though visual system as 
graphs are highly imageable.

It has been proposed that the process of understanding a 
mathematical function through a curve, which is the graphical 
representation of that function on the plane of a Cartesian coordinate 
system, involves the activation of the motor system, as a curve can 
be conceived as the path of a moving object (fictive motion of an 
object) on a plane (Khatin-Zadeh et  al., 2022a). This proposal is 
supported by findings of studies suggesting that processing a fictive 
motion involves mental simulation of an action and activation of the 
motor system (e.g., Matlock, 2004, 2006; Núñez et al., 2006; Matlock 
et  al., 2011). Based on such findings, Matlock (2010) argues that 
processing a fictive motion is accompanied by a fleeting sense of 
motion (see also, Blomberg and Zlatev, 2014). As mentioned, the 
strong version of embodiment (Gallese and Lakoff, 2005) argues that 
even the experience of looking at a moving object may involve the 
activation of the motor system. Therefore, it can be said that perceiving 

and processing the curve of a function could involve simulating the 
experience of scanning the path of a moving object on that curve. 
Even the observer could simulate the experience of her/his movement 
on the curve. According to Barsalou (2008, 2009), simulating an 
experience is a process through which perceptual, motoric, and 
introspective states involved in that experience are re-enacted. 
Simulating the process of scanning and also simulating the process of 
movement may involve the engagement of the motor system. In both 
cases, the motor system may be  actively employed to process the 
function and the curve, which is the visual representation of 
that function.

The role of the visual and motor systems in the understanding of 
mathematical concepts that are described in terms of visual 
representations is supported by some neuroimaging evidence 
suggesting that even the experience of looking at graphical 
representations could activate the motor system (e.g., James and 
Gauthier, 2006; Gallese and Sinigaglia, 2011; Longcamp et al., 2011). 
In one of these studies, Umilta' et al. (2012) found that the cortical 
motor system is activated during the processing of static abstract 
works of art. Another EEG study (Sbriscia-Fioretti et  al., 2013) 
examined the activation of sensorimotor cortical circuits when 
participants were looking at paintings with marked traces of 
brushstrokes. Results of this study showed that premotor and motor 
cortical areas were activated when participants were observing the 
paintings. Therefore, it can be suggested that the activation of the 
motor system could take place when an abstract mathematical 
concept is transformed into or is represented in terms of a 
graphical representation.

Many abstract continuous mathematical concepts can 
be represented by continuous graphical representations in a Cartesian 
plane. Here, the abstract representation and the graphical 
representation, which is highly concrete, are isomorphic with each 
other. That is why one representation can be understood in terms of 
another representation. As mentioned, processing the graphical 
representation of a mathematical concept may involve the activation 
of the motor system, as we  process the graphical representation 
through simulating the experience of looking at a moving object on 
that graph. For example, the curve of a function in a Cartesian plane, 
which is the graphical representation of that function, can be processed 
through simulating the experience of looking at a moving object on 
that curve. Even the observer may simulate the experience of scanning 
the curve from a starting point to an ending point. In the process of 
transforming the algebraic representation of a function into a curve in 
the Cartesian plane, gestures can play a supporting role in showing the 
movement of an object on that curve. In this way, the sensory-motor 
system is employed to ground the algebraic function through sensory-
motor system. The curve functions as a highly perceivable mediatory 
domain through which the less perceivable algebraic representation of 
the function is understood. The gestures that are used to describe the 
movement of an object on the curve play the role of a 
mediatory channel.

Representing an abstract mathematical concept in terms of a 
graphical representation is an example of mathematical metaphors in 
which a mathematical concept is transformed into a representation 
with a high degree of perceptual strength. Giving perceptual strength 
to abstract mathematical concepts may take place through other types 
of mathematical metaphors. In the following sections, we  discuss 
several of such metaphors.
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3. Perceptual and action effector 
strength of the base of a metaphor

As mentioned, Lakoff and Johnson (2003) argue that metaphors 
are used to describe a less familiar abstract domain in terms of a more 
familiar concrete domain. An intriguing question is how our 
conceptual system divides concepts into some that are more concrete 
and some that are less concrete: how do we come up with the ability 
to realize degrees of concreteness/abstractness of concepts? Crutch 
and Jackson (2011) argue that abstractness/concreteness is not a 
binary but a graded relationship. Therefore, the degree of abstractness/
concreteness may range from the extreme point of absolute 
abstractness to the extreme point of absolute concreteness. In other 
words, there is not a clear dichotomy between abstract and concrete 
concepts (Guan et al., 2013; Borghi et al., 2017). Degrees of perceptual 
and action effector strength are closely related to degree of 
concreteness. Several studies have been conducted to examine degrees 
of perceptual strength of concepts (e.g., Filipović Đurđević et al., 2016; 
Speed and Majid, 2017; Miklashevsky, 2018; Chedid et al., 2019; Chen 
et al., 2019; Miceli et al., 2021). These studies tried to measure the 
degrees of perceptual and action effector strength of concepts across 
sensorial domains (touch, hearing, smell, taste, and vision). Findings 
from these studies have indicated that a given concept may have 
higher perceptual ratings in a certain sensory modality.

A comprehensive study (Lynott et  al., 2019) examined the 
perceptual strength of 40,000 English concepts in six modalities 
(touch, hearing, smell, taste, vision, and interoception) and action 
strength in five action effectors (mouth/throat, hand/arm, foot/
leg, head, and torso). Based on the results of this study, a concept 
may have a strong sensorial dimension in one specific modality or 
a strong action effector dimension in one part of the body. For 
example, the concepts of ‘yellow’ and ‘star’ have strong visual 
dimensions, while they have weak haptic dimension as they 
cannot be  touched. To take another example, the concept of 
‘rhythm’ is strong in auditory dimension, while it is weak in 
haptic, gustatory, olfactory, and visual dimensions. Lynott et al. 
(2019) found that some concepts have a strong action effector 
dimension. For example, the concepts of ‘bagel’ and ‘chew’ have 
strong mouth action dimension. The concepts of ‘running’, 
‘climbing’, and even ‘bath’ have a strong foot action dimension. 
Several methods have been suggested for obtaining a single value 
that shows the degree of perceptual strength of concepts on the 
basis of perceptual strength values in various dimensions (e.g., 
Connell and Lynott, 2016; Filipović Đurđević et al., 2016; Lynott 
et  al., 2019). Although a distinction has been made between 
degree of concreteness and degree of perceptual and action 
strength, these measures are closely correlated with one another. 
It can be suggested that perceptual strength and action strength 
are key features of the base domain of a metaphor. If the base 
domain of a metaphor has a strong perceptual and action strength, 
the process of grounding the target domain will be facilitated. In 
the following two sections, we try to answer the main question of 
the paper on the basis of the role of perceptual and action effector 
strength of the base of a metaphor in the process of employing a 
wider range of sensorimotor resources. We do this by discussing 
perceptual and action effector strengths of concepts that are used 
to metaphorically describe the mathematical concepts of number, 
addition, subtraction, and limit of function.

4. Perceptual and action effector 
strength in metaphorical description 
of numbers, addition, and subtraction

The perceptual and action strength of the base domain could 
be  particularly important in the metaphorical description of 
mathematical concepts, which is a special type of transforming one 
representation of a concept into another representation. Many 
fundamental mathematical concepts are metaphorically understood 
in terms of spatial and motion concepts (Farsani et al., 2022). Numbers 
are understood as points on a horizontal line in the three-dimensional 
space. Large and positive numbers are metaphorically associated with 
right space or rightward movements, while small and negative 
numbers are associated with left space and leftward movements (e.g., 
Dehaene et al., 1990, 1993; Fischer et al., 2003; Daar and Pratt, 2008; 
Wood et al., 2008). Winter et al. (2013) found that people tend to 
gesture rightward when talking about large numbers and leftward 
when talking about small numbers. Numbers are also metaphorically 
understood as points on a vertical line in the space. Large and positive 
numbers are metaphorically understood in terms of upper space or 
upward movement, while small and negative values are understood in 
terms of lower space and downward movement (Winter et al., 2015; 
Sixtus et al., 2019). Some studies conducted on vertical, diagonal, and 
radial associations of numbers have found that small numbers are 
metaphorically associated with lower, lower left, and near space, while 
larger numbers are associated with upper, upper right, and far space, 
respectively (e.g., Grade et al., 2013; Göbel, 2015; Winter et al., 2015; 
Hesse and Bremmer, 2017). Results obtained by Winter et al. (2013) 
demonstrated that when people use vertical dimension to talk about 
numbers, they tend to gesture upward when talking about large 
numbers and downward when talking about small numbers. 
Furthermore, it has been found that people tend to point to right space 
after solving an addition problem and to left space after solving 
subtraction problems (Pinhas and Fischer, 2008; Pinhas et al., 2014). 
A study conducted by Masson and Pesenti (2014) suggested that 
solving addition problems may induce an attentional shift to the right 
and solving subtraction problems may induce an attentional shift to 
the left. These suggest that the arithmetic operations of addition and 
subtraction are metaphorically understood in terms of rightward and 
leftward movements, respectively. In these metaphorical descriptions, 
numbers and arithmetic operations among numbers are understood 
in terms of spatial and motion concepts.

According to the data that have been provided in the Lancaster 
Sensorimotor Norms (Lynott et al., 2019), spatial and motion concepts 
have high degrees of perceptual and action effector strength. In the 
metaphorical description of numbers, addition, and subtraction, some 
spatial and motion concepts such as MOVEMENT, UP, UPWARDS, 
DOWN, RIGHTWARDS, RIGHT, LEFT, and DIRECTION are 
involved. Even in elementary mathematics textbooks, these basic 
concepts are widely used to describe some fundamental mathematical 
concepts. The use of these concepts in metaphorical description of 
mathematical concepts have been discussed in many past works 
(Fischer et al., 2003; Pinhas and Fischer, 2008; Alibali and Nathan, 
2012; Winter et al., 2013, 2015; Masson and Pesenti, 2014; Pinhas 
et  al., 2014; Göbel, 2015; Sixtus et  al., 2019; Khatin-Zadeh and 
Yazdani-Fazlabadi, 2023; Khatin-Zadeh et al., 2023a). In fact, such 
metaphorical descriptions of fundamental mathematical concepts 
help students acquire a tangible and grounded understanding of 
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mathematical concepts. These concepts are the constituents of the 
domains in which the abstract concepts of number, addition, and 
subtraction are metaphorically understood. We revisited Lynott et al.’s 
(2019) database and extracted perceptual and action effector strength 
ratings of some spatial and motion concepts that are used to 
metaphorically describe the concepts of NUMBER, ADDITION, 
AND SUBTRACTION. This database is available at https://
embodiedcognitionlab.shinyapps.io/perceptual_norms/. The concepts 
of interest, here in uppercase, were typed in the ‘text input’ field (thus 
the option ‘text input’). The field ‘data choice’ shows the property of 
interest, and the field ‘statistics’ enables to output the mean ratings (on 
a scale from 0 [not experienced at all with that sense/action] to 5 
[experienced greatly with that sense/action]) of each concept’s 
sensorimotor, perceptual, and action properties. Tables 1, 2 show 
degrees of perceptual and action effector strength of these concepts. 
Nonparametric multiple contrast tests for repeated measures (given 
that the same participants rated items in each category) were 
performed to evaluate potential pairwise significant differences 
(Noguchi et al., 2020). The adjusted p-values of differences of interest 
are reported along with estimated relative effects (RE) based on global 
rankings of the variables compared (REs range from 0 [no effect] to 1 
[large effect]). All other possible pairwise comparisons can be found 
in the Supplementary files at https://figshare.com/account/
items/22794788/edit.

In most cases, these concepts have high degrees of perceptual and 
action effector strength. Among norms of sensorimotor strength, 
norms of visual modality showed larger effects than others 
(REvisual = 0.91, REinteroceptive = 0.65, REauditory = 0.58, REhaptic = 0.50, 
REolfactory = 0.17, and REgustatory = 0.16. All five pairwise comparisons with 
this modality were p < 0.001). Among action effector strength, norms 
of hand and head showed larger effects than others (REhead = 0.73, 
REhand = 0.64, REfoot = 0.48, REmouth = 0.31, and REtorso = 0.31. Out of the 
four pairwise differences including head, that between head-mouth 
was significant, p < 0.007 and out of the four pairwise differences 
including hand, those between hand-torso, and hand-mouth were 
significant, p < 0.05). Therefore, these elements seem to play a more 
critical role in grounding the abstract mathematical concepts of 
number, addition, and subtraction in the physical environment 
through metaphorical descriptions.

Tables 3, 4 show norms of perceptual and action effector strength 
of the concepts of number, addition, and subtraction. Interestingly, 
among norms of perceptual strength, norms of visual modality 
showed larger effects than others (RE visual = 0.91, REauditory = 0.75, 
REhaptic = 0.56, REinteroceptive = 0.35, REgustatory = 0.27, and REolfactory = 0.13. All 
five pairwise comparisons with this modality were p < 0.007). Among 
action effector strength, norms of hand and head showed larger effects 
than others (REhead = 0.90, REhand = 0.61, REmouth = 0.56, REtorso = 0.26, and 
REfoot = 0.15. All pairwise comparisons including head were significant, 
p < 0.05. In the case of hand, only the pairwise comparison hand-
mouth was not significant, p = 0.92). Therefore, regarding the relative 
norms of perceptual and action effector strength, the abstract 
mathematical concepts of number, addition, and subtraction are 
similar to the concepts that describe them metaphorically. In other 
words, relative norms of perceptual and action effector strength of the 
mathematical concepts of number, addition, and subtraction are 
similar to the relative norms of the concepts that are used to describe 
them metaphorically.

This supports the main assumption of the strong version of 
embodied cognition, according to which the same sensorimotor 
networks and resources used to process the base of a metaphor are 
also used to process the target of that metaphor (Gallese and Lakoff, 
2005). In the case of metaphorical description of number, addition, 
and subtraction in terms of spatial and motion concepts (movement, 
rightwards, upwards, direction, etc.), the same sensorimotor networks 
and resources that are employed to process the spatial and motion 
concepts are also employed to process the concepts of number, 
addition, and subtraction. In other words, the mathematical concepts 
of number, addition, and subtraction are grounded in spatial/motion 
concepts. They are understood through the sensorimotor networks 
that represent the spatial/motion concepts.

5. Perceptual and action effector 
strength in metaphorical description 
of the limit of a function

The ideas of embodiment theories and grounded cognition have 
been used not only in teaching and learning elementary mathematical 

TABLE 1 Norms of perceptual strength of some spatial and motion concepts used to metaphorically describe numbers, addition, and subtraction 
(Lynott et al., 2019).

Modality Auditory Gustatory Haptic Interoceptive Olfactory Visual M (SD)

Concept

Movement 1.71 0.00 1.71 2.41 0.00 3.88 1.62 (1.48)

Rightwards 0.93 0.21 0.50 0.57 0.21 2.93 0.89 (1.03)

Upwards 0.65 0.24 0.47 1.18 0.12 3.71 1.06 (1.35)

Direction 1.53 0.21 0.47 1.05 0.16 3.63 1.18 (1.31)

Right 1.54 0.13 0.71 2.04 0.25 2.83 1.25 (1.07)

Left 0.82 0.06 1.71 1.12 0.06 2.82 1.10 (1.06)

Up 0.60 0.00 1.33 2.07 0.00 4.13 1.36 (1.58)

Down 1.22 0.28 0.61 2.61 0.28 3.28 1.38 (1.28)

M (SD) 1.07 (0.44) 0.12 (0.11) 0.86 (0.56) 1.54 (0.75) 0.13 (0.10) 3.47 (0.52)

The last column and row report the means (M) of the means and their standard deviations (SD; in brackets).
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concepts but also more advanced concepts in mathematics. Some of 
these higher-level concepts are metaphorically described in 
mathematical discussions (Glenberg, 2022). In this section, we use 
Lancaster Sensorimotor Norms to discuss the grounded understanding 
of limit of function. Limit of a function, which is one of the most 
fundamental concepts in calculus, is a mathematical concept that is 
metaphorically described in terms of spatial and motion concepts, 
although its formal definition is totally based on abstract mathematical 
symbols. This concept is a base for defining many other concepts in 
calculus such as continuity, derivative, and integral (e.g., Leithold, 
1997). The metaphorical description of this concept as a fictive motion 
has also been discussed in some works (e.g., Núñez and Lakoff, 1998; 
Lakoff and Núñez, 2000; Marghetis and Núñez, 2013). According to 
the formal definition of the limit of a function in mathematics 
textbooks, the limit of the function f(x) at c is equal to 
L ( lim )
x c

f x L
→

( ) =  if:

 ( )0, 0,such that if 0 x c< , then f x L<∀ε > ∃δ > < − δ − ε

Since acquiring a clear understanding of this definition may 
be difficult for students, it is metaphorically expressed to make it more 
understandable. According to the metaphorical definition, when the 
moving point x approaches the fixed point c, the moving point f(x) 
approaches the fixed point L, and the distance between f(x) and L 
becomes smaller than any small distance (Leithold, 1997). This 
metaphorical definition of limit is totally expressed in terms of spatial 
and motion concepts (approach, point, distance, etc.). Here, we can 
see x and f (x) as two moving objects. As x moves toward c, f(x) moves 
toward L and the distance between f(x) and L can become smaller than 

any distance (Marghetis and Núñez, 2013). The derivative of a 
function at a given point, which is essentially a limit, is also 
metaphorically described in terms of spatial and motion concepts. In 
the graphical representation of the concept of derivative of function 
that includes spatial and motion concepts, the derivative of a function 
at the point of c is understood as the slope of the tangent line at c. 
We scouted Lynott et al.’s (2019) data base and extracted perceptual 
and action strength ratings of several spatial and motion concepts 
(APPROACH, NEIGHBORHOOD, MOVING, DISTANCE, LINE, 
SLOPE) that are used to metaphorically describe the mathematical 
concepts of limit and derivative of function. Tables 5, 6 show degrees 
of perceptual and action effector strength of these concepts.

The values presented in these tables show that these concepts have 
high degrees of perceptual and action effector strength. Among ratings 
of perceptual strength, ratings of visual modality showed the largest 
effect compared to the norms of other modalities (REvisual = 0.91, 
REhaptic = 0.62, REauditory = 0.58, REinteroceptive = 0.45, REolfactory = 0.24, and 
REgustatory = 0.16. All five pairwise comparisons with this modality were 
p < 0.005). Among norms of action effector strength, norms of foot 
and head showed larger effects than others (REfoot = 0.70, REhead = 0.68, 
REhand = 0.49, REtorso = 0.33, and REmouth = 0.28. In this case, though, no 
pairwise comparison was significant). Therefore, these elements play 
a more important role in the process of grounding the abstract 
mathematical concepts of the limit of function and derivative of 
function in the physical environment through metaphorical 
descriptions. Based on the assumptions of the strong version of 
embodiment, when the concepts of limit or derivative of function are 
metaphorically understood, the sensorimotor networks that are 
associated with visual modality, foot, hand, and head are actively 
employed. Although norms of perceptual and action effector strength 

TABLE 2 Norms of action effector strength of some spatial and motion concepts used to metaphorically describe numbers, addition, and subtraction 
(Lynott et al., 2019).

Action effector Foot Hand Head Mouth Torso M (SD)

Concept

Movement 4.53 4.42 3.32 2.21 3.74 3.64 (0.94)

Rightwards 1.30 1.90 1.85 1.25 1.20 1.50 (0.34)

Upwards 1.20 1.55 2.05 0.45 0.40 1.13 (0.71)

Direction 1.76 2.38 3.10 1.57 0.91 1.94 (0.83)

Right 1.20 2.50 2.35 1.30 0.70 1.61 (0.78)

Left 1.90 2.32 2.47 0.26 0.58 1.51 (1.02)

Up 2.55 3.05 2.70 1.65 2.15 2.42 (0.54)

Down 0.75 0.80 1.75 0.65 0.55 0.90 (0.48)

M (SD) 1.76 (1.19) 2.24 (1.07) 2.42 (0.54) 1.12 (0.64) 1.23 (1.08)

The last column and row report the means (M) of the means and their standard deviations (SD; in brackets).

TABLE 3 Norms of perceptual strength of numbers, addition, and subtraction (Lynott et al., 2019).

Modality Auditory Gustatory Haptic Interoceptive Olfactory Visual M (SD)

Concept

Number 1.63 0.11 0.58 0.16 0.05 3.63 1.03 (1.41)

Addition 1.28 0.18 0.50 0.43 0.13 3.33 0.97 (1.22)

Subtraction 2.29 0.06 0.24 0.06 0.00 3.71 1.06 (1.57)

M (SD) 1.73 (0.52) 0.11 (0.06) 0.44 (0.18) 0.21 (0.19) 0.06 (0.06) 3.55 (0.20)

The last column and row report the means (M) of the means and their standard deviations (SD; in brackets).
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TABLE 6 Norms of action effector strength of some spatial and motion concepts used to metaphorically describe limit of function and derivative of 
function (Lynott et al., 2019).

Action effector Foot Hand Head Mouth Torso M (SD)

Concept

Approach 3.94 1.71 2.18 1.24 1.82 2.18 (1.04)

Neighborhood 1.70 1.40 2.45 1.00 0.70 1.45 (0.68)

Moving 4.36 4.05 3.47 2.82 3.48 3.64 (0.59)

Distance 2.65 1.45 2.40 0.55 0.70 1.55 (0.96)

Line 0.95 0.84 2.00 0.00 0.00 0.76 (0.83)

Slope 2.50 1.27 2.09 0.27 0.82 1.39 (0.91)

M (SD) 2.68 (1.30) 1.79 (1.14) 2.43 (0.54) 0.98 (1.01) 1.25 (1.24)

The last column and row report the means (M) of the means and their standard deviations (SD; in brackets).

of these two calculus concepts have not been provided in Lynott et al.’s 
(2019) data base, we can expect that these concepts have high degrees 
of visual strength and high degrees of action effector strength in foot, 
hand, and head.

Limit and derivative are essentially continuous concepts. That is 
why these concepts can be understood in terms of motion domains. 
It can be  said that there is some kind of isomorphic relationship 
between these mathematical concepts and spatial/motion domains. In 
fact, where two domains have some kind of isomorphic relationship 
with each other, each one can be understood in terms of the other. 
Two domains are isomorphic when they share some deep similarity. 
This essential similarity can be the reason behind the similarity of 
their behaviors in some respects. Since many mathematical concepts 
are essentially continuous, they can be described in terms of spatial/
motion domains because movements are continuous too.

From the perspective of the strong version of embodiment (Gallese 
and Lakoff, 2005), these mathematical concepts can be  understood 
through the activation of the sensory-motor system. In other words, these 
concepts can become grounded in sensory-motor experiences when they 
are understood in terms of motion domains. Using gestures that describe 
these motion domains can contribute to the grounding of mathematical 
concepts that are understood in terms of motion domains (Khatin-Zadeh 
et al., 2021a; Khatin-Zadeh, 2022). In this way, an abstract conceptual 
entity that does not exist in the physical form is embodied in terms of a 
physical object and subsequently is grounded in the physical environment. 
In fact, when abstract mathematical concepts are described in terms of 
motion domains supported by gestures that describe those motion 
domains, the abstract concepts can be  grounded in the physical 
environment through the visual and motor systems (Khatin-Zadeh et al., 
2022b,c). They can be grounded through the visual system as motion 

TABLE 4 Norms of action effector strength of numbers, addition, and subtraction (Lynott et al., 2019).

Action effector Foot Hand Head Mouth Torso M (SD)

Concept

Number 0.05 0.81 2.57 1.43 0.33 1.04 (1)

Addition 0.37 2.00 3.58 1.37 0.47 1.56 (1.3)

Subtraction 0.00 1.11 3.05 0.42 0.05 0.93 (1.3)

M (SD) 0.14 (0.20) 1.31 (0.62) 3.07 (0.50) 1.07 (0.57) 0.29 (0.21)

The last column and row report the means (M) of the means and their standard deviations (SD; in brackets).

TABLE 5 Norms of perceptual strength of some spatial and motion concepts used to metaphorically describe limit of function and derivative of 
function (Lynott et al., 2019).

Modality Auditory Gustatory Haptic Interoceptive Olfactory Visual M (SD)

Concept

Approach 1.94 0.44 1.17 0.89 0.56 2.94 1.32 (0.96)

Neighborhood 2.00 0.00 0.94 0.39 1.11 4.17 1.44 (1.50)

Moving 1.22 0.06 2.06 1.50 0.06 3.89 1.46 (1.43)

Distance 1.76 0.71 1.43 1.29 0.57 3.19 1.49 (0.94)

Line 0.89 0.00 1.22 0.22 0.00 4.44 1.13 (1.70)

Slope 0.18 0.09 1.64 1.14 0.14 3.68 1.14 (1.40)

M (SD) 1.33 (0.71) 0.22 (0.29) 1.41 (0.40) 0.90 (0.51) 0.41 (0.43) 3.72 (0.57)

The last column and row report the means (M) of the means and their standard deviations (SD; in brackets).
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domains have a high degree of imageability. Also, they can be grounded 
through the motor system as description of motion domains and gesture 
involves the activation of the motor system. In this way, even highly 
abstract mathematical concepts can be  grounded in the physical 
environment if they are understood in terms of highly imageable motion 
domains supported by gestures that involve the activation of the 
motor system.

Finally, it should be noted that Lancaster Sensorimotor Norms 
have been obtained on the basis of an on-line judgment task presented 
to a group of participants. In this task, English speaking participants 
rated perceptual and action effector strengths of words that were 
presented to them in lists out of a natural context. As with all 
subjective rating studies, such tests rely on participants’ overt 
calculation of their transient mental state rather than directly 
measuring embodiment of abstract concepts. Since mathematical 
concepts are often used in the context of mathematical problems, there 
might be  some variations in the perceptual and action effector 
strengths of these concepts. In other words, perceptual and action 
effector strength of mathematical concepts may be affected by the 
context of a mathematical problem. This could limit our interpretation 
of the data that have been presented in Lancaster Sensorimotor 
Norms. The effect of context on the perceptual and action effector 
strength of concepts during metaphorical description of mathematical 
concepts is a question that can be investigated in future works.

6. Conclusion

When an abstract concept is metaphorically described in terms 
of a concrete concept, perceptual and action effector strength of the 
base concept of the metaphor plays a key role in the process of 
grounding the abstract concept in the physical environment. This is 
particularly the case when this metaphorical description is supported 
by gestures. Gestures can offer a highly visible description of visual 
and motoric features of the base domain of a metaphor. In fact, when 
gestures accompany a metaphorical description, the process of 
embodiment takes place through two mechanisms: a verbal-based 
mechanism and a gesture-based mechanism. Through the first 
mechanism, a concrete concept is mapped into an abstract concept, 
and perceptual features of the base are attributed to the target. 
Through the second mechanism, gestures strengthen the 
involvement of the sensorimotor system in the process of 
metaphorical description. In fact, the second mechanism strengthen 
the process of embodiment through active and direct involvement 
of body parts. The description of abstract mathematical concepts in 
terms of graphical representations is an interesting scientific case in 
which an abstract concept is grounded in a concrete concept. The 
graphical representation may have some degree of perceptual 

strength. Since the graphical representation can be  depicted by 
gestures, the motor system can be  actively employed to ground 
abstract mathematical concepts in the concrete world when they are 
described in terms of graphical representations. If understanding an 
abstract mathematical concept in terms of a graphical representation 
could involve the employment of the motor system, it can 
be assumed that factors determining motor strength of a graphical 
representation play an important role.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author.

Ethics statement

Ethical approval was not required for the study involving 
humans in accordance with the local legislation and institutional 
requirements. Written informed consent to participate in this study 
was not required from the participants or the participants’ legal 
guardians/next of kin in accordance with the national legislation and 
the institutional requirements.

Author contributions

OK-Z wrote the first draft of this manuscript. DF, JH, and FM-R 
commented on it and revised it. All authors contributed to the article 
and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Alibali, M. W., and Nathan, M. J. (2012). Embodiment in mathematics teaching and 

learning: evidence from learners' and teachers' gestures. J. Learn. Sci. 21, 247–286. doi: 
10.1080/10508406.2011.611446

Barsalou, L. W. (2008). Grounded cognition. Annu. Rev. Psychol. 59, 617–645. doi: 
10.1146/annurev.psych.59.103006.093639

Barsalou, L. W. (2009). Simulation, situated conceptualization, and prediction. 
Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 364, 1281–1289. doi: 10.1098/
rstb.2008.0319

Binder, J. R., and Desai, R. H. (2011). The neurobiology of semantic memory. Trends 
Cogn. Sci. 15, 527–536. doi: 10.1016/j.tics.2011.10.001

Blomberg, J., and Zlatev, J. (2014). Actual and non-actual motion: why experientialist 
semantics needs phenomenology (and vice versa). Phenomenol. Cogn. Sci. 13, 395–418. 
doi: 10.1007/s11097-013-9299-x

Borghi, A. M., Binkofski, F., Castelfranchi, C., Cimatti, F., Scorolli, C., and 
Tummolini, L. (2017). The challenge of abstract concepts. Psychol. Bull. 143, 263–292. 
doi: 10.1037/bul0000089

https://doi.org/10.3389/fpsyg.2023.1178095
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://doi.org/10.1080/10508406.2011.611446
https://doi.org/10.1146/annurev.psych.59.103006.093639
https://doi.org/10.1098/rstb.2008.0319
https://doi.org/10.1098/rstb.2008.0319
https://doi.org/10.1016/j.tics.2011.10.001
https://doi.org/10.1007/s11097-013-9299-x
https://doi.org/10.1037/bul0000089


Khatin-Zadeh et al. 10.3389/fpsyg.2023.1178095

Frontiers in Psychology 08 frontiersin.org

Chedid, G., Brambati, S. M., Bedetti, C., Rey, A. E., Wilson, M. A., and Vallet, G. T. 
(2019). Visual and auditory perceptual strength norms for 3, 596 French nouns and their 
relationship with other psycholinguistic variables. Behav. Res. Method 51, 2094–2105. 
doi: 10.3758/s13428-019-01254-w

Chen, I. H., Zhao, Q., Long, Y., Lu, Q., and Huang, C. R. (2019). Mandarin Chinese 
modality exclusivity norms. PLoS One 14:e0211336. doi: 10.1371/journal.pone.0211336

Connell, L., and Lynott, D. (2016). Do we know what we’re simulating? Information 
loss on transferring unconscious perceptual simulation to conscious imagery. J. Exp. 
Psychol. Learn. Mem. Cogn. 42, 1218–1232. doi: 10.1037/xlm0000245

Crutch, S. J., and Jackson, E. C. (2011). Contrasting graded effects of semantic 
similarity and association across the concreteness spectrum. Quart. J. Exp. Psychol. 
Human Exp. Psychol. 64, 1388–1408. doi: 10.1080/17470218.2010.543285

Daar, M., and Pratt, J. (2008). Digits affect actions: the SNARC effect and response 
selection. Cortex 44, 400–405. doi: 10.1016/j.cortex.2007.12.003

Dehaene, S., Bossini, S., and Giraux, P. (1993). The mental representation of parity and 
number magnitude. J. Exp. Psychol. Gen. 122, 371–396. doi: 10.1037/0096-3445.122.3.371

Dehaene, S., Dupoux, E., and Mehler, J. (1990). Is numerical comparison digital? 
Analogical and symbolic effects in two-digit number comparison. J. Exp. Psychol. Hum. 
Percept. Perform. 16, 626–641. doi: 10.1037//0096-1523.16.3.626

Farsani, D., Lange, T., and Meaney, T. (2022). Gestures, systemic functional linguistics 
and mathematics education. Mind Cult. Act. 29, 75–95. doi: 
10.1080/10749039.2022.2060260

Filipović Đurđević, D. F., Popović Stijačić, M., and Karapandžić, J. (2016). “A quest for 
sources of perceptual richness: several candidates” in Studies in language and mind. eds. 
S. Halupka-Rešetar and S. Martínez-Ferreiro (Novi Sad, Serbia: Filozofski fakultet 
uNovom Sadu), 187–238.

Fischer, M. H., Castel, A. D., Dodd, M. D., and Pratt, J. (2003). Perceiving numbers 
causes spatial shifts of attention. Nat. Neurosci. 6, 555–556. doi: 10.1038/nn1066

Gallese, G., and Lakoff, G. (2005). The brain’s concepts: the role of the sensory-motor 
system in conceptual knowledge. Cogn. Neuropsychol. 22, 455–479. doi: 
10.1080/02643290442000310

Gallese, V., and Sinigaglia, C. (2011). “Cognition in action. A new look at the cortical 
motor system” in Joint attention and agency. eds. J. Metcalf and H. Terrace (Oxford: 
Oxford University Press)

Glenberg, A. M. (2022). Embodiment and learning of abstract concepts (such as 
algebraic topology and regression to the mean). Psychol. Res. 86:2398. doi: 10.1007/
s00426-021-01576-5

Glenberg, A. M., Satao, M., Cattaneo, L., Riggio, L., Palumbo, D., and Buccino, G. 
(2008). Processing abstract language modulates motor system activity. Q. J. Exp. Psychol. 
61, 905–919. doi: 10.1080/1747021 0701625550

Göbel, S. M. (2015). Up or down? Reading direction influences vertical counting 
direction in the horizontal plane – a cross-cultural comparison. Front. Psychol. 6:228. 
doi: 10.3389/fpsyg.2015.00228

Grade, S., Lefevre, N., and Pesenti, M. (2013). Influence of gaze observation on 
random number generation. Exp. Psychol. 60, 122–130. doi: 10.1027/1618-3169/a000178

Guan, C. Q., Meng, W., Yao, R., and Glenberg, A. M. (2013). The motor system 
contributes to comprehension of abstract language. PLoS One 8:e75183. doi: 10.1371/
journal.pone.0075183

Hauk, O., and Tschentscher, N. (2013). The body of evidence: what can neuroscience 
tell us about embodied semantics? Front. Psychol. 4, 1–14. doi: 10.3389/fpsyg.2013.00050

Hesse, P. N., and Bremmer, F. (2017). The SNARC effect in two dimensions: evidence 
for a frontoparallel mental number plane. Vis. Res. 130, 85–96. doi: 10.1016/j.
visres.2016.10.007

James, K. H., and Gauthier, I. (2006). Letter processing automatically recruits a 
sensory-motor brain network. Neuropsychologia 44, 2937–2949. doi: 10.1016/j.
neuropsychologia.2006.06.026

Khatin-Zadeh, O. (2022). How does representational transformation enhance 
mathematical thinking? Axiomathes 32, 283–292. doi: 10.1007/s10516-021-09

Khatin-Zadeh, O., Eskandari, Z., Cervera-Torres, S., Ruiz Fernández, S., Farzi, R., and 
Marmolejo-Ramos, F. (2021a). The strong versions of embodied cognition: three 
challenges faced. Psychol. Neurosci. 14, 16–33. doi: 10.1037/pne0000252

Khatin-Zadeh, O., Eskandari, Z., and Farsani, D. (2023a). The roles of mathematical 
metaphors and gestures in the understanding of abstract mathematical concepts. J. 
Human. Math. 13, 36–53. doi: 10.5642/jhummath.BZXW2115

Khatin-Zadeh, O., Eskandari, Z., and Marmolejo-Ramos, F. (2022c). Gestures enhance 
executive functions for the understating of mathematical concepts. Integrat. Psychol. 
Behav. Sci. doi: 10.1007/s12124-022-09694-4

Khatin-Zadeh, O., Farsani, D., and Breda, A. (2023b). How can transforming 
representation of mathematical entities help us employ more cognitive resources? Front. 
Psychol. 14:1091678. doi: 10.3389/fpsyg.2023.1091678

Khatin-Zadeh, O., Farsani, D., Eskandari, Z., and Marmolejo-Ramos, F. (2022b). The 
roles of motion, gesture, and embodied action in the processing of mathematical 
concepts. Front. Psychol. 13:969341. doi: 10.3389/fpsyg.2022.969341

Khatin-Zadeh, O., Marmolejo-Ramos, F., and Trenholm, S. (2022a). The role of motion-
based metaphors in enhancing mathematical thought: a perspective from embodiment 
theories of cognition. J. Cogn. Enhance. 6, 455–462. doi: 10.1007/s41465-022-00247-6

Khatin-Zadeh, O., and Yazdani-Fazlabadi, B. (2023). Two mechanisms for 
understanding mathematical concepts in terms of fictive motions. Mind Brain Educ. 17, 
86–92. doi: 10.1111/mbe.12358

Khatin-Zadeh, O., Yazdani-Fazlabadi, B., and Eskandari, Z. (2021b). The grounding 
of mathematical concepts through fictive motion, gesture and the motor system. Learn. 
Math. 41, 19–21.

Lakoff, G. (2008). “The neural theory of metaphor” in The Cambridge handbook of 
metaphor and thought. ed. GibbsR. W.  Jr. (Oxford: Oxford University Press), 17–38.

Lakoff, G., and Johnson, M. (2003). Metaphors we  live by. London: University of 
Chicago Press.

Lakoff, G., and Núñez, R. E. (2000) Where mathematics comes from: How the embodied 
mind brings mathematics into being. New York: Basic Books.

Lambon-Ralph, M. A. (2013). Neurocognitive insights on conceptual knowledge and 
its breakdown. Philos. Trans. Royal Soc. B Biol. Sci. 369, 20120392–20120311. doi: 
10.1098/rstb.2012.0392

Leithold, L. (1997). Calculus and analytical geometry. New York: Harpercollins Publishers.

Longcamp, M., Hlushchuk, Y., and Hari, R. (2011). What differs in visual recognition 
of handwritten vs. printed letters? An fMRI study. Hum. Brain Mapp. 32, 1250–1259. 
doi: 10.1002/hbm.21105

Lynott, D., Connell, L., Brysbaert, M., Brand, J., and Carney, J. (2019). The Lancaster 
perceptual norms: multidimensional measures of sensorimotor and action strength for 40, 
000 English words. Behav. Res. Method 52, 1271–1291. doi: 10.3758/s13428-019-01316-z

Marghetis, T., and Núñez, R. (2013). The motion behind the symbols: a vital role for 
dynamism in the conceptualization of limits and continuity in expert mathematics. Top. 
Cogn. Sci. 5, 299–316. doi: 10.1111/tops.12013

Masson, N., and Pesenti, M. (2014). Attentional bias induced by solving simple and 
complex addition and subtraction problems. Q. J. Exp. Psychol. 67, 1514–1526. doi: 
10.1080/17470218.2014.903985

Matlock, T. (2004). Fictive motion as cognitive simulation. Mem. Cogn. 32, 1389–1400. 
doi: 10.3758/BF03206329

Matlock, T. (2006) in Depicting fictive motion in drawings in cognitive linguistics 
investigations: Across languages, fields and philosophical boundaries. ed. J. Luchenbroers 
(Amsterdam: John Benjamins), 67–85.

Matlock, T. (2010). Abstract motion is no longer abstract. Lang. Cogn. 2, 243–260. doi: 
10.1515/langcog.2010.010

Matlock, T., Holmes, K. J., Srinivasan, M., and Ramscar, M. (2011). Even abstract 
motion influences the understanding of time. Metaphor. Symb. 26, 260–271. doi: 
10.1080/10926488.2011.609065

Miceli, A., Wauthia, E., Lefebvre, L., Ris, L., and Simoes Loureiro, I. (2021). Perceptual 
and interoceptive strength norms for 270 french words. Front. Psychol. 12:667271. doi: 
10.3389/fpsyg.2021.667271

Miklashevsky, A. (2018). Perceptual experience norms for 506 Russian nouns: 
modality rating, spatial localization, manipulability, imageability and other variables. J. 
Psycholinguist. Res. 47, 641–661. doi: 10.1007/s10936-017-9548-1

Noguchi, K., Abel, R. S., Marmolejo-Ramos, F., and Konietschke, F. (2020). Nonparametric 
multiple comparisons. Behav. Res. Methods 52, 489–502. doi: 10.3758/s13428-019-01247-9

Núñez, R., and Lakoff, G. (1998). What did Weierstrass really define? The cognitive 
structure of natural and δ-ε continuity. Math. Cogn. 4, 85–101. doi: 10.1080/135467998387343

Núñez, R. E., Motz, B. A., and Teuscher, U. (2006). Time after time: the psychological 
reality of the ego-and time-referent-point distinction in metaphorical construals of time. 
Metaphor. Symb. 21, 133–146. doi: 10.1207/s15327868ms2103_1

Pinhas, M., and Fischer, M. H. (2008). Mental movements without magnitude? A 
study of spatial biases in symbolic arithmetic. Cognition 109, 408–415. doi: 10.1016/j.
cognition.2008.09.003

Pinhas, M., Shaki, S., and Fischer, M. H. (2014). Heed the signs: operation signs have 
spatial associations. Q. J. Exp. Psychol. 67, 1527–1540. doi: 10.1080/17470218.2014.892516

Sbriscia-Fioretti, B., Berchio, C., Freedberg, D., Gallese, V., and Umiltà, M. A. (2013). 
ERP modulation during observation of abstract paintings by Franz Kline. PLoS One 
8:e75241. doi: 10.1371/journal.pone.0075241

Sixtus, E., Lonnemann, J., Fischer, M. H., and Werner, K. (2019). Mental number 
representations in 2D space. Front. Psychol. 10:172. doi: 10.3389/fpsyg.2019.00172

Speed, L. J., and Majid, A. (2017). Dutch modality exclusivity norms: simulating perceptual 
modality in space. Behav. Res. Methods 49, 2204–2218. doi: 10.3758/s13428-017-0852-3

Umilta', M. A., Berchio, C., Sestito, M., Freedberg, D., and Gallese, V. (2012). Abstract 
art and cortical motor activation: an EEG study. Front. Hum. Neurosci. 6:311. doi: 
10.3389/fnhum.2012.00311

Winter, B., Matlock, T., Shaki, S., and Fischer, M. H. (2015). Mental number space in three 
dimensions. Neurosci. Biobehav. Rev. 57, 209–219. doi: 10.1016/j.neubiorev.2015.09.005

https://doi.org/10.3389/fpsyg.2023.1178095
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://doi.org/10.3758/s13428-019-01254-w
https://doi.org/10.1371/journal.pone.0211336
https://doi.org/10.1037/xlm0000245
https://doi.org/10.1080/17470218.2010.543285
https://doi.org/10.1016/j.cortex.2007.12.003
https://doi.org/10.1037/0096-3445.122.3.371
https://doi.org/10.1037//0096-1523.16.3.626
https://doi.org/10.1080/10749039.2022.2060260
https://doi.org/10.1038/nn1066
https://doi.org/10.1080/02643290442000310
https://doi.org/10.1007/s00426-021-01576-5
https://doi.org/10.1007/s00426-021-01576-5
https://doi.org/10.1080/1747021 0701625550
https://doi.org/10.3389/fpsyg.2015.00228
https://doi.org/10.1027/1618-3169/a000178
https://doi.org/10.1371/journal.pone.0075183
https://doi.org/10.1371/journal.pone.0075183
https://doi.org/10.3389/fpsyg.2013.00050
https://doi.org/10.1016/j.visres.2016.10.007
https://doi.org/10.1016/j.visres.2016.10.007
https://doi.org/10.1016/j.neuropsychologia.2006.06.026
https://doi.org/10.1016/j.neuropsychologia.2006.06.026
https://doi.org/10.1007/s10516-021-09
https://doi.org/10.1037/pne0000252
https://doi.org/10.5642/jhummath.BZXW2115
https://doi.org/10.1007/s12124-022-09694-4
https://doi.org/10.3389/fpsyg.2023.1091678
https://doi.org/10.3389/fpsyg.2022.969341
https://doi.org/10.1007/s41465-022-00247-6
https://doi.org/10.1111/mbe.12358
https://doi.org/10.1098/rstb.2012.0392
https://doi.org/10.1002/hbm.21105
https://doi.org/10.3758/s13428-019-01316-z
https://doi.org/10.1111/tops.12013
https://doi.org/10.1080/17470218.2014.903985
https://doi.org/10.3758/BF03206329
https://doi.org/10.1515/langcog.2010.010
https://doi.org/10.1080/10926488.2011.609065
https://doi.org/10.3389/fpsyg.2021.667271
https://doi.org/10.1007/s10936-017-9548-1
https://doi.org/10.3758/s13428-019-01247-9
https://doi.org/10.1080/135467998387343
https://doi.org/10.1207/s15327868ms2103_1
https://doi.org/10.1016/j.cognition.2008.09.003
https://doi.org/10.1016/j.cognition.2008.09.003
https://doi.org/10.1080/17470218.2014.892516
https://doi.org/10.1371/journal.pone.0075241
https://doi.org/10.3389/fpsyg.2019.00172
https://doi.org/10.3758/s13428-017-0852-3
https://doi.org/10.3389/fnhum.2012.00311
https://doi.org/10.1016/j.neubiorev.2015.09.005


Khatin-Zadeh et al. 10.3389/fpsyg.2023.1178095

Frontiers in Psychology 09 frontiersin.org

Winter, B., Perlman, M., and Matlock, T. (2013). Using space to talk and gesture about 
numbers: evidence from the TV news archive. Gesture 13, 377–408. doi: 10.1075/gest.13.3.06win

Wood, G., Willmes, K., Nuerk, H. C., and Fischer, M. H. (2008). On the cognitive link 
between space and number: a meta-analysis of the SNARC effect. Psychol. Sci. 50, 
489–525.

Woodin, G., Winter, B., and Padilla, L. (2022). Conceptual metaphor and graphical 
convention influence the interpretation of line graphs. IEEE Trans. Vis. Comput. Graph. 
28, 1209–1221. doi: 10.1109/TVCG.2021.3088343

Zwaan, R. (2014). Embodiment and language comprehension: reframing the 
discussion. Trends Cogn. Sci. 18, 229–234. doi: 10.1016/j.tics.2014.02.008

https://doi.org/10.3389/fpsyg.2023.1178095
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://doi.org/10.1075/gest.13.3.06win
https://doi.org/10.1109/TVCG.2021.3088343
https://doi.org/10.1016/j.tics.2014.02.008

	The role of perceptual and action effector strength of graphs and bases of mathematical metaphors in the metaphorical processing of mathematical concepts
	1. Introduction
	2. Metaphorical description of mathematical functions in terms of graphs
	3. Perceptual and action effector strength of the base of a metaphor
	4. Perceptual and action effector strength in metaphorical description of numbers, addition, and subtraction
	5. Perceptual and action effector strength in metaphorical description of the limit of a function
	6. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Conflict of interest
	Publisher’s note

	References

